## Appendix 4:

## Existing and Projected Conditions Report



Prepared by:
Robert Peccia \& Associates
825 Custer Ave | Helena, MT


## TABLE OF CONTENTS

Table of Contents ..... i
List of Figures ..... iii
List of Tables ..... iii
1.0 Introduction ..... 1
1.1 Study Area ..... 1
1.2 Past, Current and Planned Projects ..... 3
1.3 Existing Plans and Regulations ..... 4
2.0 Demographics ..... 6
2.1 Population Characteristics ..... 6
2.2 Population Projections ..... 8
2.3 Employment and Income Characteristics ..... 9
3.0 Existing Transportation System ..... 12
3.1 Physical Features and Characteristics ..... 12
3.1.1 Hydraulics ..... 12
3.1.2 Bridges ..... 12
3.1.3 Operations ..... 14
3.1.4 Pavement Condition ..... 14
3.1.5 Alternative Transportation Modes ..... 15
3.1.6 Railroad ..... 15
3.1.7 Air Service. ..... 15
3.1.8 Utilities ..... 16
3.2 Geometric Conditions ..... 16
3.2.1 Mainline Interstate ..... 16
3.2.2 Interchanges ..... 20
3.2.3 Intersections ..... 24
3.3 Traffic Characteristics ..... 26
3.3.1 Traffic Volumes ..... 26
3.3.2 Mainline Operation ..... 27
3.3.3 Interchange Ramps ..... 29
3.3.4 Intersections ..... 31
3.4 Safety ..... 34
3.4.1 Safety Trends, Contributing Factors, and Crash Clusters ..... 36
4.0 Projected Transportation System ..... 37
5.0 Environmental Setting ..... 41
5.1 Physical Environment ..... 41
5.1.1 Soil Resources and Prime Farmland ..... 41
5.1.2 Geologic Resources ..... 41
5.1.3 Surface Waters ..... 42
5.1.4 Groundwater ..... 43
5.1.5 Wetlands ..... 43
5.1.6 Floodplains and Floodways ..... 44
5.1.7 Irrigation ..... 44
5.1.8 Air Quality ..... 44
5.1.9 Hazardous Substances ..... 45
5.2 Biological Environment ..... 45
5.2.1 Mammals ..... 45
5.2.2 Birds ..... 46
5.2.3 Threatened and Endangered Species ..... 46
5.2.4 Species of Concern ..... 47
5.2.5 Vegetation ..... 47
5.2.6 Fisheries Information ..... 47
5.2.7 Noxious Weeds ..... 48
5.2.8 Crucial Areas Planning System ..... 48
5.3 Social and Cultural Environment ..... 48
5.3.1 Demographic and Economic Conditions ..... 48
5.3.2 Land Ownership and Land Use ..... 49
5.3.3 Recreational Resources ..... 49
5.3.4 Cultural Resources ..... 50
5.3.5 Noise ..... 50
5.3.6 Visual Resources ..... 51
6.0 Areas of Concern and Consideration Summary ..... 52
6.1 Transportation System ..... 52
6.2 Environmental Considerations ..... 53
Appendix A: Bridge Inspection Reports
Appendix B: Traffic Data CollectionAppendix C: Existing Conditions Traffic Data Analysis
Appendix D: Projected Conditions Traffic Data Analysis

## List of Figures

Figure 1.1: Study Area ..... 2
Figure 3.1: Existing Traffic Conditions ..... 33
Figure 3.2: Crash Locations ..... 35
Figure 4.1: Projected Traffic Conditions ..... 40
Figure 6.1: Areas of Concern and Consideration ..... 54
LIST OF TABLES
Table 1.1: MDT Projects within the Study Area Since 1987 ..... 3
Table 2.1: Current Population and Past Growth ..... 6
Table 2.2: Population Race and Ethnicity Data (2010) ..... 7
Table 2.3: Age Distribution (1980 to 2010) ..... 7
Table 2.4: Housing Occupancy and Tenure ..... 8
Table 2.5: Vehicles Available ..... 8
Table 2.6: Population Projections through 2035 ..... 8
Table 2.7: Employment by Industry ..... 9
Table 2.8: Employment Status ..... 9
Table 2.9: Commuting to Work Statistics ..... 10
Table 2.10: Income Statistics ..... 11
Table 3.1: Bridge Locations and Condition ..... 13
Table 3.2: Pavement Condition ..... 15
Table 3.3: Geometric Design Criteria (Freeway) ..... 17
Table 3.4: Horizontal Curve Attributes ..... 18
Table 3.5: Vertical Curve Attributes ..... 19
Table 3.6: Interchange Ramp Standards ..... 20
Table 3.7: Interchange Horizontal Alignment Attributes ..... 21
Table 3.8: Interchange Vertical Alignment Attributes ..... 23
Table 3.9: Interchange Spacing Attributes ..... 24
Table 3.10: Left-Turn Bay Lengths ..... 25
Table 3.11: Historic Average Annual Growth Rates ..... 27
Table 3.12: Mainline Level of Service ..... 28
Table 3.13: Vehicle Speed Data ..... 28
Table 3.14: Interchange Ramp Level of Service ..... 30
Table 3.15: I-315 Interchange Volumes ..... 31
Table 3.16: Intersection Level of Service ..... 32
Table 3.17: Crash Statistics ..... 34
Table 4.1: Projected Traffic Volumes ..... 37
Table 4.2: Projected Mainline LOS ..... 38
Table 4.3: Projected Interchange Ramp LOS ..... 38
Table 4.4: Projected Intersection LOS ..... 39
Table 5.1: Threatened and Endangered Species in Cascade County ..... 46
Table 5.2: Historic Properties ..... 50

## EXISTING AND PROJ ECTED CONDITIONS

### 1.0 INTRODUCTION

This report identifies existing and projected roadway conditions and social, economic, and environmental factors that influence the Great Falls Interstate System. The analysis performed includes a planning level examination of the corridor by applying technical and environmental considerations to determine known issues, constraints, and/or areas of concern.

The analysis contained in this report is based on existing and historic traffic data, field measurements and observations, roadway as-built plans, aerial imagery, Geographical Information Systems (GIS), and publically available environmental information and demographics. The analysis was conducted for three main categories: demographics, transportation, and environment.

### 1.1 Study Area

The study area for the I-15 Gore Hill to Emerson Junction Corridor Planning Study includes Interstate 15 $(\mathrm{I}-15)$ through Great Falls, beginning southwest of the Gore Hill Interchange (I-15, Exit 277) near Reference Post (RP) 277 and ending northwest of Emerson Junction (Exit 282) near RP 284. Additionally, the study area includes Interstate 315 (I-315) and $10^{\text {th }}$ Avenue South, west of the Missouri River (RP 95). Figure 1.1 presents the study area boundary.

Within the study area, $\mathrm{I}-15$ is classified as a principal arterial and is part of the National Highway System (NHS). The Interstate serves as the main north-south corridor through Montana from the Idaho state line at Monida to the Canada boundary at Sweet Grass. I-315 is an interstate spur from I-15 and is known as Business Loop I-15. I-315 transitions to $10^{\text {th }}$ Avenue South, east of the intersection with Fox Farm Road.


Figure 1.1: Study Area

### 1.2 Past, Current and Planned Proj ects

The Montana Department of Transportation's (MDT's) online summary of road and bridge construction projects awarded since July 23, 1987, was reviewed to identify projects previously implemented within the study area. Since 1987, MDT lists 14 completed projects along the corridor. Table 1.1 lists these projects, along with a brief description of the scope available in MDT's Program and Project Management System.

Table 1.1: MDT Projects within the Study Area Since 1987

| Project Designation | Description |
| :---: | :---: |
| $10^{\text {TH }}$ AVE SOUTH - WARDEN BR TO 6TH SOUTHWEST | Concrete repair, median adjustment, and diamond grinding from Warden Bridge to Fox Farm intersection |
| 2002-10 ${ }^{\text {TH }}$ AVE SOUTH/FOX FARM RD-GREAT FALLS | Roadway and Roadside Safety Improvements |
| BRIDGE DECKS-GREAT FALLS | Rehabilitation of I-15 bridges at Sun River and the overpass at $5^{\text {th }}$ Avenue Southwest |
| FOX FARM RD \& $10^{\text {TH }}$ AVE SOUTH - GREAT FALLS - CASCADE COUNTY | Safety improvement project to address rear end crashes involving right turning vehicles |
| GREAT FALLS - CENTRAL AVE WEST BRIDGE APPROACHES - CASCADE COUNTY | Rehabilitation of the eastbound Warden Bridge |
| GREAT FALLS - FOX FARM RD. $/ 10^{\text {TH }}$ AVE. SO CASCADE COUNTY | Concrete resurfacing between $6{ }^{\text {th }}$ Street Southwest / Fox Farm Road and Warden Bridge |
| GREAT FALLS-NORTH \& SOUTH | Interstate rehabilitation |
| GREAT FALLS-NORTH \& SOUTH CASCADE COUNTY | Interstate fence replacement and installation of cattle guards |
| GREAT FALLS URBAN (1-315) | Overlay of $1-315$ and ramps at $10^{\text {th }}$ Avenue South and exit 0 |
| I15-BRIDGE REPAIR-GREAT FALLS | Emergency repair of beams damaged by trucks hauling high load |
| SF 129-GREAT FALLS WRONG WAY-PH 1 | New signing to address wrong way traffic on off ramps on l-15 |
| 2002 INTERSECTION IMPVT-GF | Safety adjustments to northbound I-15 off ramp at Central Avenue West |
| D3 SIGNING (1-15) | Guide sign replacement |
| GREAT FALLS-VAUGHN | Seal and cover from Emerson Junction to the north |

Source: MDT Project List accessible at http://www3.mdt.mt.gov:7782/mttplc/mttplc.tplk0007.project init
The Montana 2014-2018 Final Surface Transportation Improvement Program (STIP) is a federally required publication that shows funding obligations over the next five years. This program identifies improvement projects to preserve and improve Montana's transportation system. The Montana 20142018 Final STIP identifies the following future projects within the study area:

- Emerson Junction to Manchester: This project will be a major rehabilitation of I-15 beginning at RP 282.2 and ending at RP 285.9. It is estimated that the letting date for this project will be in 2017.
- Bridge Preservation, Great Falls IM: This project is bridge deck preservation on I-15 between RP 209.1 and 247.2 (outside of the study limits) and I-315 at RP 1.06. It is estimated that the letting date for this project will be in 2016.


### 1.3 Existing Plans and Regulations

The following provides a summary of existing planning documents and regulations associated with transportation in the area. A number of local plans exist with goals and objectives related to the transportation system. Additionally, Federal regulations would have to be adhered to should changes occur to the Interstate System.

## Great Falls Area Long Range Transportation Plan - 2014

The Great Falls Area Long Range Transportation Plan (LRTP) - 2014 is intended to offer guidance for the decision-makers in the Great Falls Area by responding to existing transportation system concerns through a menu of large and small improvements to the transportation network. The LRTP provides a blueprint for guiding transportation infrastructure investments based on system needs and associated decision-making principles.

The LRTP identified the need for an Interstate Corridor Study through the Great Falls area. The LRTP states the following:

Due to preliminary recommendations to make improvements to both the Emerson Junction and Gore Hill interchanges and other identified needs for added lanes and operational improvements on I-15 and I-315, an Interstate Corridor Study for the Great Falls area is recommended. The need for new interchanges, feasibility, and analysis of capacity and operational concerns, will assist in identifying potential locations, priorities, costs and scope for improvements. The study should include westbound movements on $10^{\text {th }}$ Avenue South, east of the intersection of Fox Farm Road and 6th Street SW, for traffic that exits at "Exit 0", as well as connections with I-315 to I-15.

## Cascade County Growth Policy Update (2014)

The Cascade County Growth Policy Update (2014) was drafted as a comprehensive plan to provide guidance on decisions regarding land development and public investments within Cascade County. The document outlines 13 goals, of which the transportation goal is most relevant:

## Goal 6:

Promote and maintain a transportation system that provides safety, efficiency, and is cost effective.

## Objectives:

A. New additions to the transportation system should be compatible with the existing road system and coordinated with roads from other jurisdictions.
B. Transportation planning for new developments should support the Cascade County Growth Policy.
C. Ensure that all new roads, both public and private, are built to county design standards for new construction. These standards can be found within the Cascade County Subdivision Regulations.
D. Encourage provisions for multi-modal types of transportation including: bike lanes, trails, pedestrian facilities, etc.
E. Develop and implement road and bridge improvement standards and maintenance schedules.
F. Develop a policy and implementation program in cooperation with developers and school districts to provide walks, bridges and pathways for children to improve safety and reduces transportation costs between residential neighborhoods, schools and stores.
G. Develop secondary means of access, where practical, to settlements and subdivisions in order to improve safety and overall traffic circulation.
H. Continue using Road Improvement Districts and Rural Maintenance Districts to maximize funding strategies.
I. Coordinate transportation issues with wildfire and fire protection issues, policies and goals.

## City of Great Falls Growth Policy Update (2013)

The City of Great Falls Growth Policy Update (2013) is intended to provide guidance to the local government with regard to establishing policy and a framework to guide the social, environmental, economic, and physical makeup of the city of Great Falls. The Growth Policy recognizes that transportation and growth go hand in hand. Furthermore, the Growth Policy identifies I-15 as the main regional route. Tenth Avenue South is also identified within the Growth Policy as being the largest road facility in the city.

## Great Falls International Airport Master Plan (Ongoing)

Great Falls International Airport is currently developing a master plan to evaluate the long-term vision for its properties and adjacent areas. The Airport is primarily served by the Gore Hill Interchange. Changes to the transportation system and land use near the airport could impact the function of the Interstate System.

## Great Falls Transit Development Plan (2010)

The Great Falls Transit Development Plan (TDP) was developed to analyze and recommend strategies that will affect the delivery of public transportation services for the Great Falls Transit District. The TDP states the following: "The mission of the Great Falls Transit District is to provide a safe, reliable, affordable and fiscally sound transportation system for the people of Great Falls and Black Eagle, Montana." Currently no fixed routes use roads within the l-15 corridor study area, with the exception of one line using the intersection of Fox Farm Road and $10^{\text {th }}$ Avenue South. Furthermore, no new alternative routes were recommended within the study area.

## Interstate System Access Informational Guide (2010)

The intent of the Interstate system is to provide for movement of military and civilian equipment, freight, and personnel over long distances and between and within states. The Federal Highway Administration (FHWA) is charged with administrating the Interstate System to ensure its structural and operational integrity. In 2010, FHWA published the Interstate System Access Informational Guide to provide guidance for both FHWA field staff and state departments of transportation (DOTs) on how and what should be addressed in requests for new or modified access to the Interstate System. The Guide provides information and methods for evaluating requests for new access to the Interstate System. Specifically, the Guide references eight policy requirements that must be met for new or modified interchanges. ${ }^{1}$ The goal of the Guide is to provide technical and policy support for access to the Interstate System.

[^0]
### 2.0 DEMOGRAPHICS

This section provides an overview of the socioeconomic characteristics of the study area. Historic and recent trends in area demographics help define existing conditions and aid in forecasting techniques as there is a direct correlation between motor vehicle travel and socioeconomic indicators.

Demographic and socioeconomic information was reviewed to help determine recent trends in population, age distribution, employment, economic status, and commuting for area residents. Socioeconomic data sources do, however, often lag considerably behind the actual years of interest. This analysis presents the most current data and statistics available and indicates recent and potential changes in the area.

### 2.1 Population Characteristics

A review of demographics within the study area is appropriate to gain an understanding of historical trends in population, age, race, and ethnicity. Understanding population composition is necessary, as the data may influence the types of improvements identified. For example, an aging population may indicate a need for specific types of transportation improvements such as transit services and/or non-motorized infrastructure improvements. The presence of a disadvantaged population may warrant other considerations, especially during project development activities.

Table 2.1 shows total population and growth statistics for the city of Great Falls and Cascade County. A comparison of similar statistics for the state of Montana and the United States is also provided. Between 1990 and 2010, the population of the city of Great Falls increased at a higher rate than Cascade County during the same time. Both the city and the county experienced lower growth than the state of Montana and the United States over the same period.

Table 2.1: Current Population and Past Growth

| Area | Population <br> $\mathbf{( 1 9 9 0 )}$ | Population <br> $\mathbf{( 2 0 0 0 )}$ | Population <br> $\mathbf{( 2 0 1 0 )}$ | Percent Growth <br> $(\mathbf{1 9 9 0}$ | Current Population <br> $(\mathbf{2 0 1 3}$ Estimate) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| City of Great Falls | 55,097 | 56,690 | 58,505 | $6.2 \%$ | 59,351 |
| Cascade County | 77,691 | 80,357 | 81,327 | $4.7 \%$ | 82,384 |
| State of Montana | 799,065 | 902,195 | 989,415 | $23.8 \%$ | $1,015,165$ |
| United States | $248,709,873$ | $281,421,906$ | $308,745,538$ | $24.1 \%$ | $316,128,839$ |

Source: U.S. Bureau of the Census, Census of the Population
Table 2.2 depicts race and ethnicity characteristics in the city of Great Falls, Cascade County, and the state of Montana at the time of the 2010 Census. The population of Great Falls is predominately white with percentages of minority populations slightly higher than for the state of Montana. The Census data show that Great Falls and Cascade County have roughly the same ethnic composition.

Table 2.2: Population Race and Ethnicity Data (2010)

| Race / Ethnicity | City of Great Falls |  | Cascade County |  | State of Montana |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| White | 50,723 | $86.7 \%$ | 71,100 | $87.4 \%$ | 868,628 | $87.8 \%$ |
| Hispanic or Latino | 1,978 | $3.4 \%$ | 2,711 | $3.3 \%$ | 28,565 | $2.9 \%$ |
| Black or African American | 583 | $1.0 \%$ | 958 | $1.2 \%$ | 3,743 | $0.4 \%$ |
| American Indian and Alaska Native | 2,753 | $4.7 \%$ | 3,274 | $4.0 \%$ | 59,902 | $6.1 \%$ |
| Asian | 505 | $0.9 \%$ | 665 | $0.8 \%$ | 6,138 | $0.6 \%$ |
| Native Hawaiian and Other Pacific Islander | 66 | $0.1 \%$ | 78 | $0.1 \%$ | 609 | $0.1 \%$ |
| Some Other Race | 29 | $0.0 \%$ | 45 | $0.1 \%$ | 540 | $0.1 \%$ |
| Two or More Races | $\mathbf{1 , 8 6 8}$ | $3.2 \%$ | 2,496 | $3.1 \%$ | 21,290 | $2.2 \%$ |
| Total | $\mathbf{5 8 , 5 0 5}$ |  | $\mathbf{8 1 , 3 2 7}$ |  | $\mathbf{9 8 9 , 4 1 5}$ |  |

Source: U.S. Bureau of the Census, Census of the Population
Table 2.3 presents the change in total population and age for the city of Great Falls and Cascade County since 1980. Between 1980 and 2010, the percentage of county and city residents age 65 or older showed a notable increase, while the percentage of those younger than 18 decreased over the same period. The median age in the city increased from 30.6 years in 1980 to 39.0 years in 2010 . The county experienced a similar increase in median age, rising from 28.6 years in 1980 to 38.9 years in 2010.
These statistics point to the aging of the population and follow similar trends within Montana and across the United States.

Table 2.3: Age Distribution (1980 to 2010)

| Year | < 18 Years |  | 18-64 Years |  | 65+Years |  | Total Population | Median Age |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| City of Great Falls |  |  |  |  |  |  |  |  |
| 1980 | 15,713 | 27.7\% | 34,489 | 60.8\% | 6,523 | 11.5\% | 56,725 | 30.6 |
| 1990 | 14,325 | 26.0\% | 32,507 | 59.0\% | 8,265 | 15.0\% | 55,097 | 34.4 |
| 2000 | 14,138 | 24.9\% | 33,654 | 59.4\% | 8,898 | 15.7\% | 56,690 | 37.8 |
| 2010 | 13,161 | 22.5\% | 35,648 | 60.9\% | 9,696 | 16.6\% | 58,505 | 39 |
| Change (1980 to 2010) | -2,552 | -16.2\% | 1,159 | 3.4\% | 3,173 | 48.6\% | 1,780 | 8.4 |
| Cascade County |  |  |  |  |  |  |  |  |
| 1980 | 23,544 | 29.2\% | 49,164 | 60.9\% | 7,988 | 9.9\% | 80,696 | 28.6 |
| 1990 | 21,520 | 27.7\% | 46,304 | 59.6\% | 9,867 | 12.7\% | 77,691 | 32.7 |
| 2000 | 20,912 | 26.0\% | 48,197 | 60.0\% | 11,248 | 14.0\% | 80,357 | 36.7 |
| 2010 | 18,630 | 22.9\% | 50,007 | 61.5\% | 12,690 | 15.6\% | 81,327 | 38.9 |
| Change (1980 to 2010) | -4,914 | -20.9\% | 843 | 1.7\% | 4,702 | 58.9\% | 631 | 10.3 |

Source: U.S. Bureau of the Census, Census of the Population
Table 2.4 presents housing occupancy data for the city of Great Falls, Cascade County, and the state of Montana. The city of Great Falls has 26,602 housing units. Of those units, 24,660 are occupied. Cascade County has 37,260 housing units, of which 33,352 are occupied. The average household size for owneroccupied houses in the city of Great Falls, Cascade County, and the state of Montana is roughly the same at 2.45 individuals per household. For renter-occupied households, the city of Great Falls has a lower occupancy at 2.06 persons per household compared to Cascade County and the state of Montana, which both have approximately 2.20 persons per household.

Table 2.4: Housing Occupancy and Tenure

| Housing | City of Great Falls | Cascade County | State of Montana |
| :---: | ---: | ---: | ---: |
| Total Housing Units | $\mathbf{2 6 , 6 0 2}$ | $\mathbf{3 7 , 2 6 0}$ | $\mathbf{4 8 1 , 4 0 1}$ |
| Occupied Housing Units | 24,660 | 33,352 | 405,508 |
| Owner-occupied | 15,659 | 22,057 | 277,816 |
| Average Household Size | 2.46 | 2.45 | 2.45 |
| Renter-occupied | 9,001 | 11,295 | 127,692 |
| Average Household Size | 2.06 | 2.21 | 2.20 |

Source: 2008-2012 American Community Survey 5-Year Estimates
Table 2.5 portrays data for the availability of vehicles per household. This information can be used to identify alternative transportation-dependent populations. The city of Great Falls has a higher percentage of households with no vehicles available compared to Cascade County and the state of Montana with 9.3, 7.6, and 5.3 percent, respectively. Data indicate that 2,287 of the 2,536 households ( 90 percent) in Cascade County with no vehicle available are within the city of Great Falls.

Table 2.5: Vehicles Available

| Vehicles | City of Great Falls |  | Cascade County |  | State of Montana |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Occupied Housing Units | 24,660 |  | 33,352 |  | 405,508 |  |
| No Vehicles Available | 2,287 | 9.3\% | 2,536 | 7.6\% | 21,329 | 5.3\% |
| 1 Vehicle Available | 7,954 | 32.3\% | 9,856 | 29.6\% | 114,421 | 28.2\% |
| 2 Vehicles Available | 8,904 | 36.1\% | 12,230 | 36.7\% | 153,045 | 37.7\% |
| 3 or More Vehicles Available | 5,515 | 22.4\% | 8,730 | 26.2\% | 116,713 | 28.8\% |

Source: 2008-2012 American Community Survey 5-Year Estimates

### 2.2 Population Proj ections

The Montana Department of Commerce Census and Economic Information Center provides county-level population projections. The projections were developed by Regional Economic Models, Inc. (REMI) for the state of Montana using the firm's eREMI model. Projections of Cascade County based on the eREMI model show a population increase of approximately 19 percent by 2035. In comparison, the model projects that the state of Montana's population will grow by approximately 17 percent by 2035.

Table 2.6 shows the populations for Cascade County and the state of Montana in the 2010 Census, and it provides population estimates for key years from 2015 through 2035 based on the eREMI model. The projections suggest that Cascade County's population will have an average annual growth rate of approximately 0.7 percent per year.

Table 2.6: Population Projections through 2035

|  |  |  |  |  |  |  | Average Annual <br> Growth Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 3 5}$ | (2010-2035) |
| Cascade County | 81,327 | 85,673 | 90,176 | 94,147 | 96,502 | 96,676 | $0.69 \%$ |
| State of Montana | 989,415 | $1,043,653$ | $1,094,712$ | $1,134,324$ | $1,156,494$ | $1,162,253$ |  |

Source: U.S. Bureau of the Census, Census of the Population and eREMI for Montana and Counties by REMI.

### 2.3 Employment and Income Characteristics

Table 2.7 presents data on the estimated number of employees (age 16 years and older) and the industries in which they are employed within the city of Great Falls, Cascade County, and the state of Montana. The data in Table 2.7, taken from the 2008-2012 American Community Survey (ACS) profile for these geographies, also include employment estimates by industry. The data show that most employment in the county and in the city of Great Falls is associated with service industries, followed by the retail trade and construction industries.

Table 2.7: Employment by Industry

| Industry | City | Great ls |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agriculture, Forestry, Fishing and Hunting, and Mining | 472 | 1.7\% | 1,133 | 2.9\% | 34,024 | 7.1\% |
| Construction | 2,326 | 8.2\% | 3,156 | 8.0\% | 39,115 | 8.1\% |
| Manufacturing | 846 | 3.0\% | 1,282 | 3.2\% | 22,791 | 4.7\% |
| Wholesale Trade | 814 | 2.9\% | 1,143 | 2.9\% | 12,009 | 2.5\% |
| Retail Trade | 3,867 | 13.6\% | 5,171 | 13.0\% | 56,945 | 11.8\% |
| Transportation, Warehousing, and Utilities | 1,281 | 4.5\% | 1,939 | 4.9\% | 23,871 | 5.0\% |
| Information | 541 | 1.9\% | 609 | 1.5\% | 8,913 | 1.8\% |
| Finance, Insurance, Real Estate, and Rental and Leasing | 2,305 | 8.1\% | 2,770 | 7.0\% | 26,526 | 5.5\% |
| Professional, Scientific, Management, Administrative, and Waste Management Services | 2,213 | 7.8\% | 2,709 | 6.8\% | 39,353 | 8.2\% |
| Educational Services, Health Care, and Social Assistance | 6,075 | 21.4\% | 8,343 | 21.0\% | 108,970 | 22.6\% |
| Arts, Entertainment, Recreation, Accommodation, and Food Services | 3,345 | 11.8\% | 4,209 | 10.6\% | 53,023 | 11.0\% |
| Other Services, Except Public Administration | 1,266 | 4.5\% | 1,724 | 4.3\% | 22,361 | 4.6\% |
| Public Administration | 1,770 | 6.2\% | 2,586 | 6.5\% | 30,353 | 6.3\% |
| Armed Forces | 1,228 | 4.3\% | 2,865 | 7.2\% | 3,553 | 0.7\% |
| Total Employed Population 16 Years and Over | 28,349 |  | 39,639 |  | 481,807 |  |

Source: 2008-2012 American Community Survey 5-Year Estimates
Unemployment rates are represented in Table 2.8 and are current as of July 2014. The data show an unemployment rate for Cascade County that is lower than the rate for the state of Montana ( 4.0 percent versus 4.4 percent) and the United States ( 6.5 percent). Conversely, the unemployment rate for the city of Great Falls is higher than the rate for the state of Montana ( 6.1 percent versus 4.4 percent).

Table 2.8: Employment Status

| Labor Force | Cascade County | State of Montana | United States |
| :--- | ---: | ---: | ---: |
| Labor Force | 40,826 | 531,972 | $157,573,000$ |
| Employed | 39,195 | 508,741 | $147,265,000$ |
| Unemployed | 1,631 | 23,231 | $10,307,000$ |
| Unemployment Rate | $4.0 \%$ | $4.4 \%$ | $6.5 \%$ |

Source: Montana Department of Labor and Industry, Research and Analysis Bureau - Labor Force Statistics, July 2014 (data are not seasonally adjusted).

Information about the number of workers (16 years and older) and their commuting characteristics is available from the ACS. The ACS information provided estimates of the transportation modes used by commuters. Table 2.9 presents mode choice characteristics for workers in the city of Great Falls, Cascade County, and the state of Montana. According to the ACS, more than 90 percent of the commuting workers in Cascade County and the city of Great Falls rely on personal vehicles or carpools for transportation to work destinations. The share of workers that drove alone from both the county and the city is greater than that seen statewide.

Table 2.9: Commuting to Work Statistics

| Mode Choice | City of Great Falls |  | Cascade County |  | State of Montana |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Workers 16 Years and Over | 27,980 |  | 39,075 |  | 470,377 |  |
| Car, Truck, or Van - Drove Alone | 22,855 | 81.7\% | 31,142 | 79.7\% | 352,644 | 75.0\% |
| Car, Truck, or Van - Carpooled | 2,847 | 10.2\% | 4,273 | 10.9\% | 48,324 | 10.3\% |
| Public Transportation (excluding taxicab) | 316 | 1.1\% | 369 | 0.9\% | 4,369 | 0.9\% |
| Walked | 708 | 2.5\% | 1,211 | 3.1\% | 22,790 | 4.8\% |
| Other means | 561 | 2.0\% | 764 | 2.0\% | 11,779 | 2.5\% |
| Worked at home | 693 | 2.5\% | 1,316 | 3.4\% | 30,471 | 6.5\% |
| Mean Travel Time to Work | 14.5 |  | 16.1 |  | 18.0 |  |

Source: 2008-2012 American Community Survey 5-Year Estimates
Table 2.10 presents income statistics for the city of Great Falls, Cascade County, and the state of Montana. The ACS shows estimated household incomes for the city of Great Falls and Cascade County to be $\$ 42,085$ and $\$ 43,817$, respectively. These values are below the median household income for the state of Montana, which is $\$ 45,456$. The per capita income for both the city of Great Falls $(\$ 23,238)$ and Cascade County $(\$ 23,976)$ is lower than that of the state of Montana $(\$ 25,002)$.

Table 2.10 also contains poverty statistics for the city of Great Falls, Cascade County, and the state of Montana. According to the 2008-2012 ACS profile, the number of residents living below the poverty line was higher for the city of Great Falls than for Cascade County and the state. About 14.8 percent of all individuals living in Montana were estimated to be below the poverty line. The ACS estimates show that 16.9 percent of individuals living in the city of Great Falls and 14.9 percent in Cascade County are living in poverty.

The ACS data also show that the county and city likely had a greater percentage of persons under the age of 18 living in poverty than the percentage for same age group in the state. The share of persons over the age of 65 living in poverty is, however, similar among the city, the county, and the state.

Table 2.10: Income Statistics

| Income | City of <br> Great Falls | Cascade <br> County | State of <br> Montana |
| :--- | ---: | ---: | ---: |
| Median Household Income | $\$ 42,085$ | $\$ 43,817$ | $\$ 45,456$ |
| Median Family Income | $\$ 56,368$ | $\$ 56,958$ | $\$ 58,951$ |
| Per Capita Income | $\$ 23,238$ | $\$ 23,976$ | $\$ 25,002$ |
| Persons Living in Poverty (\%) | $16.9 \%$ | $14.9 \%$ | $14.8 \%$ |
| Persons Under 18 Living in Poverty (\%) | $27.8 \%$ | $24.2 \%$ | $19.9 \%$ |
| Persons over 65 Living in Poverty (\%) | $8.6 \%$ | $8.5 \%$ | $8.4 \%$ |
| Families Living in Poverty (\%) | $13.2 \%$ | $11.4 \%$ | $9.8 \%$ |
| Families with Children under 18 Living in <br> Poverty (\%) | $24.1 \%$ | $20.9 \%$ | $17.0 \%$ |

Source: 2008-2012 American Community Survey 5-Year Estimates

### 3.0 EXISTING TRANSPORTATION SYSTEM

$\mathrm{I}-15$ is functionally classified as a principal arterial on the NHS Interstate System. The Interstate serves as the main north-south corridor through Montana and connects Canada to the southern border of California. The roadway was constructed or improved at various times, beginning in 1939 and extending to 2009. I-15 is part of the Canamex Trade Corridor, which Congress designated as a "High Priority Corridor" in the 1995 National Highway Systems Designation Act. The corridor's main objective is to facilitate trade and strengthen the corridor's position in the global economy.

I-315 begins at the $10^{\text {th }}$ Avenue South junction with I-15 (RP 279). It was opened to traffic in late 1967. The corridor is currently signed as Business Loop 15, US 89, and MT 200. I-315 is one of the shortest Interstate highways in the country at 0.828 miles, and it terminates at the intersection of Fox Farm Road and $6^{\text {th }}$ Street Southwest.

Primary users of the corridors consist of all types of individuals including locals, commuters, travelers, and freight operators. Interstate highways are considered part of the principal arterial freeway system. Freeways are characterized by having fully controlled access, high design speeds, and a high level of driver comfort and safety. For these reasons, freeways have separate geometric design criteria than those of a standard principal arterial highway.

### 3.1 Physical Features and Characteristics

This section discusses the physical features and characteristics of the study corridor. Information was gathered using publically available sources, field observations, GIS data, and MDT as-built drawings.

### 3.1.1 Hydraulics

I -15 crosses the Sun River at RP 279.35, between the $10^{\text {th }}$ Avenue South Interchange and the Central Avenue West Interchange. The crossing consists of a concrete bridge structure. Additionally, a steel culvert is located along I-15 at RP 283.4 for drainage conveyance.

### 3.1.2 Bridges

MDT's Highway Bridge Program (HBP) emphasizes asset management and preservation. This emphasis promotes a "right treatment at the right time" philosophy in prioritizing and selecting projects on MDTs bridge system. MDT has defined the bridge program objectives and performance measures. The objectives and measures are intended to identify the right treatments for Montana's bridge assets, as well as promoting cost-effective bridge preservation, appropriate safety-related work, and economic growth.

MDT uses a Structure Condition Performance Measure and a Deck Performance Condition Measure. These measures categorize bridge conditions as good, fair, or poor, based on the condition rating given to the bridge deck (riding surface), superstructure (generally beams underneath the riding surface), and substructure (support structure extending into the ground). Additionally, the Structure Condition Performance Measure assigns a poor rating to a bridge that is structurally deficient.

A bridge is considered structurally deficient if load-carrying elements have deteriorated enough to be considered in "poor condition" or the adequacy of the waterway opening provided by the bridge is insufficient, causing intolerable traffic interruptions. When a bridge is classified as structurally deficient, it does not mean that it is unsafe. A structurally deficient bridge typically requires increased maintenance and repair to remain in service and eventual rehabilitation or replacement to address overall deficiencies.

The deck condition performance measure uses the National Bridge Inventory (NBI) deck rating to give an indication of the deck condition and a planning level indication of needed preservation treatment. The deck condition ranking is a general indicator of the condition of any individual deck. The rankings are useful for planning purposes on a system wide basis.

There are 17 bridges within the study area. Table 3.1 shows the bridge locations and condition ratings. All 17 bridges have a structure condition of "good," which indicates that they are candidates for continued preservation. The bridge deck ratings include "good" (possible candidate for sealing), "fair-1" (candidate for healer/sealer), and "fair-2" (candidate for resurfacing). Detailed bridge inspection reports are available in Appendix A.

Table 3.1 also lists the width of each bridge within the study area. According to the MDT Bridge Design Standards, a bridge on the Interstate System is recommended to consist of 12-foot travel lanes, 4-foot inside shoulder, and 10-foot outside shoulder. This recommendation results in a total bridge width of 50 feet for three travel lanes, 38 feet for two travel lanes, and 26 feet for one travel lane. A number of bridges on the Interstate System within the study area have widths narrower than the recommended standards, as noted in the table below. However, the recommended standards are for new bridges on the Interstate System. Bridges to remain in place that do not meet the recommended width may be considered for additional signing or widening depending on further engineering analysis ${ }^{2}$.

Table 3.1: Bridge Locations and Condition

| Location |  | Feature Crossed | Year <br> Built | Width (feet) | Length (feet) | Structure Condition | Deck Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -15 | RP 279.98 (NB) | Sun River | 1966 | $28^{\text {(a) }}$ | 485 | Good | Good |
|  | RP 279.98 (SB) | Sun River | 1966 | $28{ }^{\text {(a) }}$ | 485 | Good | Good |
|  | RP 280.09 (NB) | $5^{\text {th }}$ Ave SW | 1967 | $37^{(a)}$ | 125 | Good | Good |
|  | RP 280.09 (SB) | $5{ }^{\text {th }}$ Ave SW | 1967 | $37^{(a)}$ | 125 | Good | Good |
|  | RP 282.55 (NB) | Vaughn Rd/ BNSF RR | 1967 | $28^{(a)}$ | 354 | Good | Fair-1 |
|  | RP 282.55 (SB) | Vaughn Rd/ BNSF RR | 1967 | $28^{(a)}$ | 359 | Good | Fair-1 |
| I-315 | RP 0.01 | I-15 | 1967 | $45^{\text {(a) }}$ | 294 | Good | Fair-1 |
|  | RP 0.34 (EB) | $14^{\text {th }}$ St SW | 1967 | $36^{(a)}$ | 150 | Good | Fair-2 |
|  | RP 0.34 (WB) | $14^{\text {th }}$ St SW | 1967 | $45^{\text {(a) }}$ | 145 | Good | Fair-1 |
|  | RP 0.34 (EB Off) | $14^{\text {th }}$ St SW | 1997 | $23^{(a)}$ | 136 | Good | Good |
|  | RP 1.06 (EB) | BNSF RR | 1946 | $45^{\text {(a) }}$ | 178 | Good | Fair-2 |
|  | RP 1.06 (WB) | BNSF RR | 1967 | $37^{\text {(a) }}$ | 208 | Good | Fair-2 |
|  | RP 1.06 (WB Off) | BNSF RR | 1996 | $23^{(a)}$ | 186 | Good | Good |
| Central Ave | RP 0.16 (EB) | BNSF RR | 1967 | 27 | 551 | Good | Fair-1 |
|  | RP 0.16 (WB) | BNSF RR | 1967 | 27 | 551 | Good | Fair-1 |
| $10^{\text {th }}$ Ave S | RP 94.61 (EB) | Missouri River | 1983 | 40 | 2122 | Good | Fair-1 |
|  | RP 94.61 (WB) | Missouri River | 1951 | 28 | 2093 | Good | Good |

Source: MDT Bridge Management System, 2014.
${ }^{(a)}$ Interstate bridge width does not meet existing standards.

[^1]
### 3.1.3 Operations

The Interstate System within the study area is considered a Level I winter maintenance level according to the MDT Maintenance Operations and Procedures Manual. ${ }^{3}$ A Level I roadway receives the highest level of maintenance and attention during inclement weather events. Level I routes are eligible to receive up to 24 -hour-per-day coverage during storms. The primary objective is to keep at least one travel lane in each direction open to traffic and to provide intermittently bare pavement as soon as possible. Within the study area, there are additional operation controls aimed at improving the function of the transportation system.

- Snow Fence: There are multiple locations with snow fences at and near the 10th Avenue South Interchange. The snow fence is intended to trap and prevent snow from blowing across the roadway.
- Variable Message Sign (VMS): To address vehicle operations related to adverse weather conditions, portable VMSs are used to alert motorists of changes in weather conditions. The VMSs are commonly deployed near the Gore Hill Interchange during high wind events.
- Bridges: Bridges typically freeze quicker than the normal roadway surface, causing operational issues for motorists. Signing alerting motorists to watch for ice on the bridges are used during the winter months.
- Detours: Concerns have been noted about not having a viable detour route for the Gore Hill area. Incidents occurring near Gore Hill have resulted in closed lanes on the Interstate, as well as increases in vehicle delay and queuing.


### 3.1.4 Pavement Condition

MDT annually tracks and measures pavement condition indices in the corridor. MDTs Pavement Management System (PvMS) is used to analyze the collected data to determine the relative performance of the pavement. Items of primary interest include the presence and degree of cracking and rutting, as well as overall ride quality. By understanding the condition of the pavement, MDT can identify the most appropriate treatments and resources needed to extend pavement life. Several pavement condition indices are monitored through MDT's PvMS. The performance measures and corresponding indices are such that the numerical value of 100 is assigned to a new pavement with no flaws, and zero is assigned to a highly degraded pavement. The following performance measures are routinely used to track pavement conditions:

- Ride Index: This is determined by using an internationally applied roughness index (IRI) in inches per mile and converting the number to a 0 to 100 scale.
- Rut Index (RI): This is calculated by converting rut depth to a 0 to 100 scale. Rut measurements are taken approximately every foot and averaged into one-tenth-mile reported depths.
- Alligator Crack Index (ACI): This is measured by combining all load-associated cracking and converting the index to a 0 to 100 scale.
- Miscellaneous Cracking Index (MCI): This is calculated by combining all non-load-associated cracking and converting the index into a 0 to 100 scale.
- Overall Performance Index (OPI): This is determined by combining and placing various weighting factors on the IRI, RI, ACI, and MCI figures and converting the index to a 0 to 100

[^2]scale. The OPI is calculated to provide a single index describing the current general health of a particular route or system.

The most important performance measure is the OPI, as this index includes all the aforementioned indices. An OPI of 80 to 100 is considered "good," 60 to 79.9 is "fair," and 0 to 59.9 is "poor." As shown in Table 3.2, the various pavement condition performance measures generally indicate good performance for I-15. Between RP 282.2 and RP 286.6 on I-15, however, the OPI indicates poor overall performance. A resurfacing project is planned for $\mathrm{I}-15$ between RP 282.2 and RP 285.9. It is anticipated that this project would be let in 2017. Information for OPI on I-315 indicates a poor to fair pavement condition.

Table 3.2: Pavement Condition

| Route | $\begin{gathered} \text { Begin } \\ \text { RP } \end{gathered}$ | $\begin{aligned} & \text { End } \\ & \text { RP } \end{aligned}$ | Surface Width | Last Surface | Last Treatment | Flexible Thickness (feet) | IRI | RI | ACI | MCI | OPI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-15 NB | 270.5 | 282.2 | 38 | 2007 | 2007 | 0.33 | 86.2 | 76.5 | 99.8 | 100.0 | 79.7 |
| I-15 SB | 270.5 | 282.2 | 38 | 2007 | 2007 | 0.33 | 88.8 | 78.7 | 99.2 | 100.0 | 82.6 |
| I-15 NB | 282.2 | 286.6 | 38 | 1999 | 2006 | 0.75 | 49.0 | 64.0 | 69.3 | 95.1 | 43.1 |
| I-15 SB | 282.2 | 286.6 | 38 | 1999 | 2006 | 0.75 | 44.0 | 72.0 | 88.0 | 96.2 | 51.0 |
| I-315 EB | 0.0 | 1.4 | 38 | 1996 | 1996 | 0.34 | 59.3 | 67.0 | 91.3 | 98.3 | 60.5 |
| I-315 WB | 0.0 | 1.4 | 38 | 1996 | 1996 | 0.34 | 83.0 | 73.0 | 80.1 | 99.8 | 57.6 |

Source: MDT Pavement Management System, 2014

### 3.1.5 Alternative Transportation Modes

There are currently no dedicated bicycle or pedestrian facilities along the study corridor. The Great Falls Area LRTP identifies a recommendation for a multi-use path adjacent to the study area near the junction of 6th Street SW and I-315. Spot improvements to the Central Avenue crossing of I-15 and the railroad are also recommended in the LRTP to accommodate bike lanes. ${ }^{4}$

### 3.1.6 Railroad

A service line for BNSF Railway runs within the study area. The Interstate crosses over the railroad at two locations within the study area: along I-15 Emerson Junction and along I-315 just east of 14th Street Southwest. Additionally, Central Avenue crosses over the railroad just west of Vaughn Road within the study area. More information about the bridge structures is provided in Section 3.1.2.

### 3.1.7 Air Service

The Great Falls International Airport is adjacent to the study area. Access to the airport is provided by Airport Drive, which connects to the Gore Hill Interchange. While it has been categorized as a "primary commercial service" airport by the National Plan of Integrated Airport Systems, it also has a military component. The airport is home to Great Falls Air National Guard Base and the Montana Air National Guard's $120^{\text {th }}$ Air Lift Wing, an Air National Guard unit employed in air defense. The airport also offers substantial infrastructure for the air cargo industry. FedEx operates a warehouse as a sorting and distribution hub for Montana. The U.S. Customs Border Patrol operates an office at the airport, which facilitates international travel.

[^3]
### 3.1.8 Utilities

I-15 in the study area includes overhead power and telephone crossings. Longitudinal occupancy of Interstate right-of-way is not permitted, and, as such, utility involvement is limited. Electric power and natural gas utilities are provided by Northwestern Energy. CenturyLink provides telecommunication services to the study area.

### 3.2 Geometric Conditions

Existing roadway geometrics were evaluated and compared to current MDT standards. Available as-built drawings were reviewed for the freeway system within the study area. Field reviews of the study corridor took place in July 2014 to confirm and supplement information contained in the as-built drawings, as well as to identify additional areas of concern within the study area.

The MDT Road Design Manual and Traffic Engineering Manual specifies general design principles and controls that determine the overall operational characteristics of the roadway. Of critical importance to determining design standards is the design speed. MDT's manuals provide guidance for design speed based on facility and operating characteristics; however, some judgment is necessary. A facility's design speed and its operating speed may differ. The design speed is a selected speed used to determine the various geometric design features of the roadway. The operating speed is the highest overall speed at which a driver may travel on a given section of roadway under favorable weather conditions and prevailing traffic conditions without at any time exceeding the safe speed as determined by the design speed. The design criteria for the study corridor are based on current MDT standards as described in the following sections.

### 3.2.1 Mainline Interstate

The mainline Interstate is characterized as a controlled access, four-lane, divided highway with high travel speeds. The key purpose of the mainline Interstate is to carry traffic over large distances quickly. The following subsections provide the analysis of the current geometric conditions along the Interstate within the study area. The evaluation compares the existing geometrics to current design standards. Note that design standards change over time. Locations that do not meet current design standards may have met standards in place during the time of construction. Additionally, it is possible that design exceptions may have been used during the initial design process.

## Design Criteria

Table 3.3 lists current design standards for freeway (NHS-Interstate) routes according to MDT design criteria. The freeway design criteria depend on terrain and area context (i.e., urban or rural). Based on the definitions provided in MDT's Road Design Manual, most of I-15 within the study area appears to be of rural context with level terrain (70-miles-per-hour [mph] design speed) with some areas of rolling terrain (60-mph design speed). I-315 appears to be of urban context ( $50-\mathrm{mph}$ design speed). For the purposes of this report, areas along I-15 that do not meet 70-mph design standards and areas along l-315 that do not meet $50-\mathrm{mph}$ design standards were noted as being substandard. A final determination of design speed will ultimately be made during project development.

Table 3.3: Geometric Design Criteria (Freeway)

| Design Element |  |  |  | Rural |  | Urban |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000000000 | Design Forecast Year (Geometrics) |  | 20 Years |  |  | 20 Years |
|  | Design Speed ${ }^{(a)}$ | Level | 70 mph |  |  | 50 mph |
|  |  | Rolling | 60 mph |  |  |  |
|  |  | Mountainous | 50 mph |  |  |  |
|  | Level of Service |  | B |  |  | B |
|  | Travel Lane Width ${ }^{(a)}$ |  | 4@12' |  |  | 4@12' |
|  | Shoulder Width ${ }^{(a)}$ | Outside Shoulder | 10' |  |  | 10' |
|  |  | Inside Shoulder | 4' |  |  | 4' |
|  | Cross Slope | Travel Lane ${ }^{(a)}$ | 2\% |  |  | 2\% |
|  |  | Shoulder | 2\% |  |  | 2\% |
|  | Median Width | Level | Minimum: 36' |  |  | Desirable: 36' Minimum: 16' |
|  |  | Rolling | Minimum: 36' |  |  |  |
|  |  | Mountainous | Minimum: ${ }^{16}$ |  |  |  |
|  | Ditch | Inslope | 6:1 (Width: 6 ') |  |  | 6:1 (Width: 6 ') |
|  |  | Width | 10' Min. |  |  | $10^{\prime}$ |
|  |  | Slope | 20:1 towards back slope |  |  | 20:1 towards back slope |
|  | Back Slope; Cut Depth at Slope Stake | 0' - 5' | 5:1 |  |  | 5:1 |
|  |  | $5^{\prime}-10^{\prime}$ | Level/Rolling: 4:1; Mountainous: 3:1 |  |  | 3:1 |
|  |  | 10'-15' | Level/Rolling: 3:1; Mountainous: $2: 1$ |  |  | 2:1 |
|  |  | > $15^{\prime}$ | Level/Rolling: 2:1; Mountainous: 1.5:1 |  |  | 1.5:1 |
| $\begin{aligned} & \overline{\bar{I}} \triangleq \\ & \text { © } \\ & \text { 등 } \\ & \text { 픕 } \end{aligned}$ | Fill Height at Slope Stake | 0' - 10' | 6:1 |  |  | 6:1 |
|  |  | 10' - 20' | 4:1 |  |  | 4:1 |
|  |  | 20' - 30' | 3:1 |  |  | 3:1 |
|  |  | > 30' | 2:1 |  |  | 2:1 |
|  | DESIGN SPEED |  | 50 mph | 60 mph | 70 mph | 50 mph |
|  | Stopping Sight Distance ${ }^{(\mathrm{a})}$ |  | 425' | 570' | $730{ }^{\prime}$ | 425' |
|  | Minimum Radius (e=8.0\%) ${ }^{(\mathrm{a})}{ }^{(\mathrm{b})}$ |  | $760{ }^{\prime}$ | 1,200' | 1,820' | 760 |
|  | Superelevation Rate ${ }^{(a)}$ |  | $\mathrm{e}_{\text {max }}=8.0 \%$ |  |  | $e_{\text {max }}=8.0 \%$ |
|  | Vertical Curvature (K-Value) ${ }^{\text {(a) }}$ | Crest | 85 | 151 | 247 | 84 |
|  |  | Sag | 96 | 136 | 181 | 96 |
|  | Maximum Grade ${ }^{(a)}$ | Level | 3\% |  |  | 5\% |
|  |  | Rolling |  | 4\% |  |  |
|  |  | Mountainous |  | 5\% |  |  |
|  | Minimum Vertical Clearance ${ }^{(a)}$ |  |  | $17.0^{\prime}$ |  | 17.0' |

Source: MDT Road Design Manual, Chapter 12, Figure 12-3, "Geometric Design Criteria for Rural Principal Arterials" (National
Highway System-Non-Interstate), 2008
${ }^{(a)}$ Controlling design criteria (see Section 8.8 of the MDT Road Design Manual)
${ }^{(b)}$ Super elevation rate (e)

## Horizontal Alignment

Elements comprising horizontal alignment include curvature, superelevation (i.e., the bank on the road), and sight distance. These horizontal alignment elements influence traffic operation and safety and relate directly to the design speed of the corridor. MDT's standards for horizontal curves are defined in terms of curve radius, and they vary based on design speed. For a $70-\mathrm{mph}$ design speed (level terrain), the minimum recommended radius is 1,810 feet with a minimum stopping sight distance (SSD) of 730 feet. The minimum recommended radius and SSD for a $60-\mathrm{mph}$ design speed (rolling terrain) are 1,200 feet and 570 feet, respectively. For an urban freeway ( $50-\mathrm{mph}$ design speed), a minimum radius of 760 feet and a minimum sight distance of 425 feet are recommended.

Table 3.4 summarizes each horizontal curve on the Interstate roadways within the study area. A determination of whether the curve met standards was noted based on the design criteria discussed previously. The controlling design criteria for the horizontal curves are radius and SSD. Stopping sight distance for a horizontal curve is evaluated based on the ability to see through the inside of the corner. Minimum sight obstruction distances were calculated based on the criteria contained in the Traffic Engineering Manual. ${ }^{5}$ The minimum sight obstruction distance is measured from the center of the inside travel lane and defines the area that should be clear of obstructions to allow for the recommended SSD.

There are five existing horizontal curves along I-15 within the study area and two horizontal curves along $\mathrm{I}-315$. Four of the five curves along I-15 meet the minimum standards for horizontal curvature based on a $70-\mathrm{mph}$ design speed (level terrain). The failing curve, at RP 282.37, does not meet the minimum radius requirements at a $70-\mathrm{mph}$ design speed; however, the curve does meet the radius requirements for a 60mph design speed (rolling terrain). Along l-315, one horizontal curve does not meet urban freeway standards ( $50-\mathrm{mph}$ speed) based on curve radius. All horizontal curves were found to have adequate SSD.

Table 3.4: Horizontal Curve Attributes

| Curve <br> Location (RP) | Length <br> (feet) | Radius <br> (feet) | Min. Sight <br> Obstruction <br> (feet) | Design <br> Speed Met <br> (mph) | Meets <br> Standards | Comments |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 2277.2 | 2,557 | 5,730 | 11.6 | 70 | YES |  |
| 228.9 | 4,334 | 5,732 | 11.6 | 70 | YES |  |
| $\mathbf{n}$ | 280.7 | 3,892 | 3,274 | 20.3 | 70 | YES |

## Vertical Alignment

Vertical alignment is a measure of the elevation change of a roadway. The length and steepness of grades directly affect the operational characteristics of the roadway. The controlling design limits for vertical curves are SSD, vertical curvature (K-value), and maximum grade. Vertical curves can be placed into two categories: crest and sag. A crest curve is created at the top of a hill or when the grade decreases. Conversely, a sag curve occurs at the bottom of a hill or when the grade increases.

[^4]Table 3.5 lists the location and controlling design features for each vertical curve along the Interstate roadways within the study area. According to the Road Design Manual, the maximum allowable grades are 3 percent for level terrain, 4 percent for rolling terrain, and 5 percent for mountainous terrain, although grades of up to 7 percent may be provided with approval. The rate of vertical curvature is expressed in terms of the K-value. The K-value is defined as a function of the length of the curve compared to the algebraic change in grade, which comprises either a sag or a crest vertical curve. For a 70-mph design speed (level terrain), minimum K-values of 247 and 181 are recommended for crest and sag vertical curves, respectively. A minimum SSD of 730 feet is recommended for a $70-\mathrm{mph}$ design speed. For sag curves, SSDs only apply where overhead structures exist. No sag curves have existing overhead obstructions within the study area.

Within the study area, there are 19 vertical curves along $\mathrm{I}-15$ and 2 vertical curves on $\mathrm{I}-315$. Both vertical curves along l-315 meet urban freeway standards. Of the 19 vertical curves along l-15, 15 meet existing standards for a 70-mph design speed (level terrain). Two curves have maximum grades that do not meet level terrain standards; however, they do meet standards for mountainous terrain. One curve has a Kvalue below standards for level terrain, while another curve does not meet level terrain standards for Kvalue and SSD.

Table 3.5: Vertical Curve Attributes

| Curve Location (RP) |  | Type | Length (feet) | Grade <br> Back | Grade <br> Ahead | Kvalue | $\begin{gathered} \text { SSD } \\ \text { (feet) } \end{gathered}$ | Design Speed Met (mph) | Meets <br> Standards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { חٌ }}{1}$ | 276.2 | Crest | 800 | 0.8\% | 0.1\% | 1,188.7 | 2,003 | 70 | YES |  |
|  | 276.7 | Crest | 800 | 0.1\% | -0.6\% | 1,164.5 | 1,971 | 70 | YES |  |
|  | 277.1 | Crest | 1,000 | -0.6\% | -1.5\% | 1,127.4 | 1,717 | 70 | YES |  |
|  | 277.3 | Sag | 1,000 | -1.5\% | -0.2\% | 777.0 | - | 70 | YES |  |
|  | 277.6 | Crest | 800 | -0.2\% | -0.8\% | 1,232.9 | 2,063 | 70 | YES |  |
|  | 277.9 | Crest | 1,100 | -0.9\% | -5.0\% | 265.1 | 756 | 50 | NO | Does not meet level terrain standards based on grade. |
|  | 278.8 | Sag | 1,000 | -5.0\% | -1.0\% | 250.0 | - | 50 | NO | Does not meet level terrain standards based on grade. |
|  | 279.3 | Crest | 1,000 | -1.0\% | -2.9\% | 540.5 | 1,083 | 70 | YES |  |
|  | 280.0 | Sag | 1,100 | -2.9\% | 0.9\% | 292.6 | - | 70 | YES |  |
|  | 280.2 | Crest | 1,100 | 0.9\% | -0.8\% | 643.3 | 1,181 | 70 | YES |  |
|  | 280.5 | Sag | 400 | -0.8\% | 1.5\% | 173.9 | - | 60 | NO | Does not meet level terrain standards based on Kvalue. |
|  | 280.8 | Crest | 600 | 1.5\% | -0.3\% | 329.7 | 893 | 70 | YES |  |
|  | 281.7 | Sag | 800 | -0.2\% | 0.2\% | 2,000.0 | - | 70 | YES |  |
|  | 282.3 | Sag | 800 | 0.2\% | 2.5\% | 355.6 | - | 70 | YES |  |
|  | 282.5 | Crest | 750 | 2.5\% | -1.0\% | 220.6 | 690 | 60 | NO | Does not meet level terrain standards based on Kvalue and SSD. |
|  | 282.7 | Sag | 200 | -1.0\% | -0.2\% | 250.0 | - | 70 | YES |  |
|  | 282.7 | Crest | 200 | -1.0\% | -1.1\% | 5,000.0 | 2,708 | 70 | YES |  |
|  | 283.0 | Crest | 200 | -0.2\% | -0.9\% | 266.7 | 1,539 | 70 | YES |  |
|  | 283.0 | Sag | 200 | -1.1\% | -0.9\% | 1,333.3 | - | 70 | YES |  |
| $\begin{aligned} & \text { ח్ల } \\ & \underline{\sim} \end{aligned}$ | 0.09 | Crest | 800 | 1.0\% | -4.5\% | 145 | 560 | 50 | YES |  |
|  | 0.28 | Sag | 400 | -4.5\% | -2.3\% | 180 | - | 50 | YES |  |

### 3.2.2 Interchanges

The purpose of an interchange is to allow traffic to enter or exit the Interstate with minimal disturbance to its traffic stream. This is accomplished by using grade-separated intersections connected by ramps. There are four interchanges along $\mathrm{I}-15$ and one interchange along $\mathrm{I}-315$ within the study area. This section discusses the geometric conditions of the five interchanges.

## Standards

The five interchanges within the study area were evaluated based on a variety of standards. The MDT Road Design Manual provides general geometric standards for horizontal and vertical curvature for interchange ramps, while the MDT Traffic Engineering Manual provides guidance for ramp lengths to allow for vehicle acceleration and deceleration. Table 3.6 provides the interchange ramp standards used to evaluate the interchanges as defined by MDT.

Table 3.6: Interchange Ramp Standards

| Type | Criteria |  | Standard |
| :---: | :---: | :---: | :---: |
| Exit Ramp | Taper Rate | Taper Design | 2 to 5 degrees |
|  |  | Parallel Design | 215 feet |
|  | Deceleration Length ( $\mathrm{Ld}_{\text {d }}$ ) |  | (a) |
|  | Sight Distance in Advance of Gore |  | 1,180 feet |
| Entry Ramp | Taper Rate | Taper Design | 50:1 to 70:1 |
|  |  | Parallel Design | 350 feet |
|  | Acceleration Rate ( $\mathrm{L}_{\mathrm{a}}$ ) |  | (b) |
|  | Horizontal Curve Radius |  | 1,000 feet |
| Spacing | Exit - Entrance |  | 500 feet |
|  | Entrance - Exit |  | 2,000 feet |
| Auxiliary Lane Drop ${ }^{(c)}$ | Within an Interchange |  | 500 feet to 1,000 feet |

Source: MDT Traffic Engineering Manual, Chapter 29, November 2007
(a) MDT Traffic Engineering Manual, Section 29.5.1.3
${ }^{(b)}$ MDT Traffic Engineering Manual, Section 29.5.2.3
${ }^{\text {(c) }}$ An auxiliary lane should be provided where the distance between the end of the entrance terminal and the beginning of an exit terminal is less than 1,500 feet. An auxiliary lane may be dropped at an exit if properly signed and designed.

Ensuring adequate ramp lengths and proper geometrics is necessary to provide for safe vehicle interaction at Interstate entrance and exit points. Additionally, the spacing between interchange ramps affects vehicle interactions and can influence traffic flow and safety. Ramps that are too close together can result in additional vehicle conflicts due to merging and diverging traffic. An additional concern regarding ramp spacing is vehicle lane-shifting patterns. Closely spaced interchanges and/or intersections may require vehicles to shift between lanes to reach their intended lane. Traffic flow and safety issues may result if enough length is not provided for in areas where lane shifts are necessary to enter or exit the Interstate.

## Horizontal Alignment

The horizontal alignment of a ramp is controlled by the radius of any curve on the ramp, super elevation, taper angle, taper length, gap acceptance length ( $L_{g}$ ), and deceleration/acceleration lengths ( $L_{d} / L_{\mathrm{a}}$ ). The limiting values for these characteristics are functions of the design speed for a given ramp. For this
analysis, the minimum design speed was determined based on the super elevation and radius for each given curve. Table 3.7 presents the horizontal geometric attributes for each of the ramps.

Table 3.7: Interchange Horizontal Alignment Attributes

| Curve Location |  | Radius (feet) | Superelevation | Taper Rate | $\begin{aligned} & \mathbf{L}_{\mathrm{d}} / \mathbf{L}_{\mathrm{a}} \\ & \text { (feet) } \end{aligned}$ | $\begin{gathered} \mathbf{L}_{\mathbf{g}} \\ \text { (feet) } \end{gathered}$ | Design Speed Met (mph) | Meets Standards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { I }}$응․0 | SB ON | 2,865 | 0.04 | 50:1 | 1,513 | 300 | 50 | NO | Does not meet standards based on acceleration length. |
|  | SB OFF | 2,953 | 0.05 | $4^{\circ} 30^{\prime} 00{ }^{\prime \prime}$ | 358 | - | 50 | YES |  |
|  |  | 3,773 | $0.03{ }^{(\mathrm{ar}}$ | - | - | - | 45 | YES |  |
|  | NB ON | 2,865 | $0.04{ }^{(\mathrm{a})}$ | 50:1 | 1,604 | 300 | 50 | NO | Does not meet standards based on acceleration length. |
|  | NB OFF | 2,865 | 0.04 | $4^{\circ} 30^{\prime} 00 \prime$ | 323 | - | 50 | NO | Does not meet standards based on deceleration length. |
| $$ | SB ON | 764 | 0.08 | - | - | - | 50 | YES |  |
|  |  | 764 | 0.07 | (b) | - | (b) | 50 | YES |  |
|  | SB OFF | 5,730 | 0.03 | $5^{\circ} 00^{\prime} 00 \prime$ | 463 | - | 60 | NO | Does not meet standards based on deceleration length. |
|  |  | 385 | 0.08 | - | - | - | 35 | YES |  |
|  |  | 198 | 0.08 | - | - | - | 25 | YES |  |
|  |  | 358 | 0.08 | - | - | - | 35 | YES |  |
|  | WB OFF NB ON | 382 | 0.08 | $4^{\circ} 30^{\prime} 00^{\prime \prime}$ | $\begin{array}{r} 310 \\ 590^{(c)} \end{array}$ | $590^{(c)}$ | 35 | YES <br> No | Does not meet standards based on acceleration length. |
|  | NB OFF | 5,730 | 0.03 | $4^{\circ} 30^{\prime} 00 \prime$ | - | - | 60 | YES |  |
|  |  | 2,339 | 0.03 | - | 740 | - | 35 | YES |  |
|  | NB OFF | 3,274 | $0.03{ }^{\text {a }}$ | $4^{\circ} 30^{\prime} 00{ }^{\prime \prime}$ | 1,388 | - | 45 | YES |  |
|  |  | 5,730 | $0.03{ }^{(a)}$ | - | - | - | 60 | YES |  |
|  | NB ON | 7,640 | $0.02{ }^{(a)}$ | 50:1 | 1,491 | 428 | 55 | NO | Does not meet standards based on acceleration length. |
|  | SB ON | 1,359 | $0.06{ }^{(a)}$ | 50:1 | 1,379 | 300 | 45 | NO | Does not meet standards based on acceleration length. |
|  | SB OFF | 3,204 | $0.03{ }^{(a)}$ | 7043'00" | 1,144 | - | 45 | NO | Does not meet standards based on taper rate. |
|  |  | 1,637 | $0.03{ }^{(a)}$ | - | - | - | 30 | YES |  |
|  | NB ON | 1,433 | $0.05{ }^{(a)}$ | - | - | - | 40 | YES |  |
|  |  | 1,146 | $0.04{ }^{\text {a }}$ | 50:1 | 266 | 266 | 30 | NO | Does not meet standards based on acceleration length. |
|  | SB OFF | 1,910 | $0.06{ }^{\text {a }}$ | $4^{\circ} 30^{\prime} 00{ }^{\prime \prime}$ | 0 | - | 50 | NO | Does not meet standards based on deceleration length. |
|  |  | 1,146 | $0.08{ }^{(a)}$ | - | - | - | 55 | NO |  |
| $\begin{aligned} & 3 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$ | EB OFF | 230 | $0.08{ }^{(\mathrm{a})}$ | $4^{\circ} 34^{\prime} 26{ }^{\prime \prime}$ | 503 | - | 30 | YES |  |
|  | EB SHARED | 246 | $0.06{ }^{\text {a }}$ | - | - | - | 30 | YES |  |
|  | EB ON | 382 | $0.02{ }^{(\mathrm{a})}$ | $3^{\circ} 48^{\prime} 51{ }^{\prime \prime}$ | 930 | 790 | <25 | YES |  |
|  | WB ON | 170 | $0.08{ }^{(\mathrm{a})}$ | $3^{\circ} 49^{\prime} 00 \prime$ | 505 | 305 | 25 | NO | Does not meet standards based on acceleration and gap acceptance length. |
|  |  | 170 | $0.08{ }^{(a)}$ | - | - | - | 25 | YES |  |
|  | WB OFF | 521 | $0.02^{(a)}$ | $4^{\circ} 34^{\prime} 26{ }^{\prime \prime}$ | 714 | - | <25 | YES |  |
|  |  | 382 | $0.07{ }^{\text {a }}$ | - | - | - | 35 | YES |  |

[^5]
## Vertical Alignment

The vertical alignment of a ramp is expressed in terms of the rate of curvature ( K -value) and vertical grade. For a crest curve, the minimum curvature depends on the SSD for a given design speed. For sag curves, the minimum curvature depends on rider comfort at a given design speed. The vertical curves on the interchange ramps were evaluated based on a $50-\mathrm{mph}$ design speed. The minimum K -value for a crest or sag vertical curve is 84 or 96 , respectively. The maximum grade for a $50-\mathrm{mph}$ design speed is 5 percent.

Table 3.8 presents the vertical geometric design attributes of the each interchange ramp within the study area. Many of the vertical curves fail to meet the minimum curvature required for a $50-\mathrm{mph}$ design speed. A lower design speed may, however, result in acceptable curvature values. The design speed met based on the K-value is shown in the table. In addition, there are some ramps with grades exceeding 5 percent.

## Interchange Spacing

Providing for proper interchange spacing is necessary to accommodate vehicular maneuvers, for all signing, and to achieve optimal capacity. In urban areas such as Great Falls, interchanges are more likely to be spaced closer together than in rural areas. The recommended spacing from an exit ramp to an entrance ramp is 500 feet. Conversely, 2,000-foot spacing is recommended between an entrance ramp and an exit ramp. ${ }^{6}$ These are initial recommendations, and further traffic analysis should be conducted according to procedures outlined in the Highway Capacity Manual. Table 3.9 shows the interchange spacing attributes within the study area.

For locations where recommended spacing lengths are unachievable, auxiliary lanes may be used to accommodate weaving and merging/diverging traffic characteristics. Auxiliary lanes should be provided where the distance between entrance and exit ramps is less than 1,500 feet. ${ }^{7}$ No auxiliary lanes are currently provided within the study area.

The $10^{\text {th }}$ Avenue South and $14^{\text {th }}$ Street Southwest Interchanges along I-315 are spaced closer than 1,500 feet. This location has weaving and merging/diverging characteristics that result in reduced capacity and operational concerns (See Section 3.3.3).

[^6]Table 3.8: Interchange Vertical Alignment Attributes

|  | urve <br> tion (RP) | Type | Length (feet) | Grade <br> Back | Grade Ahead | K Value | Stopping Sight Distance (feet) | $\begin{aligned} & \text { Design } \\ & \text { Speed Met } \\ & (\mathrm{mph}) \end{aligned}$ | Meets <br> Standards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\bar{T}}$$\vdots$응 | SB ON | Sag | 200 | -1.0\% | 2.3\% | 60.4 | - | 40 | NO | Does not meet standards based on rate of curvature. |
|  | SB OFF | Crest | 450 | -0.9\% | -5.8\% | 93.2 | 448 | 50 | NO | Does not meet standards based on grade. |
|  | NB ON | Crest | 300 | -1.3\% | -5.0\% | 80.4 | 439 | 45 | NO | Does not meet standards based on rate of curvature. |
|  | NB OFF | Sag | 300 | -1.0\% | 3.9\% | 60.7 | - | 35 | NO | Does not meet standards based on rate of curvature. |
|  |  | Crest | 300 | 3.9\% | 0.0\% | 76.5 | 425 | 45 | NO | Does not meet standards based on rate of curvature. |
|  | SB ON | Sag | 700 | -5.5\% | 1.0\% | 107.4 | - | 50 | NO | Does not meet standards based on grade. |
|  | SB OFF | Crest | 300 | -1.0\% | -6.8\% | 51.7 | 336 | 40 | NO | Does not meet standards based on rate of curvature and grade. |
|  |  | Sag | 350 | -6.8\% | -3.2\% | 97.2 | - | 50 | NO | Does not meet standards based on grade. |
|  | NB ON | Crest | 600 | 2.1\% | -0.2\% | 260.9 | 769 | 70 | YES |  |
|  | NB OFF | Sag | 400 | -4.7\% | -0.8\% | 102.0 | - | 50 | YES |  |
|  |  | Crest | 500 | -0.8\% | -5.0\% | 119.0 | 507 | 55 | YES |  |
|  | NB OFF | Sag | 300 | -0.6\% | 3.5\% | 74.1 | - | 40 | NO | Does not meet standards based on rate of curvature. |
|  |  | Crest | 200 | 3.5\% | 0.0\% | 57.1 | 408 | 40 | NO | Does not meet standards based on rate of curvature. |
|  | NB ON | Crest | 300 | -2.0\% | -4.0\% | 150.0 | 690 | 55 | YES |  |
|  |  | Sag | 400 | -4.0\% | 1.3\% | 75.8 | - | 40 | NO | Does not meet standards based on rate of curvature. |
|  | SB ON | Sag | 400 | -1.2\% | 2.0\% | 127.0 | - | 55 | YES |  |
|  | SB OFF | Crest | 300 | 0.0\% | -1.5\% | 200.0 | 869 | 65 | YES |  |
|  |  | Sag | 400 | -1.5\% | 1.7\% | 123.5 | - | 55 | YES |  |
|  | NB ON | Sag | 500 | -0.7\% | 4.3\% | 100.0 | - | 50 | YES |  |
|  |  | Crest | 400 | 4.3\% | -1.0\% | 76.2 | 406 | 45 | NO | Does not meet standards based on rate of curvature. |
|  | SB OFF | Sag | 250 | 0.0\% | 4.5\% | 55.6 | - | 35 | NO | Does not meet standards based on rate of curvature. |
|  |  | Crest | 400 | 4.5\% | -0.2\% | 84.4 | 428 | 50 | YES |  |
|  | EB OFF | Crest | 300 | -2.3\% | -3.9\% | 187.4 | 824 | 60 | YES |  |
|  |  | Crest | 300 | -3.9\% | -5.0\% | 271.2 | 1126 | 70 | YES |  |
|  | EB SHARED | Sag | 300 | -5.0\% | -0.4\% | 65.4 | - | 40 | NO | Does not meet standards based on rate of curvature. |
|  | EB ON | Crest | 400 | 5.0\% | 0.3\% | 85.3 | 430 | 50 | YES |  |
|  |  | Crest | 200 | 0.3\% | -2.0\% | 88.1 | 575 | 50 | YES |  |
|  | WB ON | Crest | 250 | -3.1\% | -5.6\% | 99.5 | 555 | 50 | NO | Does not meet standards based on grade. |
|  | WB OFF | Crest | 500 | 3.0\% | -4.2\% | 69.4 | 387 | 45 | NO | Does not meet standards based on rate of curvature. |

Table 3.9: Interchange Spacing Attributes

|  | Location | Type | Length (feet) | Meets Standards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \underset{2}{\infty} \\ & \underset{\sim}{\text { n }} \end{aligned}$ | Gore Hill | Exit - Entrance | 2,500 | YES |  |
|  | Gore Hill to $10^{\text {th }}$ Ave S | Entrance - Exit | 3,640 | YES |  |
|  | $10^{\text {th }}$ Ave S | Exit - Entrance | 2,250 | YES |  |
|  | $10^{\text {th }}$ Ave S to Central Ave | Entrance - Exit | 5,960 | YES |  |
|  | Central Ave | Exit - Entrance | 2,475 | YES |  |
| $$ | Central Ave | Exit - Entrance | 2,440 | YES |  |
|  | Central Ave to $10^{\text {th }}$ Ave S | Entrance - Exit | 7,760 | YES |  |
|  | $10^{\text {th }}$ Ave S | Exit - Entrance | 1,400 | YES |  |
|  | $10^{\text {th }}$ Ave S to Gore Hill | Entrance - Exit | 2,700 | YES |  |
|  | Gore Hill | Exit - Entrance | 2,640 | YES |  |
|  | $\mathrm{l}-15$ to $14^{\text {th }} \mathrm{St}$ SW | Entrance - Exit | 570 | NO | Does not meet interchange spacing standards. |
|  | $14^{\text {th }}$ St SW | Exit - Entrance | 1,100 | YES |  |
| 쓸 | $14^{\text {th }}$ St SW | Exit - Entrance | 1,340 | YES |  |
|  | $14^{\text {th }} \mathrm{St}$ SW to $\mathrm{l}-15$ | Entrance - Exit | 780 | NO | Does not meet interchange spacing standards. |

## Access

The FHWA Interstate System Access Informational Guide provides technical and policy support for evaluating new or modified access to the Interstate System. The Guide provides information and methods for analyzing Interstate access to support planning, design, and safety analysis. Included in the Guide are eight policy requirements that must be addressed when requesting access to the Interstate. One of the policy requirements states that new or revised access points should provide for all traffic movements. ${ }^{8}$ Note that the Emerson Junction is currently configured as a partial interchange. According to current policy, new construction of partial interchanges are not supported by FHWA except in extreme circumstances.

### 3.2.3 Intersections

The placement of intersections at the termini of ramps can affect the operation of the Interstate and the crossing roadway. If the intersections were placed too close to each other, they could generate queuing issues that could back up onto the Interstate mainline. Queuing can also affect the operation of the crossroad by creating unnecessary delay. As such, intersection locations must be carefully considered to allow enough space for the necessary turn bays needed to alleviate possible queuing issues. The geometric design of an intersection can also cause unnecessary delay if large vehicles cannot make leftor right-hand turns without interfering with traffic. Interchange ramps and intersections should be designed to accommodate a standard semi-truck with a 67-foot wheelbase (WB-67).

Table 3.10 presents the analysis of the left-turn bays, when present, at the intersections within the study area. Included in the table are values for the recommended length based on MDT standards, as well as the $95^{\text {th }}$ percentile queue based on the existing peak hour traffic analysis. The $95^{\text {th }}$ percentile queue is the length at which queue lengths are shorter 95 percent of the time. For example, if the $95^{\text {th }}$ percentile

[^7]queue is 100 feet, queue lengths would be shorter than 100 feet 95 percent of the time and longer than 100 feet 5 percent of the time.

Table 3.10: Left-Turn Bay Lengths

| Intersection | Peak Hour Turning Volume (vph) | Recommended Length (feet) | $95^{\text {th }}$ <br> Percentile Queue (feet) | Existing <br> Length <br> (feet) | Meets Standards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 14^{\text {th }} \text { St SW / EB } \\ & \text { Ramps } \end{aligned}$ | 102 | 70 | 25 | 300 | YES |  |
| $14^{\text {th }}$ St SW / WB Ramps | 638 | (a) | 330 | 115 | NO | Vehicle queuing along interchange ramp. |
| Fox Farm Rd/ $10^{\text {th }}$ Ave S (EB) | 242 | 280 | 310 | 200 | NO | Does not meet turn-bay length standards. |
| Fox Farm Rd/10 ${ }^{\text {th }}$ Ave S (WB) | 486 | $325{ }^{(b)}$ | 310 | 350 | YES |  |
| Central Ave / NB Ramps (EB) | 6 | 50 | 0 | 50 | YES |  |
| Central Ave / SB Ramps (WB) | 230 | 192 | 20 | 105 | NO | Does not meet turn-bay length standards. |
| Vaughn Road / Central Ave (EB) | 71 | 59 | 10 | 150 | YES |  |

${ }^{(a)}$ Outside of the range of standards.
${ }^{(b)}$ Existing dual-turn lanes

## Gore Hill Interchange

Four intersections exist within the immediate vicinity of the Gore Hill Interchange. The southbound offramp terminates at a four-legged, two-way, stop controlled intersection with Airport Road and I-15 Frontage Road. Traffic turning from the off-ramp to Airport Road has a free-flowing dedicated right-turn lane. One concern at this intersection is the possibility that drivers traveling northbound on I-15 Frontage Road may travel straight and enter the southbound off-ramp traveling in the wrong direction. Another concern is the proximity of this intersection to the intersection of Airport Road and the southbound onramp, a distance of approximately 60 feet. Vehicles attempting to make a left turn onto the southbound on-ramp have to contend with any oncoming traffic leaving the southbound off-ramp intersection.

The intersection of Airport Road and the northbound on- and off-ramps is a typical two-way, stopcontrolled intersection. This intersection is located approximately 80 feet from the intersection of Airport Road and Tri-Hill Frontage Road. Traffic performing a left-hand turn onto Tri-Hill Frontage Road has to contend with traffic making a right turn off of the northbound off-ramp, in addition to the traffic traveling southeast across the interchange. The distance between the southbound on-ramp and the northbound ramps is approximately 370 feet.

## 14th Street Southwest Interchange

The intersections at the ramp termini at $14^{\text {th }}$ Street Southwest are both four-legged signalized intersections. They are approximately 925 feet apart and appear to meet geometric spacing standards. Left-turn bays are provided at both intersections. The intersection of $14^{\text {th }}$ Street Southwest and the westbound ramps has a high volume of left-turning vehicles along the east leg. During the PM peak-hour, left-turn volume exceeds the range of recommended turn bay lengths provided by MDT. Vehicle queuing was noted along the interchange ramp approaching the mainline Interstate.

## Fox Farm Road

The intersection of Fox Farm and $10^{\text {th }}$ Avenue South is a four-legged, stop-controlled intersection. This intersection is at the terminus of l-315. A single left-turn bay is provided along the eastbound leg, and dual left-turn lanes are provided along the westbound leg. The left-turn bay along the eastbound leg does not appear to meet existing standards. During the on-site evaluation, observers noted that the queue length from the eastbound left-turn lane often exceeded available storage during the PM peak hour.

## Central Avenue Interchange

The Central Avenue Interchange is a diamond interchange with stop-controlled intersections at the ramp terminals and raised medians to provide protected turn-bays. The intersections are spaced approximately 450 feet apart, and they appear to meet geometric design standards. Both on-ramps include channelized right-turn lanes, which require vehicles to merge at the entrance to the ramp.

The intersection along the northbound ramps includes an eastbound left-turn bay that appears to meet minimum length standards. The southbound ramp intersection has a dedicated westbound left-turn lane for vehicles accessing the Interstate. The existing turn-bay length does not appear to meet existing standards; however, minimal vehicle queuing was shown by the traffic analysis.

The southbound off-ramp has a channelized right-turn lane and a dedicated receiving lane along Central Avenue. However, a stop sign requires vehicles to stop before entering Central Avenue. At the intersection of the southbound off-ramp and Central Avenue, three westbound lanes merge to a single lane within approximately 300 feet. There does not appear to be proper signage and/or markings indicating the dropping of two travel lanes.

## Emerson Junction

The intersections located at Emerson Junction are both three-legged, unsignalized intersections and are spaced approximately 750 feet apart. The northbound on-ramp intersection with Vaughn Road has a right-turn slip lane for traffic traveling westbound on Vaughn Road. Eastbound traffic has a 40-foot, leftturn storage area between Vaughn Road and the northbound on-ramp. The southbound off-ramp has a single lane serving both left- and right-turning traffic. The southbound off-ramp intersection is scheduled for reconstruction, which will result in a shift to the northwest to provide a more standard " T " intersection.

### 3.3 Traffic Characteristics

An evaluation of traffic characteristics was completed using available data provided by MDT, as well as field-collected data. Peak-hour, turning-movement counts were conducted at 12 intersections within the study area. Mainline traffic volume counts were also completed at nine locations along the Interstate. Additional traffic information for vehicle speeds, driving patterns, and lane-changing interactions was also documented at various locations along the corridor. The following sections provide details about the existing traffic characteristics of the corridor. Detailed data is included in the Appendices B, C, and D. Figure 3.1 shows the existing traffic conditions of the study area.

### 3.3.1 Traffic Volumes

MDT administers annual traffic count data at 12 locations within the study area. MDT, the city of Great Falls, or Cascade County conducts the annual traffic counts, which are adjusted to represent yearly averages for traffic. In addition, an automatic traffic recorder (ATR) is located outside of the study area approximately 3 miles to the northwest of Emerson Junction. The ATR collects traffic data year-round
from sensors embedded in the roadway. Data from the other traffic count sites are collected annually at limited times by using pneumatic tube counters.

In addition to existing conditions, MDT provided historic data for the traffic count sites within the study area. The average annual daily traffic (AADT) on I-15 ranges from 5,950 vehicles per day (vpd) north of Central Avenue, to as high as 14,670 vpd north of Gore Hill. Volumes on I-315 approach 25,000 vpd west of Fox Farm Road. The AADT on the non-interstate roads ranges from 4,555 vpd on the Vaughn Frontage Road to 29,800 vpd on 10th Avenue South. Table 3.11 shows the growth rates experienced within the study area over various time intervals.

Table 3.11: Historic Average Annual Growth Rates

| Location |  | 2013 AADT | 1994-2013 | 2000-2013 | 2007-2013 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I-15 | S of Gore Hill | 6,370 | 1.4\% | 0.4\% | 0.1\% |
| I-15 | N of Gore Hill | 14,670 | 1.6\% | 1.3\% | -0.1\% |
| I-15 | N of $10^{\text {th }}$ Ave | 10,550 | 1.5\% | 1.3\% | 0.3\% |
| I-15 | N of Central Ave | 5,950 | 1.2\% | 0.5\% | -1.8\% |
| I-15 | N of Emerson | 9,090 | 0.9\% | 0.1\% | -1.2\% |
| I-315 | W of $14^{\text {th }}$ St SW | 15,140 | (a) | (a) | 0.8\% |
| I-315 | W of Fox Farm | 24,680 | 4.2\% | 1.8\% | 0.1\% |
| 31 ${ }^{\text {st }}$ St SW | S of Interchange | 8,360 | 5.6\% | 4.7\% | -0.8\% |
| Airport Dr | N of Interchange | 3,640 | -0.1\% | 0.7\% | 2.3\% |
| $10^{\text {th }}$ Ave S | Warden Bridge | 29,800 | 1.5\% | 1.5\% | 0.4\% |
| Central Ave | E of Interchange | 12,514 | 0.0\% | 0.5\% | 3.0\% |
| Central Ave | W of Interchange | 7,746 | 0.6\% | 1.5\% | 4.4\% |
| Vaughn Rd | E of Interchange | 6,530 | 0.0\% | -0.4\% | 1.5\% |
| Vaughn Rd | W of Interchange | 4,555 | 0.4\% | 0.7\% | 7.4\% |

Source: MDT Data and Statistics Bureau, Traffic Data Collection Section, 2014
${ }^{(a)}$ Data unavailable

### 3.3.2 Mainline Operation

The operational condition of a mainline Interstate highway is often characterized by the level of service (LOS). LOS is a qualitative description of a driver's experience on a highway or facility, as defined in the 2010 Highway Capacity Manual (HCM). LOS of a mainline freeway segment is affected by geometric and traffic characteristics. LOS is determined based on the traffic density of the highway in terms of passenger cars per mile per lane ( $\mathrm{pc} / \mathrm{mi} / \mathrm{In}$ ). The inputs used to calculate traffic density include traffic volume, free-flow speed, percentage of trucks and busses, driver population, peak-hour factors, number of travel lanes, and the terrain. LOS can range from A to $F$ with A representing free flow conditions and $F$ representing heavily congested conditions. Analysis of I-15 was performed using Highway Capacity Software (HCS) 2010. The LOS was evaluated during AM and PM peak hour conditions. Table 3.12 shows the results of the LOS analysis.

Table 3.12: Mainline Level of Service


The MDT Traffic Engineering Manual states that a LOS of B or better is recommended for both urban and rural freeways. I-15 is shown to operate at LOS A during the existing peak hours within the study area. I315 also operates at LOS A, with the exception of the westbound lane east of $14^{\text {th }}$ Street Southwest, which operates at LOS B during the PM peak hour.

## Vehicle Speeds

Vehicle speed data was collected along the $\mathrm{I}-15$ southbound mainline between the $10^{\text {th }}$ Avenue South and Gore Hill Interchanges. This location has a steep upgrade, and it has been noted to have speed differentials between the left and right travel lanes in the southbound direction. The speed data were collected over 24 hours in July 2014. The existing speed limit at this location is 65 mph .

Table 3.13 shows the results of the speed data collection. Included in the table are the $85^{\text {th }}$ percentile speed, the average speed, and the pace. The primary speed data factor for determining the validity of the posted speed limit is the $85^{\text {th }}$ percentile speed. The $85^{\text {th }}$ percentile speed is that speed at or below which 85 percent of vehicles are traveling. For example, if the $85^{\text {th }}$ percentile speed is 65 mph , it means that 85 percent of vehicles are traveling 65 mph or below. The pace is also an important factor, and it represents the $10-\mathrm{mph}$ range within which most vehicles travel.

Table 3.13: Vehicle Speed Data

| Location |  | Volume | Speed Limit (mph) | 85th <br> Percentile Speed (mph) | Average Speed | Pace (mph) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right Lane | 7,039 | 65 | 68.2 | 59.9 | 60-70 | 49\% |
| -15 SB | Left Lane | 855 | 65 | 74.4 | 60.6 | 65-75 | 57\% |

As shown in the table, it appears that vehicles are generally traveling at higher speeds in the left lane than in the right lane. The $85^{\text {th }}$ percentile speed for the right lane is more than 6 mph lower than the left lane. The pace of the left lane is also shown to be higher than in the right lane. Due to the steep upgrade
and the mix of vehicle types, there are often slow-moving vehicles mixed with faster ones at this location. A higher percentage of vehicles in the pace represents fairly even travel speeds, while a lower percent within the pace may point to high-speed variations. At this location, the percentage of vehicles within the pace is relatively low. This is an indicator of large distribution of vehicle speeds. The varying vehicle speeds is likely a result of a mixture of slower moving heavy truck traffic combined with faster moving passenger vehicles.

## $10^{\text {th }}$ Avenue South / Gore Hill Origin-Destination

An origin-destination (OD) study was conducted between the $10^{\text {th }}$ Avenue South and Gore Hill Interchanges. The intent of the study was to evaluate the travel patterns between the $10^{\text {th }}$ Avenue South and Gore Hill Interchanges in the southbound direction. The study found that during the AM peak hour approximately 65 percent of vehicles that enter the Interstate at $10^{\text {th }}$ Avenue South immediately exit at Gore Hill. During the PM peak hour, this percentage was found to be approximately 48 percent.

### 3.3.3 Interchange Ramps

Connection between the mainline Interstate highway and local roads is provided by a dedicated ramp road. Similar to the Interstate mainline, the performance of the interchange ramps can be evaluated for LOS. As with traditional roadways, interchange ramps are impacted by the amount of traffic congestion present. For on-ramps, the capacity of the ramp roadway is rarely an issue due to generally free-flowing conditions with no traffic control. For off-ramps, however, congestion on the ramp can cause queuing that may cause failure at the ramp-to-freeway junction. Table $\mathbf{3 . 1 4}$ provides the results of the LOS analysis for the interchange ramps.

As with the Interstate mainline, a LOS of $B$ or better is recommended for the interchange ramps. Each of the ramps along $\mathrm{I}-15$ within the study area is shown to function at LOS A and appear to have available capacity. All ramps along l-315 function at LOS B or better during the peak hours.

Table 3.14: Interchange Ramp Level of Service


## I-315 Interchanges

The I-315 Interstate has unique urban traffic characteristics. The Interstate mainline is less than a mile long and begins at the $10^{\text {th }}$ Avenue South Interchange. The $14^{\text {th }}$ Street Southwest Interchange is located close to the $10^{\text {th }}$ Avenue South Interchange, which causes traffic flow issues related to vehicle weaving and merging/diverging. A video of the I-315 Interstate was recorded during the peak hours to evaluate the influence of traffic movements to the area. From the video, traffic movement volumes were counted during the peak hours.

Table 3.15 shows the peak hour volumes along the influencing ramps, as well as the destination of the vehicles expressed as a percentage. For example, during the AM peak hour, 338 vehicles traveled along the I-15 northbound off-ramp at the $10^{\text {th }}$ Avenue South Interchange. Of those 338 vehicles, 10 percent exited at $14^{\text {th }}$ Street Southwest, 58 percent stayed on I-315 in the right lane, and 32 percent merged to the left lane on l-315.

Table 3.15: I-315 Interchange Volumes

| Location |  | AM Peak Hour | PM Peak Hour |
| :---: | :---: | :---: | :---: |
| $10^{\text {th }}$ Ave S | I-15 NB Off | 338 | 436 |
|  | $14^{\text {th }}$ St SW Off | 10\% | 22\% |
|  | I-315 Right Lane | 58\% | 57\% |
|  | I-315 Left Lane | 32\% | 21\% |
|  | I-15 SB Off | 192 | 239 |
|  | $14^{\text {th }}$ St SW Off | 12\% | 35\% |
|  | I-315 Right Lane | 10\% | 10\% |
|  | I-315 Left Lane | 78\% | 55\% |
| $14^{\text {th }}$ St SW | I-315 EB On | 498 | 523 |
|  | I-315 Right Lane | 48\% | 55\% |
|  | I-315 Left Lane | 52\% | 45\% |
|  | I-315 WB On | 122 | 161 |
|  | I-15 NB On | 62\% | 49\% |
|  | I-15 SB On, Right Lane | 33\% | 46\% |
|  | I-15 SB On, Left Lane | 5\% | 5\% |

### 3.3.4 Intersections

A LOS analysis was performed at 12 intersections within the study area. The LOS analysis was completed using PTV Vistro software during the AM and PM peak hours. For intersections, LOS is based on vehicle delay, which is influenced by the number of stops, available gaps, and impediments caused by other vehicles. A LOS of A represents little to no delay, while a LOS of F represents substantial delay. A LOS of C or better is generally recommended. The results of the peak-hour, intersection LOS analysis are shown in Table 3.16.

For signalized intersections, the LOS is based on the average stopped delay per vehicle. The procedures used to evaluate signalized intersections are based on detailed information on geometry, lane-use, signal timing, peak-hour volumes, arrival types, and other parameters. This information is then used to calculate delays and determine the capacity of each intersection.

LOS for two-way, stop-controlled intersections is based on the delay experienced by each movement within the intersection, rather than on the overall stopped delay per vehicle at the intersection. LOS is defined by the movement with the highest amount of delay. As a result, the intersection LOS may not accurately reflect the performance of the intersection as a whole. For example, a single, left-turning vehicle along the minor, stop-controlled approach may experience high amounts of delay due to a lack of available gaps. This movement may, however, only represent a small portion of the total intersection volume.

Table 3.16: Intersection Level of Service

|  |  | AM Peak Hour <br> Delay |  | PM Peak Hour <br> Delay |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Intersection Name | Control Type | (s/veh) | LOS | (s/veh) | LOS |
| Tri Hill and Frontage Airport Rd | Two-way stop | 13.5 | B | 14.5 | B |
| I-15 NB and Airport Rd | Two-way stop | 16.9 | C | 55.4 | F |
| I-15 SB On and Airport Rd | Two-way stop | 8.6 | A | 11.0 | B |
| I-15 SB Off and Airport Rd | Two-way stop | 12.7 | B | 35.3 | E |
| 14 $4^{\text {th }}$ St SW and I-315 EB | Signalized | 14.4 | B | 13.0 | B |
| 14 $4^{\text {th }}$ St SW and I-315 WB | Signalized | 23.0 | C | 19.4 | B |
| Fox Farm and I-315 | Signalized | 45.3 | D | 38.5 | D |
| Central Ave and I-15 SB | Two-way Stop | 28.0 | D | 42.0 | E |
| Central Ave and I-15 NB | Two-way Stop | 19.9 | C | 29.1 | D |
| Central Ave and Vaughn Rd | Two-way Stop | 27.1 | D | 65.0 | F |
| Vaughn Rd and I-15 SB | Two-way Stop | 10.1 | B | 10.1 | B |
| Vaughn Rd and I-15 NB | Two-way Stop | 7.3 | A | 7.3 | A |



Figure 3.1: Existing Traffic Conditions

### 3.4 Safety

The MDT Traffic and Safety Bureau provided crash data for all of Cascade County from January 1, 2009, to December 31, 2013. Crash data for the study area were selected using GIS. Records show 525 crashes occurring within the study area during the crash analysis period. Four crashes resulted in fatalities, eight crashes resulted in incapacitating injuries, 41 crashes produced non-incapacitating evident injuries, and 71 crashes resulted in possible injuries. An incapacitating injury is defined as an injury, other than a fatality, which prevents the injured person from walking, driving, or normally continuing the activities the person was capable of performing before injury. Figure 3.2 presents the spatial distribution of the crash data for the five-year analysis period.

Table 3.17 provides a comparison of the crash rate, crash severity index, and crash severity rate within the study area. The crash data presented in the table are based on crashes occurring from calendar year 2009 through 2013. Crash rates are defined as the number of crashes per million vehicle miles of travel. The crash severity index is the ratio of the sum of the level of crash degree to the total number of crashes. Crash severity rate is determined by multiplying the crash rate by the crash severity index.

Between 2008 and 2012, the statewide average rural crash rate, severity index, and severity rate for the Interstate system was $0.90,1.83$, and 1.65 , respectively. For urban Interstates during this same time period, the statewide average crash rate, severity index, and severity rate was 1.21, 1.72, and 2.08, respectively.

Table 3.17: Crash Statistics

|  | Segment | $\begin{gathered} \text { Begin } \\ \text { RP } \end{gathered}$ | $\begin{aligned} & \text { End } \\ & \text { RP } \end{aligned}$ | $\begin{gathered} \text { \# } \\ \text { Fatal } \end{gathered}$ | $\underset{\text { Incap }}{\#}$ | Total <br> Crashes | AADT 3year <br> Average | Crash Rate | Severity <br> Index | Severity Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { İ }}{\underline{1}}$ | Southwest of Gore Hill | 270.4 | 277.8 | 0 | 0 | 18 | 6,360 | 1.55 | 1.00 | 1.55 |
|  | Northeast of Gore Hill | 277.8 | 278.9 | 1 | 2 | 70 | 13,474 | 2.85 | 1.16 | 3.29 |
|  | 10th Ave South to Central Ave | 279.9 | 280.5 | 0 | 1 | 32 | 9,786 | 1.79 | 1.06 | 1.90 |
|  | Central Ave to Emerson Junction | 280.5 | 282.5 | 0 | 0 | 48 | 6,486 | 4.06 | 1.00 | 4.06 |
|  | North of Emerson Junction | 282.5 | 286.5 | 2 | 1 | 43 | 9,470 | 2.49 | 1.37 | 3.41 |
| $\begin{aligned} & \stackrel{n}{\mathbf{m}} \end{aligned}$ | $10^{\text {th }}$ Ave South to $14^{\text {th }}$ St Southwest | 0 | 0.3 | 0 | 0 | 13 | 15,890 | 0.45 | 1.00 | 0.45 |
|  | $14^{\text {th }}$ St Southwest to Fox Farm | 0.3 | 1.4 | 0 | 2 | 114 | 25,870 | 2.41 | 1.04 | 2.50 |
|  | East of Fox Farm | 94.4 | 95.7 | 0 | 0 | 137 | 30,890 | 2.43 | 1.00 | 2.43 |



Figure 3.2: Crash Locations

### 3.4.1 Safety Trends, Contributing Factors, and Crash Clusters

On average, approximately 105 crashes occurred each year during the crash analysis period. Multivehicle crashes accounted for nearly 53 percent of crashes, with approximately 62 percent of all crashes occurring in dry conditions. Furthermore, 61 percent of crashes occurred during daylight. Approximately 38 percent of crashes during the analysis period happened when roads were icy, snowy, or wet. The primary contributing factors listed in crashes during the analysis period included careless driving (32 percent of crashes), driving too fast for conditions (21 percent of crashes), disregarding traffic markings/signs/signals (16 percent of crashes), and driving under the influence of alcohol/drugs (14 percent of crashes).

Of the vehicles involved in a crash, 92 percent were passenger vehicles (automobiles, pickups, SUVs, etc.). Records show 15 crashes involving motorcycles, 38 crashes involving heavy trucks with trailers, and 2 crashes involving buses.

The main observed crash trends are rear-end collisions (178) followed by fixed-object collisions (138). Of the fixed-object collisions, 90 of the collisions list contact with guardrails, median barriers, bridge rails, or impact attenuators as the first harmful event. Rear-end collisions are clustered on I-315 and $10^{\text {th }}$ Avenue South. Clusters of fixed-object collisions are present between the Gore Hill and $10^{\text {th }}$ Avenue South Interchanges ( 11 crashes), I-15 underpass of Sun River Road (7 crashes), I-15 bridge over the Sun River ( 5 crashes), Central Avenue Interchange ( 7 crashes), Emerson Junction Interchange ( 15 crashes), and I315 from RP 0 to RP 1 (21 crashes).

Approximately 8 percent of reported crashes resulted in rollovers (44 crashes). Two clusters were identified between the Gore Hill and $10^{\text {th }}$ Avenue South Interchanges ( 7 crashes) and at the Emerson Junction Interchange ( 10 crashes). Each of the seven rollover crashes between the Gore Hill and the $10^{\text {th }}$ Avenue South Interchanges occurred with dry road conditions.

The road condition was listed as icy or snow-covered in 138 crashes. These crashes appear to be clustered between the Gore Hill and $10^{\text {th }}$ Avenue South Interchanges ( 12 crashes), I-15 underpass of Sun River Road ( 6 crashes), Emerson Junction Interchange ( 19 crashes), and l-315 between $14^{\text {th }}$ Street Southwest Interchange and Fox Farm ( 60 crashes).

### 4.0 PROJ ECTED TRANSPORTATION SYSTEM

Projected transportation conditions were analyzed to estimate how traffic patterns and characteristics may change compared to existing conditions. The analysis was based on known existing conditions and anticipated land development expected to occur out to 2035. The travel demand model developed for the Great Falls Area LRTP - 2014 was used to determine growth rates for the study area. Table 4.1 shows the average annual growth rate (AAGR) up to 2035, as defined by the traffic demand model. The AAGR values were applied to known traffic count locations to project 2035 AADT volumes.

Table 4.1: Projected Traffic Volumes

|  | Location | 2013 <br> AADT | Traffic Model <br> Projected AAGR (a) | 2035 Projected <br> AADT |
| :--- | :--- | ---: | ---: | ---: |
| I-15 | S of Gore Hill | 6,370 | $0.9 \%$ | 7,681 |
| I-15 | N of Gore Hill | 14,670 | $1.9 \%$ | 22,358 |
| I-15 | N of 10 | th Ave | 10,550 | $2.1 \%$ |

${ }^{(a)}$ AAGRs were calculated from the traffic model developed for the Great Falls Area LRTP - 2014.
The growth rates from the travel demand model were used to project Interstate mainline peak hour volumes. A LOS analysis was conducted for the Interstate under projected 2035 conditions. Table 4.2 presents the resulting LOS values for both the AM and PM peak hours. As indicated in the table, all segments along I-15 and I-315 are projected to remain at a LOS B or better under 2035 conditions.

The traffic volumes along the interchange ramps were similarly projected to 2035 using growth rates defined in the travel demand model. The projected LOS of the interchange ramps is presented in Table 4.3. All of the interchange ramps are projected to remain within the acceptable bounds of LOS B put forth by MDT.

Table 4.2: Projected Mainline LOS

|  |  |  |  | eak Hour | PM | eak Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Location | Direction | LOS | Density (pc/mi/ln) | LOS | Density (pc/mi/ln) |
|  | Sout | Northbound | A | 2.6 | A | 2.6 |
|  | Sour | Southbound | A | 3.1 | A | 4.0 |
|  | No | Northbound | A | 7.4 | B | 11.3 |
|  | North of Gore Hin | Southbound | A | 7.2 | A | 9.3 |
| I-15 | South of Central Ave | Northbound | A | 4.8 | A | 7.4 |
|  | South of Central Ave | Southbound | A | 4.8 | A | 7.2 |
|  | North of Central Ave | Northbound | A | 3.7 | A | 3.4 |
|  | Nort of Central Ave | Southbound | A | 2.4 | A | 3.7 |
|  | North of Emerson Junction | Northbound | A | 3.4 | A | 6.5 |
|  | North of Emerson Junction | Southbound | A | 6.1 | A | 5.2 |
|  | SW | Eastbound | A | 6.7 | A | 8.9 |
|  | of St | Westbound | A | 6.3 | A | 7.3 |
| 1-315 |  | Eastbound | A | 10.9 | B | 12.5 |
|  | , | Westbound | A | 6.7 | B | 13.8 |

Table 4.3: Projected Interchange Ramp LOS

| Location |  | AM Peak Hour |  | PM Peak Hour |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS | Density (pc/mi/In) | LOS | Density (pc/mi//n) |
| Gore Hill | NB On-Ramp | A | 9.3 | B | 17.5 |
|  | NB Off-Ramp | A | 5.7 | A | 5.6 |
|  | SB On-Ramp | A | 0.3 | A | 1.2 |
|  | SB Off-Ramp | A | 9.1 | B | 11.5 |
| $10^{\text {th }}$ Ave S | NB On-Ramp | A | 8.4 | B | 11.5 |
|  | NB Off-Ramp | A | 5.9 | B | 10.3 |
|  | SB On-Ramp | A | 6.2 | A | 8.3 |
|  | SB Off-Ramp | A | 6.5 | A | 9.7 |
| $14^{\text {th }}$ St SW | EB On-Ramp | B | 16.1 | B | 15.4 |
|  | EB Off-Ramp | A | 6.1 | A | 8.2 |
|  | WB On-Ramp | A | 9.1 | B | 10.1 |
|  | WB Off-Ramp | A | 4.0 | B | 11.4 |
| Central Ave | NB On-Ramp | A | 0.0 | A | 1.3 |
|  | NB Off-Ramp | A | 0.0 | A | 0.0 |
|  | SB On-Ramp | A | 6.3 | B | 10.1 |
|  | SB Off-Ramp | A | 0.0 | A | 0.0 |
| Emerson Junction | NB On-Ramp | A | 3.7 | B | 10.3 |
|  | SB Off-Ramp | A | 8.0 | A | 7.0 |

Intersection volumes were projected to 2035 by applying growth rates along each intersection approach leg as defined by the travel demand model. The projected intersection LOS results are presented in Table 4.4. Similar to the existing LOS, many of the poor-performing intersections are two-way, stopcontrolled intersections. All intersections on Central Avenue are projected to operate at a LOS of $F$ if no changes are made before 2035. At Gore Hill, all but the southbound on-ramp intersections are expected to operate at a poor LOS. The three signalized intersections are projected to continue operating at levels similar to their current performance.

Table 4.4: Projected Intersection LOS

| Intersection Name | Control Type | AM Peak Hour |  | PM Peak Hour |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay (s/veh) | LOS | Delay (s/veh) | LOS |
| Tri Hill and Frontage Airport Rd | Two-way stop | 27.3 | D | 43.7 | E |
| I-15 NB and Airport Rd | Two-way stop | 44.2 | E | (a) | F |
| I-15 SB On and Airport Rd | Two-way stop | 10.4 | B | 23.5 | C |
| I-15 SB Off and Airport Rd | Two-way stop | 121.8 | F | 3138.9 | F |
| $14^{\text {th }}$ St SW and I-315 EB | Signalized | 13.3 | B | 12.4 | B |
| $14^{\text {th }}$ St SW and l-315 WB | Signalized | 22.2 | C | 19.6 | B |
| Fox Farm and l-315 | Signalized | 39.0 | D | 35.6 | D |
| Central Ave and I-15 SB | Two-way Stop | 178.9 | F | 314.9 | F |
| Central Ave and I-15 NB | Two-way Stop | 113.1 | F | 445.2 | F |
| Central Ave and Vaughn Rd | Two-way Stop | 406.0 | F | 1422.7 | F |
| Vaughn Rd and I-15 SB | Two-way Stop | 11.0 | B | 11.0 | B |
| Vaughn Rd and I-15 NB | Two-way Stop | 7.3 | A | 7.4 | A |

[^8]

Figure 4.1: Projected Traffic Conditions

### 5.0 ENVIRONME NTAL SETTING

This section provides a summary of the Environmental Scan developed by MDT. ${ }^{9}$ The primary objective of the Environmental Scan is to determine potential constraints and opportunities within the study area. As a planning-level scan, the information is obtained from various publicly available reports, websites, and other documentation, as well as a "windshield survey" conducted by MDT staff. This scan is not a detailed environmental investigation. Refer to the MDT Environmental Scan for more detailed information.

### 5.1 Physical Environment

The following subsections present an overview of items related to the physical environment.

### 5.1.1 Soil Resources and Prime Farmland

Information obtained on soils is used to determine the presence of prime and unique farmland in the study area to demonstrate compliance with the Farmland Protection Policy Act. Farmland includes prime farmland, some prime if irrigated farmland, unique farmland, and farmland (other than prime or unique farmland) that is of statewide or local importance. Prime farmland soils are those that have the best combination of physical and chemical characteristics for producing food, feed, and forage; the area must also be available for these uses. Prime farmland can be either non-irrigated or lands that would be considered prime if irrigated. Farmland of statewide importance is defined as follows: land, in addition to prime and unique farmlands, that is of statewide importance for the production of food, feed, fiber, forage, and oilseed crops.

Soil surveys of the study area are available from the U.S. Department of Agriculture, Natural Resource Conservation Service (NRCS). NRCS indicates that prime if irrigated farmlands and farmlands of statewide importance are present in this corridor. Land from approximately RP 278.8 to 279.0 and 280.5 to 284.3 is considered prime if irrigated farmland. The approximate location of farmlands of statewide importance is from RP 266.8 to $278.0,279.5$ to 280.5 , and 282.5 to 284.3 .

If a federally funded improvement option forwarded from the study will require acquisition of lands from these areas, MDT will have to complete a CPA-106 Farmland Conversion Impact Rating Form for Linear Projects and coordinate with NRCS. NRCS will use information from that form to keep an inventory of the prime and important farmlands within the state. Some areas designated as prime farmland have previously been developed. Previously developed land designated as prime farmland is no longer subject to the Farmland Protection Policy Act and should not be an impact to future improvement options.

### 5.1.2 Geologic Resources

Information on the geology and seismicity in the area of the corridor study was obtained from several published sources. Geologic mapping was reviewed for rock types, the presence of unconsolidated material, and fault lines. The seismicity and potential seismic hazards were also reviewed. This geologic information can help determine potential design and construction issues related to embankments and road design.

[^9]Hillside slopes between the uplands and valley floor appear to be marginally stable at a maximum approximate slope of $2 \mathrm{H}: 1 \mathrm{~V}$. There are numerous visible signs of instability, but most are relatively small and presently inactive. MDT exerted considerable effort stabilizing the cuts through Gore Hill in the 1980s; several landslides required regrading, and a substantial network of pipes and drains was installed. Appropriate cut slope and drainage design will minimize the risk of destabilizing these hillside slopes again.

Settlement of embankment fills on valley floor deposits poses some risk through the proposed corridor. This risk may be mitigated by using a combination of methods, which include preloading embankments, lowering fill heights, and using wick drains to speed settlement.

Improvements brought forward from the study will be subject to a more detailed analysis of the abovementioned geotechnical risk factors. Part of this detailed analysis may involve taking advance borings to evaluate soil characteristics at exact project locations. This is standard procedure for most MDT road projects. The design of any improvements should consider specific requirements that come from the detailed analysis.

### 5.1.3 Surface Waters

Maps and GIS data were reviewed to identify the location of surface water bodies within the study area, including rivers, streams, lakes, or reservoirs. The Sun River is the main surface water in the corridor. Additionally, various surface waters, including streams, natural drainages, and wetlands, are also present in the area, but in small numbers. Impacts on these surface waters may occur from project improvements such as culverts under the roadway or rip rap armoring of banks. Effects on those water bodies will have to be identified and coordinated with applicable agencies during any future project design.

Much of the study area is also located within the Great Falls Municipal Separate Storm Sewer System (MS4) area. Under the Small MS4 General Permit, new development or redevelopment projects greater than or equal to 1 acre must implement, when practicable, low-impact development (LID) practices that infiltrate, evapo-transpire, or capture for reuse the runoff generated from the first half-inch of rainfall from a 24 -hour storm preceded by 48 hours of no measurable precipitation. MS4 issues, including potential applicability of LID requirements, will have to be further evaluated during any future project design.

## Total Maximum Daily Load Information

Section 303, subsection d (303d) of the Clean Water Act requires the state of Montana to develop a list, subject to U.S. Environmental Protection Agency (EPA) approval, of water bodies that do not meet water quality standards. When water quality fails to meet state standards, the Montana Department of Environmental Quality (DEQ) determines the causes and sources of pollutants in a subbasin assessment and sets maximum pollutant levels, called total maximum daily load (TMDL).

A TMDL sets maximum pollutant levels in a watershed. The TMDLs become the basis for implementation plans to restore the water quality to a level that supports its designated beneficial uses. The implementation plans identify and describe pollutant controls and management measures (such as best management practices), the mechanisms by which the selected measures are to be put into action, and the individuals and entities responsible for implementation projects.

The study corridor travels through the Sun River Watershed. The Sun River crosses I-15 under a bridge within the study area and runs parallel to, and north of, 10th Avenue South on the eastern edge of the corridor. In this segment of the Sun River, bank erosion and channel alterations decrease the quality of the instream habitat. Water coming from Muddy Creek upstream of the corridor augments flows in the

Sun River during the irrigation season; the Muddy Creek water is high in nutrients and suspended sediments.

According to a 2014 DEQ report, the Sun River fully supports the beneficial use of drinking water. The creek does not support aquatic life (cold-water fishery and warm water fishery) use based on numerous reports indicating severe impairment. Macroinvertebrate and periphyton sampling results indicate moderate to severe impairment. Aquatic life habitat is severely impaired due to siltation, flow alteration, bank erosion, and habitat degradation. Aquatic life chemistry is severely impaired due to high nutrient concentrations, turbidity, and temperatures. Agricultural uses are severely impaired due to relatively high total dissolved solids that decrease suitability for irrigation. The lack of support for recreation use is due to high amounts of nutrients that increase the risk of nuisance algal blooms.

The 2014 Integrated 303(d)/305(b) Water Quality Report for Montana by DEQ lists the Sun River watershed as impaired. The water bodies within the Sun River watershed that are located in the study area are Category 4A. Category 4A water bodies are waters where one or more applicable beneficial uses are impaired, threatened, or not supported, and a TMDL has been completed and approved to address the factors causing the impairment or threat. Any construction practices will have to comply with the requirements set forth in the TMDL plan.

## Wild and Scenic Rivers

The Wild and Scenic Rivers Act Congress created in 1968 provided for the protection of certain selected rivers, as well as their immediate environments, that possess outstandingly remarkable scenic, recreational, geologic, fish and wildlife, historic, cultural, or other similar values. At this time, neither the Sun River, nor any of its tributaries, carries the wild and scenic designation. The Missouri River at the east terminus of the corridor study also does not carry the wild and scenic designation.

### 5.1.4 Groundwater

There are currently 6,105 wells on record in Cascade County; some of these wells exist within the study area. There are three State Monitoring Network wells and 28 public water supply wells in Cascade County. The wells in Cascade County have many different uses, the most common being domestic use. The typical setback for a public water supply well is a 100 -foot isolation zone in which no source of pollutant should be inside, making a public well an item of avoidance. If either a private or public well is to be impacted, standard right-of-way procedures would need to be followed. Impacts on existing wells should be considered if a project is forwarded from this study.

### 5.1.5 Wetlands

The U.S. Army Corps of Engineers (COE) defines wetlands as those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Formal wetland delineations according to standard COE- and MDT-defined procedures will have to be conducted during the project development process. Additionally, impacts on wetlands will have to be avoided and minimized to the greatest extent possible through conscientious project design. Documentation of avoidance and minimization measures will have to be included in the project development. Unavoidable wetland impacts will have to be mitigated in accordance with COE regulations and Executive Order 11990: Protection of Wetlands. During any project development process,
evaluation of potential stream impacts according to COE's May 2013 Stream Mitigation Procedure (or revised version) will be necessary.

### 5.1.6 Floodplains and Floodways

Executive Order 11988, Floodplain Management, requires federal agencies to avoid, to the extent possible, the long- and short-term adverse impacts associated with the occupancy and modification of floodplains and to avoid direct and indirect support of floodplain development wherever there is a practicable alternative. In accomplishing this objective, "each agency shall provide leadership and shall take action to reduce the risk of flood loss, to minimize the impact of floods on human safety, health, and welfare, and to restore and preserve the natural and beneficial values served by flood plains in carrying out its responsibilities" for the following actions:

- Acquiring, managing, and disposing of federal lands and facilities
- Providing federally undertaken, financed, or assisted construction and improvements
- Conducting federal activities and programs affecting land use, including but not limited to water and related land resources planning, regulation, and licensing activities

Federal-Aid Policy Guide, 23 CFR 650, Bridges, Structures, and Hydraulics, provides "policies and procedures for the location and hydraulic design of highway encroachments on flood plains, including direct Federal highway projects administered by the FHWA." This document defines the "Base Flood" as the "flood or tide having a 1 percent chance of being exceeded in any given year" and the "Base Flood Plain" as the "area subject to flooding by the base flood."

Federal Emergency Management Agency Issued Flood Maps for Cascade County indicate that the Zone AE 100-Year Flood with base flood elevations exists along only two small portions of the study area. The remainder of the study area is Zone X, which is the 500-Year Flood, or is not within a floodplain at all. Forwarding of improvement options from the study that result in the placement of fill within the regulatory floodplain will require identifying and evaluating impacts on the floodplains. Project development could require coordination with Cascade County and the City of Great Falls to minimize floodplain impacts and obtain necessary floodplain permits for project construction.

### 5.1.7 Irrigation

Irrigated grazing land exists within the study area. Depending on the improvement option(s) proposed, there is a potential to impact irrigation facilities. Project development may require redesigning, modifying existing, and/or constructing new irrigation canals, ditches, or pressurized systems in consultation with the owners to minimize impacts on agricultural operations. Additional expenses may occur if impacts on irrigation facilities will occur based on study findings.

### 5.1.8 Air Quality

EPA designates communities that do not meet National Ambient Air Quality Standards (NAAQS) as "nonattainment areas." States are then required to develop plans to control source emissions and ensure future attainment of NAAQS. Great Falls was designated non-attainment for carbon monoxide (CO) in 1980, and eventually the limits of the non-attainment area were mapped as the $10^{\text {th }}$ Avenue South Corridor. In 2002, Great Falls received designation to attainment status for carbon monoxide. Great Falls is now under a December 2000 Carbon Monoxide Limited Maintenance Plan (CO LMP). The Montana DEQ submitted an updated Great Falls CO LMP in 2011, and revisions to the State Implementation Plan that would include some alternative CO monitoring strategies were laid out in the 2011 LMP. However, until EPA acts on these submittals, the December 2000 CO LMP is the controlling
document for current air quality conformity determinations. The former non-attainment area is not located within the study area, so no further transportation conformity analysis will be necessary.

Depending on the scope of the project under consideration along this corridor, an evaluation of mobile source air toxics (MSATs) may be required. MSATs are compounds emitted from highway vehicles and off-road equipment that are known or suspected to cause cancer or other serious health and environmental effects. The expectation that special air-quality design considerations will be required is low when considering future project design.

### 5.1.9 Hazardous Substances

The Natural Resource Information System database was searched for underground storage tank (UST) sites, leaking underground storage tank (LUST) sites, abandoned mine sites, remediation response sites, landfills, National Priority List sites, hazardous waste, crude oil pipelines, and toxic release inventory sites within the study area.

## USTs and LUSTs

There is a cluster of UST and LUST sites at the Airport Interchange and numerous tank sites along Terminal Drive with facilities associated with the airport. None of these sites is likely to result in added cost or resources to any project that is forwarded from the study, however.

There is one unresolved LUST site near $34^{\text {th }}$ St Southwest, referred to as the Ruth Graham Property, and two other LUST sites along the Northwest Bypass both east and west of $34^{\text {th }}$ St Northwest. Both of those sites are also currently unresolved. One is the Yellowstone Truck Stop, and the other is N\&H Transportation. Construction near these leaking tank sites may result in handling and disposal of contaminated soils, which will increase costs.

## Water Quality Act/State Superfund Sites (Comprehensive Environmental

 Cleanup and Responsibility Act)There are four Water Quality Act (WQA) or State Superfund Sites listed in DEQ's on-line database; only one of the four is active. The active site, Western by Products, is located near the north end of the study area between I-15 and Vaughn Road. Information available for this site indicates that it is currently an "Active" site; however, a No Further Action status was issued in 1984. If a project encroaches onto this facility, there may be additional costs associated with contaminated soil and groundwater. Efforts should be made to avoid impacts on this site if possible as it is still listed on the WQA Ranking list.

### 5.2 Biological Environment

The following information applies to natural resources within the study area and reflects a baseline natural resource condition. Depending on the level of detail available through the high-level baseline scan, some of the information is presented at the county level, some at the study-area level, and some at the corridor level.

### 5.2.1 Mammals

Wildlife species inhabiting or traversing the project study area are typical of those that occur in developed and disturbed areas of central Montana. Most species habituate to disturbed areas and, as a result, are predominately generalist species.

Common mammals occupying habitats in, traversing, or having a distribution range that overlaps the study area are white-tail deer, mule deer, and coyote. Other common mammals potentially occurring in the project area include, but are not limited to, porcupine, raccoon, striped skunk, badger, bobcat, red fox, muskrat, Richardson's ground squirrel, deer mouse, and meadow vole.

A review of the MDT Maintenance Animal Incident Database for from January 2004 through December 2013 shows 39 records of animal carcasses within the study area. With the exception of only a few other animals, white-tail deer and mule deer account for most of the recorded wildlife mortality within the study area. One elk, one pronghorn antelope, one mountain lion, and two coyotes comprise the other records. The majority of the carcass pickups were located around the bridge over the Sun River and to the north, from RP 279.5 to RP 284.

### 5.2.2 Birds

Trees or structures that will be impacted by any project resulting from this corridor study should be removed outside of the nesting season (typical nesting season is from April 15 to August 15) or when active nests are not present. Any projects forwarded from this study will have to include consideration of potential constraints that may result from nesting times of migratory birds.

No bald eagle or golden eagle nests were identified within one-half mile of the study area. Review of the corridor for eagle nests will have to occur during project design and before construction to verify that no new nests are present.

### 5.2.3 Threatened and Endangered Species

The U.S. Fish and Wildlife Service (USFWS) maintains the federal list of threatened and endangered species. Species on this list receive protection under the Endangered Species Act. An "endangered" species is one that is in danger of extinction throughout all or a significant portion of its range. A "threatened" species is one that is likely to become endangered in the foreseeable future. USFWS also maintains a list of species that are candidates or proposed for possible addition to the federal list. According to USFWS, five threatened, endangered, or candidate species are listed as occurring in Cascade County (see Table 5.1).

Table 5.1: Threatened and Endangered Species in Cascade County

| Common Name | Status |
| :--- | :--- |
| Canada Lynx | Threatened |
| Red Knot | Proposed |
| Wolverine | Proposed* $^{*}$ |
| Sprague's Pipit | Candidate |
| Whitebark Pine | Candidate |

*Note that the wolverine has since been removed as a proposed threatened and endangered species.
The Montana Natural Heritage Program - Natural Heritage Map Viewer (report generated May 15, 2014) database records and maps documents observations of species in a known location. According to the database (report generated May 15, 2014), there are no records of any threatened, endangered, proposed, or candidate species within the boundaries of the corridor study.

As the federal status of protected species changes over time, reevaluation of the listing status and a review for the potential occurrence of these species in the project area should take place before issuing a determination of effect relative to potential project impacts. If a project moves forward from this study,
completion of an evaluation of potential effects on any of the species listed above has to occur during the project development process.

### 5.2.4 Species of Concern

Montana Species of Concern (SOCs) are native animals breeding in the state that are considered to be at risk due to declining population trends, threats to their habitats, and/or restricted distribution. Designation of a species as an SOC is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to direct limited resources to priority data collection needs and to address conservation needs proactively.

According to the Montana Natural Heritage Program - Natural Heritage Map Viewer (report generated May 15, 2014) database, which records and maps documented observations of SOCs in a known location, there is one historic record of many-headed sedge within the study area. This record is from 1891, and there is no expectation for this species to occur within the study area due to development of Great Falls since 1891.

Conducting a reevaluation for the presence of SOCs is important during the project design phase. If present, developers should consider adding special conditions to the project design and/or construction documents to avoid or minimize impacts to these species.

### 5.2.5 Vegetation

According to the Montana National Heritage Program Landcover Report, the dominate land cover near the study area is developed land consisting of major roads, including the Interstate, residential, and commercial land. Outside the developed land in the city of Great Falls are some cultivated crops, including hay land south of the Gore Hill Interchange and north of the Emerson Junction, as well as a minor amount of grassland, wetlands, and riparian habitat near the Sun River crossing. All land types in the project area are disturbed to some extent. If forwarding a project from the study, following practices outlined in Standard Specification 201 and any related supplemental specifications will help minimize adverse impacts on vegetation.

### 5.2.6 Fisheries Information

Montana Fish, Wildlife, and Parks (FWP) listed the Sun River as a substantial fishery resource value and manages the Sun River as a trout water. I-15 crosses the Sun River within the study area. According to the Montana Fisheries Information System (MFISH) database (report generated May 15, 2014), fish species commonly occurring within the Sun River within the study area are as follows:

- Brown trout
- Longnose sucker
- Longnose dace
- Stonecat
- Walleye
- White sucker

Rare fish species within the study area include the following:

- Mottled sculpin
- Rainbow trout
- Mountain whitefish
- Burbot
- Common carp
- Flathead chub
- Northern pike

FWP listed the Missouri River as a substantial fishery resource value and manages the Missouri River as a non-trout water. $10^{\text {th }}$ Avenue South crosses the Missouri River at the east terminus of the study area.

Forwarding any projects that affect the Sun River or Missouri River will likely require incorporation of design measures to facilitate aquatic species passage. Notification to FWP is necessary for impacts on the Sun River aquatic resources.

### 5.2.7 Noxious Weeds

Noxious weeds can degrade native vegetative communities, choke streams, compete with native plants, create fire hazards, degrade agricultural and recreational lands, and pose threats to the viability of livestock, humans, and wildlife. Areas with a history of disturbance, like highway rights-of-way, are at particular risk of weed encroachment. The Invaders Database System lists 28 exotic plant species and 10 noxious weed species documented in Cascade County, some of which may be present within the study area.

Seeding disturbed areas with desirable plant species will reduce the spread and establishment of noxious weeds and allow reestablishing permanent vegetation. If forwarding a project from the study, field surveys for noxious weeds should begin before any ground disturbance.

### 5.2.8 Crucial Areas Planning System

The Crucial Areas Planning System (CAPS) is a resource intended to provide useful and non-regulatory information during the early planning stages of development projects, conservation opportunities, and environmental review. The finest data resolution within CAPS is at the square-mile section scale or water body. Use of these data layers at a more localized scale is not appropriate and may lead to inaccurate interpretations since the classification may or may not apply to the entire square-mile section. This scale is too broad for use during MDT's assessment of potential impacts at the project level. The CAPS system provides a general overview of the study area. CAPS results are presented in the Environmental Scan.

CAPS provides general recommendations and recommendations specific to transportation projects for both terrestrial and aquatic species and habitat. These recommendations of the CAPS system can have a generic application to possible project locations moving forward from the study. Coordination with the FWP wildlife biologist should occur during project development.

### 5.3 Social and Cultural Environment

The following subsections present an overview the social and cultural environment within the study area.

### 5.3.1 Demographic and Economic Conditions

Under the National and Montana Environmental Policy Acts and associated implementing regulations, state and federal agencies must assess potential social and economic impacts resulting from proposed actions. FHWA guidelines recommend consideration of impacts on neighborhoods and community cohesion, social groups including minority populations, and local and/or regional economies, as well as growth and development induced by transportation improvements. Section 2.0 presents demographic
and economic information to assist in identifying human populations that improvements may affect within the study area.

Title VI of the U.S. Civil Rights Act of 1964, as amended (USC 2000(d)) and Executive Order 12898 require that no minority, or, by extension, low-income person shall be disproportionately adversely impacted by any project receiving federal funds. For transportation projects, this means that no particular minority or low-income person may be disproportionately isolated, displaced, or otherwise subjected to adverse effects. If forwarding a project from the improvement option(s) occurs, an Environmental Justice evaluation will have to occur during the project development process.

### 5.3.2 Land Ownership and Land Use

Ownership of the land within the study area is a mix of private and public. MDT and State Trust are the only holders of public land within the corridor. Most of the public land is in the form of right-of-way or state parklands. Most of the land in the study area is either residential rural and/or urban. The other land uses within the corridor are commercial, industrial, agricultural, and recreational.

Additional research and coordination will be required to ascertain the specific encumbrances associated with particular parcels of land. Any projects that move forward from this study will have to consider adjacent land use.

### 5.3.3 Recreational Resources

The intent of Section $4(\mathrm{f})$ is to protect publically owned parks, recreation areas, wildlife and waterfowl refuges, and public and private historic sites of local, state, and national significance. Transportation projects using federal funds cannot use properties that are protected by Section 4(f) unless there are no feasible and prudent avoidance alternatives and all possible planning to minimize harm has occurred.

Various recreational resources exist within and near the study area. A green belt on the northeast corner of $10^{\text {th }}$ Avenue South and $6^{\text {th }}$ St SW, owned by MDT, is not protected under Section $4(\mathrm{f})$ per 23CFR774.13(H)(2014). According to the Montana FWP resources list, there are two state-owned parks inside the study area, Westside Viaduct Park and West Hill Park. Currently the only development on either of these two parks is a lift station in West Hill Park. The remainder of this parkland is undeveloped and not currently available for public use. There is also one City of Great Falls park located, Community Hill Park, within the study area. The Community Hill Park is currently being used as a community garden / orchard that has standard access hours, outside of which it is locked preventing access by the public.

If a project is forwarded that may impact these parks, a reevaluation should take place to determine what the parks availability for use by the public is at that time. If these parks become available for full time public use in the future, additional investigation and coordination with the officials having jurisdiction over the parks will be necessary to determine whether the parks are "significant" and protected by Section 4(f) of the U.S. Department of Transportation Act.

Section 6(f) of the National Land and Water Conservation Fund Act is another federal measure intended to preserve, develop, and assure the quality and quantity of outdoor recreation resources. Section 6(f) protection applies to all projects that impact recreational lands purchased or improved with land and water conservation funds. At this time, there are no Section 6(f) resources identified in the study area. If a project were to be developed outside of the study area, reevaluation of 6(f) resources would have to occur, as they exist close to the study area limits. Avoiding impacts on 6(f) resources is a priority. Approval for a 6(f) use is a lengthy process involving rigorous mitigation requirements and approvals from several resource agencies.

### 5.3.4 Cultural Resources

If a project is federally funded, MDT will conduct a cultural resource survey of the area of potential effect for this project, as specified in Section 106 of the National Historic Preservation Act (36 CFR 800). Section 106 requires federal agencies to "take into account the effects of their undertakings on historic properties." The purpose of the Section 106 process is to identify historic and archaeological properties that could be affected by the undertaking, assess the effects of the project, and investigate methods to avoid, minimize, or mitigate any adverse effects on historic properties. Special protections for these properties are also afforded under Section 4(f) of the Transportation Act.

A file search of the study area through the Montana State Historic Preservation Office revealed one historic property located within 0.15 mile of the existing alignment, the Missouri River/Warden Bridge. In addition, five National Registry of Historic Places (NRHP) listed historic districts and properties are located within a mile of the study corridor, but are outside the study area (see Table 5.2). An examination of the Montana Cadastral Survey information indicates that at least 33 historic age properties are located within 0.2 mile of the existing corridor. The study area contains many cultural resources, all of which consist of historic sites. Cultural resources will not likely be a substantial issue, but the issue is important to address as planning progresses.

Table 5.2: Historic Properties

| Site | Site No. | NRHP <br> Eligibility |
| :--- | :--- | :--- |
| Missouri River/Warden Bridge | 24CA0401 | Listed |
| Cascade County Courthouse | 24 CA0233 | Listed |
| Great Falls Central Business District | 24 CA0977 | Listed |
| C.M. \& St. P. Passenger Depot | 24CA0271 | Listed |
| Great Falls Railroad Historic District | 24 CA0335 | Listed |
| Great Falls West Bank Historic District | 24 CA1527 | Listed |

If a project is forwarded from the study, a cultural resource survey for unrecorded historic, pre-historic, and archaeological properties within the area of potential effect will be completed during the project development process. Flexibility in design will be important to avoid and/or minimize impacts on historically significant sites.

### 5.3.5 Noise

Traffic noise may have to be evaluated for planned improvements to the study corridor. Noise analysis is necessary for "Type l" projects. If the roadway improvements are limited (e.g., the horizontal and vertical alignments are not changed, and the highway remains a two-lane facility), then the project would not be considered a Type I project.

If the improvements planned for the road would include a substantial shift in the horizontal or vertical alignments, increasing the number of through-lanes, passing lanes, or turning lanes, or increasing the traffic speed and volume, then the project would be considered a Type I project, which would require a detailed noise analysis. The analysis would include measuring ambient noise levels at selected receivers and modeling design-year noise levels using projected traffic volumes.

Noise abatement measures would be considered for the project if noise levels would approach or substantially exceed the noise abatement criteria. The noise abatement measures must be considered
reasonable and feasible before implementation. If noise abatement measures were deemed necessary, they could increase costs of proposed future Type I roadway improvements.

### 5.3.6 Visual Resources

The visual resources of an area include landforms, vegetation, water features, and physical modifications caused by human activities that give the landscape its visual character and aesthetic qualities. Visual resources are typically assessed based on the landscape character (what is seen), visual sensitivity (human preferences and values regarding what is seen), scenic integrity (degree of intactness and wholeness in landscape character), and landscape visibility (relative distance of seen areas) of a geographically defined view shed. The study area is a blended landscape that has been developed with islands of natural beauty persevering. An evaluation of the potential effects on visual resources may be necessary, depending on the improvement options forwarded from this study.

### 6.0 AREAS OF CONCERN AND CONSIDERATION SUMMARY

This section provides a list and description of areas of concern and consideration within the study area. These areas were identified through review of as-built drawings, field review, public databases, and other resources. More discussion has been provided in the previous sections, and it is reiterated here as appropriate. Figure 6.1 provides a graphical summary of the areas of concern.

### 6.1 Transportation System

## Bridges

- Bridges along the Interstate within the study area have surface widths that do not meet current standards.


## Operations

- The Interstate System is considered a Level I winter maintenance level.
- Snow fence and VMS are currently used to address vehicle operations related to adverse weather conditions.


## Pavement Condition

- A segment of I-15 currently has poor surfacing conditions. A resurfacing project is planned for this location in 2017.
- I-315 had poor to fair surfacing conditions.


## Railroad

- The Interstate crosses over the railroad at two locations within the study area.


## Air Service

- The Great Falls International Airport is adjacent to the study area and is accessed primarily by the Gore Hill Interchange.


## Mainline Interstate

- One location on I-15 has a vertical grade that does not meet current standards.
- Two vertical curves on I-15 do not meet current standards.
- One horizontal curve on I-15 and one horizontal curve on I-315 do not meet current standards.


## Interchanges

- Seven of eight interchange on-ramps do not appear to meet current standards for acceleration length.
- Three of seven interchange off-ramps do not appear to meet current standards for deceleration length.
- Spacing between the $10^{\text {th }}$ Avenue South and $14^{\text {th }}$ Street SW Interchanges does not appear to meet current standards.
- Emerson Junction is a partial interchange and does not support full vehicle movements.


## Intersections

- Six of the twelve intersections evaluated have a LOS of D or worse during one or both peak hours.


## Safety

- Four fatal crashes and eight incapacitating injury crashes occurred during the five-year analysis period.
- A trend of fixed-object collisions was noted occurring along the Interstate.


### 6.2 Environmental Considerations

## Physical Environment

- Areas of prime farmland if irrigated and farmlands of statewide importance exist within the study area.
- There are signs of instability and past landslides near the Gore Hill area.
- Much of the study area is located within the Great Falls MS4 area.
- I-15 crosses over the Sun River.


## Biological Environment

- Thirty-nine animal carcasses were recorded over the past ten years.
- Five threatened, endangered, or candidate species are listed within Cascade County.
- Seven rare fish species are listed within the study area.
- Twenty-eight exotic plant species and ten noxious weed species are documented within Cascade County.


## Social and Cultural Environment

- Two 4(f) resources are located within the study area.
- The Missouri River/Warden Bridge is listed as a historic property.


Figure 6.1: Areas of Concern and Consideration


## APPENDIX A

## Bridge Inspection Reports


Inspection Data
Sufficiency Rating : 78.5
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 19 December 2014
Next Under Water Insp : 15 Nov 2016
(91) Inspection Frequency (months) : 2424

## NBI Inspection Data



Last Inspected By Inspected By $\square$


Inspection Hours



| Inspection Work Candidates |  | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested |  |  |  |  |  |  |

Late Reason:
Inspection Date: 12/19/2012

## Element Inspection Data

**********Span : Main-0 - **********



## Inspection Notes:

Element 210-R/Conc Pier Wall Piers 2 thru 5


Previous Inspection Notes:
$12 / 19 / 2012$ - Some tight vertical cracking. Small spalls along the backside of the ice breakers. Small delamination on the face of Pier 4 near the
waterline. Some surface scale on the Pierwalls near the waterline. UZGZ
$12 / 27 / 2010$ - Tight mapping cracks in the Pierwall faces. Some small spalls along the ice breakers. Some small delaminated areas observed
during last snooper inspection in the worst cracked areas.
There are no additional comments from the underwater inspection by Infrastructure Engineers on $11 / 15 / 2011$. CRH
$12 / 02 / 2008$ - Small spalls, Condition State 2, and some small delaminations, Condition State 3 .
$11 / 02 / 2006$ - Minor concrete spall at the waterline near the Pier noses. Several areas of tight mapping cracks in all (4) Pier walls. Ice breakers
painted this past summer.
Per Infrastructure Engineers August 22, 2006 underwater inspection, the substructure units are in good condition. There are no significant
structural defects below the high waterline. There are vertical cracks up to $1 / 16$ " wide with light efflorescence on both the north face and south
face of pier 3 starting at the waterline and extending up 10 feet.
$10 / 18 / 2002-10.14 * 4=40.56 m$ Same as snooper inspection of $05-29-2001$.
$04 / 13 / 1998$ - Snooper Inspection of $5-29-2001$ : Some minor section loss at the water line from debris and ice. Some drift at the nose of the pier
shafts. Ice breakers could be painted.
02/01/1994 - None

Span : Main-0 - (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 215-R/Conc Abutment 1 and 6 |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 1 | 27 | m . |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | \% |

Previous Inspection Notes :

| 12/19/2012 - Left corner of Abutment 6 is delaminated. Small spalls at the backwall to cap area. | JZGZ |
| :---: | :---: |
| 12/27/2010 - Delaminations on Left end of Abutment 6's cap. A couple of small surface spalls in the backwalls near girder embedments. Tight shrinkage cracks in both backwalls. | ZBDZ |
| 12/02/2008 - Abutment 6 has a small delminaiton on the Left end of the cap; Condition State 3. Tight cracks in both backwalls; Condition State 2. None are a problem. | DZGZ |
| $11 / 02 / 2006$ - Minor and tight cracks in both Abutments. Both backwalls have a couple of small spalls near the bearings where girder are embedded. | CKDP |
| 10/18/2002-(10.14*2) (4*17.75) $=27.28 \mathrm{~m}$ ok | VZJZ |

Inspection Notes:

Element 234 - R/Conc Cap Piers 2 thru 5

|  | 1 | 1 | 41 | m. |  | 50 | 5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\%$ | $\%$ | $\%$ | $\%$ |

Previous Inspection Notes :
12/19/2012 - Small delamination on the Right end and Span 4 side of Pier 5's cap. Small spalls in random areas along the edges of the caps; UZGZ none are a problem. Bird debris on tops of the caps.
12/27/2010 - Small delamination on the Span 4 side of Bent 5's cap. Some minor spalls. Bird debris on the caps. ZBDZ
12/02/2008 - Small spalls and some cracks; Condition State 2. A couple of small delaminations; Condition State 3. DZGZ
11/02/2006 - Staining from past leaking joints. Some small areas where there is shallow and rusty tie wire which is causing some small surface
spalling.
10/18/2002 - Change Env. State to a "1" as the leaky joints have been removed. Rest is the same as last several reports.
Inspection Notes:

Element 303 - Assembly Joint/Seal Pier 2 and 5 - New in 2010

|  | 1 | 3 | 20 | m. |  | 100 | 0 | $\%$ | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes :
12/19/2012 - Sanding material is packed in the joint glands. Steel sound solid when tapped on.
12/27/2010 - All of the steel looks Good. Ends of the joints area at the curb shows sloppy workmanship pathces.
$12 / 02 / 2008$ - Steel sounds solid when tapped on. Some small spalls along the stell. Gland is full of sanding material. No leakage observed.
$11 / 02 / 2006$ - Joint area is packed full of sanding material. Some spalling along the joint steel. Steel sounds soild when tapped on. No leaking is

Span : Main-0 - (cont.)


Span : Main-0 - (cont.)


## 100015279+09761

## Continue



Inspection Data
Sufficiency Rating : 78.5
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 19 December 2014
(91) Inspection Frequency (months) : 24

Next Under Water Insp : 17 Nov 2016 Under Water Insp Type : Type II

## NBI Inspection Data



| D31-FY2013-000018 | 20 December 2012 | Not Approved | Medium M Main | 210 R/Conc Pier Wall | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Late Reason:
Inspection Date: 12/19/2012

## Element Inspection Data

**********Span: Main-0 - **********


Span : Main-0 - (cont.)


Span : Main-0 - (cont.)


Span : Main-0 - (cont.)


Montana Department of Transportation

## I00015279+09762

Continue

\begin{tabular}{|c|c|}
\hline General Inspection Notes \& \\
\hline 12/19/2012 - Good markers on both sides of Abutment 6. \& ZGZ \\
\hline \begin{tabular}{l}
\(12 / 27 / 2010-\) NBI 72 , roadway alignment, rated a " 7 " as bridge is narrower than the approach roadway. Good markers on both sides of Abutment 6 . \\
12/02/2008 - Good markers on the approach corners.
\end{tabular} \& diDz \\
\hline \begin{tabular}{l}
11/02/2006 - Markers on the Left and Right sides of the approach end and in Fair to Good condition. \\
Steel bridge rail could be removed as it is not serving any purpose. Bridge deck has had some patched spalls and will be needing more. This would be a Good candidate for a deck re-hab. \\
Per Infrastructure Engineers August 22, 2006 underwater inspection, the substructure units are in good condition. There are no significant structural defects below the high waterline. There is no significant local or general scour present. There are no significant restrictions in the channel that will adversely impact flow. NBI 61 CHANGED PER INFRASTRUCTURE ENGINEERS UNDERWATER INSPECTION. \\
10/18/2002 - NBI 36 is now up to current standards; 36A upgraded to concrete barrier rail now.
\end{tabular} \& CZDP

VCKA <br>
\hline 04/13/1998-5-29-2001: Snooper inspection this am. Should clean out the trees \& brush that is going next to and underneath the structure. \& RHGN <br>
\hline 02/01/1994 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:44:28 Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:03 \& REFI <br>
\hline 09/01/1991- Updated with tape 1994 \& NB94 <br>
\hline 02/01/1990-Updated with tape 1991 \& NB91 <br>
\hline 02/01/1988-Updated with tape 1989 \& VB89 <br>
\hline 02/01/1986-Updated with tape 1987 \& NB87 <br>
\hline 01/01/1984 - Updated with tape 1985 \& NB85 <br>
\hline 08/01/1981 - Updated with tape 1984 \& NB84 <br>
\hline 03/01/1979 - Updated with tape 1980 \& NB80 <br>
\hline \& <br>
\hline
\end{tabular}


Inspection Data
Sufficiency Rating : 96.6
Structure Status : Not Deficient

Inspection Due Date : 15 October 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



| (58) Deck Rating : | 7 |  |
| ---: | :--- | :--- |
| (59) Superstructure Rating : | 7 |  |
| (60) Substructure Rating : | 7 |  |
| (72) App Rdwy Align : | 8 |  |



Deck Surfacing Depth


Inspection Hours


| Inspection Work Candidates |  | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested | Approved | Medium | All Spans | Bridge | Spot Paint (flex) |  |
| D31-FY2004-000064 | 28 January 2004 | Appren |  |  |  |  |  |
| Clean around bearings and repaint. |  |  |  |  |  |  |  |

Approved. DRC

Late Reason:
Inspection Date: 10/15/2012

## Element Inspection Data

********** Span: Main-0


Previous Inspection Notes:
10/15/2012 - Minor wear in the wheel paths. Tight transverse cracks over both Bent 2 and 3. Random cracking in Span 1. QZHZ
$10 / 18 / 2010-11.95$ * $38.10=455.30 \quad 1$ " milled off, $A$ and B repairs done, and 2 " overlay then placed. Good condition today. SODZ

| Inspection Notes: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Element 109-P/S Conc Open Girder |  |  |  |  |  |  |
| 1 | 1 | 191 m. | 100 | 0 | 0 |  |
|  |  |  | \% | \% | \% | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |
| 10/15/2012 - Unchanged from past inspections and generally in Good condition. QZHZ |  |  |  |  |  |  |
| 10/18/2010 - Generally Good condition. Minor rubs from overheight loads and some minor cracking on ends of the girders noted at Bents 2 and 3 . 10/15/2008 - Good condition. Some minor rubs and scrapes from overheight loads. |  |  |  |  |  | sodz |
|  |  |  |  |  |  | QZGZ |
| 10/24/2006 - Good condition. Minor cracks from backside of the embedded bearing plate to the ends of several of the girders. |  |  |  |  |  | ZZGZ |
|  |  |  |  |  |  | IZDK |
| Inspection Notes: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Element 205-R/Conc Column Bent 2 and 3 |  |  |  |  |  |  |
| 1 | 1 |  | 95 | 5 | 0 |  |
|  |  |  | \% | \% | \% | \% |

Previous Inspection Notes:

| $10 / 15 / 2012$ - All (4) are generally in Good condition with a small spall on the Right column of Bent 3. | QZHZ |
| :--- | :---: |
| $10 / 18 / 2010$ - Good condition. Minor and tight surface shrinkage cracks. | SODZ |
| $10 / 15 / 2008$ - Generally Good condition. Some tight surface shrinkage cracks. | QZGZ |
| $10 / 24 / 2006$ - Tight surface shrinkage cracks. | ZZGZ |
| $10 / 08 / 2002$ - ok | IZDK |

Inspection Notes:

Span : Main-0 - (cont.)


Element 313 - Fixed Bearing Bent 2 and 3

| 1 | 1 | 20 | ea. |  | 90 | 10 | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes :

| $10 / 15 / 2012$ - Spot rust, paint loss, and some debris. | QZHZ |
| :--- | :---: |
| $10 / 18 / 2010$ - Spot rust and paint loss. | SODZ |
| $10 / 15 / 2008$ - Spot rust and paint loss. | QZGZ |
| $10 / 24 / 2006$ - Spot rust throughout. Bents 2 and 3's have pigeon debris around them. | ZZGZ |
| $10 / 08 / 2002$ - Rusty spots throughout. | IZDK |

## Inspection Notes:



|  |
| :--- |
|  |
|  |
|  |
|  |


Inspection Data
Sufficiency Rating : 96.6
Structure Status : Not Deficient

Inspection Due Date : 15 October 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



| (58) Deck Rating : | 7 |  |
| ---: | :--- | :--- |
| (59) Superstructure Rating : | 7 |  |
| (60) Substructure Rating : | 7 |  |
| (72) App Rdwy Align : | 8 |  |



Deck Surfacing Depth


Inspection Hours


| Inspection Work Candidates |  | Status | Priority | $\begin{array}{c}\text { Effected } \\ \text { Structure } \\ \text { Unit }\end{array}$ | $\begin{array}{c}\text { Scope of } \\ \text { Work }\end{array}$ | Action |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Covered <br>

Condition <br>
States\end{array}\right]\)

Approved. DRC

Late Reason:
Inspection Date: 10/15/2012

## Element Inspection Data

********** Span: Main-0


Previous Inspection Notes:
10/15/2012 - Unchanged from past inspections and in Good condition.
10/18/2010 - Gernally Good condition. Minor scrapes and rubs from overheight loads on the bottom of the girders. Tight cracks on the ends of the girders at Bent 2 and 3.
10/15/2008 - Generally in Good condition. Minor scrapes to the Left two girders from overheight loads.
10/24/2006 - Minor scrape to the Left girder in Span 2 from overheight load. Several of the girders have minor cracks from the backside of the

Inspection Notes:

Element 205 - R/Conc Column Bent 2 and 3

| 1 | 1 | 4 | ea. |  | 95 | 0 | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes :

| $10 / 15 / 2012$ - All are generally in Good condition with small spalls on (2) columns from construction activity. | QZHZ |
| :--- | :---: |
| $10 / 18 / 2010$ - Good condition. | SZDZ |
| $10 / 15 / 2008$ - Good condition. Small scrape on the Left column of Bent 2. | QZGZ |
| $10 / 24 / 2006$ - No major probelms noted with minor and tight surface shrinkage cracks. | ZCGZ |
| $10 / 08 / 2002$ - Minor, tight shrinkage cracks. | ISDL |

Inspection Notes:

Span : Main-0 - (cont.)


Inspection Notes:

Element 234 - R/Conc Cap Bent 2 and 3

| 1 | 1 | 24 | m. | 90 | 5 | 5 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \% | \% | \% | \% | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |
| 10/15/2012 - Minor surface spalls on the underside of both caps from rebar chair feet. Right end of Bent 3's cap has a small surface delamination and both caps show tight cracking on their ends. Spall with exposed rebar on the Left end of Bent 2's cap. 10/18/2010 - Minor surface spalls on the underside of both caps. Spall with exposed rebar ends on the Left end of Bent 2's cap. |  |  |  |  |  |  |  | QZHZ SZDZ |
| 10/15/2008 - Surface spalls on the underside of both caps. Tight cracks on the ends of both caps. |  |  |  |  |  |  |  | QZGZ |
| 10/24/2006-Minor and small surface spalls where rebar chairs are exposed on the underside of the caps. Staining from leakage in the past. |  |  |  |  |  |  |  | ZCGZ |
| 10/08/2002-2*11.95 = 23.90m Minor staining from areas where the rebar chairs are exposed. |  |  |  |  |  |  |  | ISDL |



Inspection Notes:


## General Inspection Notes

10/15/2012 - Good 14' - 2" clearance signs on both sides of the bridge for traffic on 5th Ave. SW.
10/18/2010 - NBI 36A, bridge rail, is rated a "1" as if meets the Bridge Bureau's policy of "no retro-fit" needed.
NBI 58, deck, rated a "8" due to new overlay. Overlaid with Silica Fume Concrete in 2010.
NBI 59, superstructure, rated a "7" due to rubs on the bottom of the girders and tight cracks on the ends of the girders.
Good 14' - 2" clearance signs on both sides of the bridge for 5th Ave. SW.
10/15/2008 - Good 14'-2" overheight signs on both sides of the structure for 5th Ave. SW.
Consultant's crew doing chloride content testing of the structure's deck yesterday.
Close to a deck cracking smart flag due to wide cracks over Bents 2 and 3 .
10/24/2006-NBI 58, deck, rated at a " 6 " due to wear in the wheel paths and some spalling/delamiantions.
NBI 60, substructure, rated a "7" due to minor spalls on the underside of the caps at Bents 2 and 3 from exposed rebar chairs. Also small spalls where girders are embedded in both Abutments.
5th Ave. SW signed for 14' - 2" clearance.
10/08/2002-NBI 36A is a " 0 " because rail is W-beam and blocked out to the face of the curbs. 36B-Transition rail and bridge approach
Element 304 - These were removed during 1999 renab project.
03/13/1998 - None
02/01/1994 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:44:29
Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:05
01/01/1992 - Updated with tape 1994
03/01/1990 - Updated with tape 1991
02/01/1986 - Updated with tape 1988
01/01/1984 - Updated with tape 1985
08/01/1981 - Updated with tape 1984
03/01/1979 - Updated with tape 1980

|  |
| :--- |
|  |
|  |
|  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 34.4 mton | A LFD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3: | 63.18 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & \mathbf{1 0 7 . 9 0 \mathrm { m }} \\
\text { Deck Area : } & \mathbf{1 , 0 5 2 . 0 0 \mathrm { m } \text { sq }} \\
\text { Deck Roadway Width : } & \mathbf{8 . 5 5 \mathrm { m }} \\
\text { droach Roadway Width : } & \mathbf{1 1 . 5 8 ~ \mathbf { m }} \\
\text { dian Code, Description : } 0 \text { No median }
\end{array}
$$

Structure Vertical and Horizontal Clearance Data :

## Vertical Clearance Over the Structure :

Reference Feature for Vertical Clearance :
Vertical Clearance Under the Structure :
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right :
Minimum Lateral Under Clearance Left :
99.99 m

H Hwy beneath struct 6.76 m

H Hwy beneath struct
2.75 m
0.00 m

## Span Data

## Approach Span

Number Spans: 6
Material Type Code, Description : 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

| Deck Structure Type : | $\mathbf{1}$ Concrete Cast-in-Place |
| :--- | :--- |
| Deck Surfacing Type : | $\mathbf{3}$ Latex Concrete or similar additive |
| Deck Protection Type : | $\mathbf{0}$ None |
| Deck Membrain Type : | $\mathbf{0}$ None |

## Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction | Inventory <br> Nome | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under |  | Both | 6.76 m | 9.14 m | N/A |  |  |
| VAUGHN ROAD |  |  |  |  | North | 99.99 m | 8.55 m |
| Route On Structure | 100015 | N/A |  |  |  |  |  |
| I-15 NB / EMERSON JCT |  |  |  |  |  |  |  |

Inspection Data
Sufficiency Rating : 76.4
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 19 December 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



| D31-FY2007-000029 | 27 November 2006 | Approved | High | M Main | 300 Strip Seal Exp Joint | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Approved. DRC

| D31-FY2011-000025 | 11 January 2011 | Not Approved | Low | M Main | 334 Metal Rail Coated | Repl Paint |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clean and spot paint rail. |  |  |  |  |  |  |  |

[^10]
## Element Inspection Data

Span : Main-0 - (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity | Unit | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 215-R/Conc Abutment 1 and 7 |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 1 | 29 | m . |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | \% |

Previous Inspection Notes:

| 12/19/2012 - Good condition. Small spalls along the cap to backwall area. Erosion at the corners of the wingwalls. Some missing fill under Abutment 1's cap. Tight surface shrinkage cracks. | UZGZ |
| :---: | :---: |
| 12/27/2010 - Small spalls along a couple of the embedded bearings. Minor and tight cracks under G2 and G3 in Abutment 1's cap. | ZZDZ |
| 11/19/2008 - Same as last comments. | TZDT |
| 11/02/2006 - Both caps have minor and tight cracks. A couple of small spalls where girders ends are embedded in the backwall. | CODN |
| 10/07/2002-(11.48 1.40 1.40) * $2=28.56 \mathrm{~m}$ Minor cracking in Abutment backwalls. Minor erosion at wingwalls. | IZHP |

Inspection Notes:

Element 234 - R/Conc Cap Bents 2 thru 6

|  |
| :--- |
|  |

Inspection Notes:

Element 300 - Strip Seal Exp Joint

| 1 | 3 | 23 | m. |  | 95 | 5 | $\%$ | $\%$ | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes:
$12 / 19 / 2012$ - Lots of sanding material is packed into the gland area. No obvious leaking. Steel portions sound solid when tapped on. Small
surface spalls and paste delaminations along the joint steel.
$12 / 27 / 2010$ - Steel sounds solid when tapped on. Small surface spalls and delaminations along edges of the steel. Both joints are full of sanding
material. No leakage observed.
$11 / 19 / 2008$ - Steel sounds solid when tapped on. Small spalls and delamianations along the joint edges. Gland is pushed down from debris, but
no tears or leakage was observed.
$11 / 02 / 2006-$ Joint steel is solid when tapped on. Joints are full of debris/sanding material which is pushing on the gland. No apparent leaking
observed.
$10 / 07 / 2002-11.48^{*} 2=22.96 m$ Joints are filled with sanding material/debris. Gland is in Good condition with no tears or leaking evident.
Inspection Notes:

Inspection Notes:

Span : Main-0 - (cont.)


| Element De | iption |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| Element 334 - Metal Rail Coated Single W-Beam and Steel Round Handrail w Steel Posts |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 |  | m. |  | 10 | 5 | 0 | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Rusty spots, paint loss, fading of the paint, and minor surface pitting to the posts near the curb line. |  |  |  |  |  |  |  |  | UZGZ |
| $12 / 27 / 2010$ - Rusty spots, paint loss, and scale on the W-Beam and posts. Some sanding material starting to build up on top of the curb against the rail posts. <br> 11/19/2008 - No change. |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { ZZDZ } \\ & \text { TZDT } \end{aligned}$ |
| 11/02/2006 - W-beam, steel posts, and handrail are rusted and pitted. Some paint is peeling also. All componenets are behind the concrete rail. 10/07/2002-107.90*2 $=215.80 \mathrm{~m}$ Rusty and pitting throughout the rail and posts. The metal rail is behind the concrete barrier now. |  |  |  |  |  |  |  |  | il. CODN |
|  |  |  |  |  |  |  |  |  | ZHP |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Element 358 - Deck Cracking SmFlag |  |  |  |  |  |  |  |  |  |
| X | 1 | 3 | 1 | ea. X |  | 100 | 0 | 0 |  |
|  |  |  |  |  |  | \% | \% | \% | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Unchanged from past inspections. |  |  |  |  |  |  |  |  | UZGZ |
| 12/27/2010 - Wide and open cracks over the Bents that don't have joints. Some wider mapping cracks in all Spans. |  |  |  |  |  |  |  |  | ZZDZ |
| 11/19/2008- Open cracks over the unjointed Bents and need to start tracking it. |  |  |  |  |  |  |  |  | TZDT |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| General Inspection Notes |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Fair markers at the Abutment 1 corners. |  |  |  |  |  |  |  |  | UZGZ |
| 12/27/2010 - Fair markers on the Right and Left side of Abutment 1. Erosion on all (4) corners with the NE corner being the worse. |  |  |  |  |  |  |  |  | ZZDZ |
| 11/19/2008 - NBI 58, deck, rated a " 6 " due to small delaminations and cracking in the deck surface. Markers on the Right and Left sides of Abutment 1 and in Fair condition. |  |  |  |  |  |  |  |  | TZDT |
|  |  |  |  |  |  |  |  |  |  |
| 11/02/2006-Minor bumps on and off of the structure. Markers on the approach end of the bridge and in Fair condition. |  |  |  |  |  |  |  |  | CODN |
| 10/07/2002 - Markers on both side of the approach of the bridge and in Good condition. |  |  |  |  |  |  |  |  | IZHP |
| 04/14/1998 - None |  |  |  |  |  |  |  |  | RHHP |
| 02/01/1994 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:44:29 Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:06 |  |  |  |  |  |  |  |  | REFI |
| 01/01/1992-Updated with tape 1994 |  |  |  |  |  |  |  |  | NB94 |
| 03/01/1990-Updated with tape 1991 |  |  |  |  |  |  |  |  | NB91 |
| 02/01/1988- Updated with tape 1989 |  |  |  |  |  |  |  |  | NB89 |
| 02/01/1986 - Updated with tape 1988 |  |  |  |  |  |  |  |  | NB88 |
| 01/01/1984 - Updated with tape 1985 |  |  |  |  |  |  |  |  | NB85 |
| 08/01/1981 - Updated with tape 1984 |  |  |  |  |  |  |  |  | NB84 |
| 03/01/1979 - Updated with tape 1980 |  |  |  |  |  |  |  |  | NB80 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


Inspection Data
Sufficiency Rating : 76.4
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 19 December 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data




Late Reason:
Inspection Date: 12/19/2012

## Element Inspection Data

| Element Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |  | Stat 5 |
| Element 12 - Bare Concrete Deck |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 1067 | sq.m. $\quad$ X | 0 | 100 | 0 |  |  | 0 |
|  |  |  |  |  | \% | \% | \% |  |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Open cracks over the un-jointed Bents. Minor studded tire wear in the wheel paths. Small surface spalls and delaminations along the edges of the joint's steel. Random and mapping cracks in all of the Spans. |  |  |  |  |  |  |  |  |  |  |
| $11 / 19 / 2008$ - A couple of small delaminations near the joints. Wear in the wheel paths. Wide transverse cracks over the unjointed Bents.Mapping cracks in most of the Spans. |  |  |  |  |  |  |  |  |  |  |
| 11/02/2006 - Transverse cracks over the Bents without joints. Wear in the wheel paths. Minor scale/flaking of latex paste at the joint steel, but no delaminations or spalling observed. |  |  |  |  |  |  |  |  |  | CXDN |
| $10 / 07 / 2002-109.42$ * $9.76=1066.85$ Deck was hydromilled and the removed material was replaced with latex concrete. The deck has transverse cracks over all the Bents that don't have expansion joints. |  |  |  |  |  |  |  |  |  | IZHQ RHH |
| 04/14/1998 - None |  |  |  |  |  |  |  |  |  | RHHJ |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Element 109-P/S Conc Open Girder |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 1 | 526 | m. | 100 | 0 | 0 |  |  |  |
|  |  |  |  |  | \% | \% | \% |  |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 12/19/2012-Good condition. |  |  |  |  |  |  |  |  |  | UIGZ |
| 12/27/2010-Good condition. |  |  |  |  |  |  |  |  |  | ZWDZ |
| 11/19/2008 - No problems observed. |  |  |  |  |  |  |  |  |  | TEDU |
| 11/02/2006 - Girders are in Good condition. Some minor cracks from the backside of the embedded bearing plate to the ends of the several of the girders; not a problem. <br> 10/07/2002-(4*40.8) $\quad(6$ * 19.8) $\quad(5$ * 48.8) $=526.0 \mathrm{~m}$ Some girders have minor cracks near beam seats. |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CXDN } \\ & \text { IZHQ } \end{aligned}$ |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Element 205-R/Conc Column 2 thru 6 |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 1 |  |  | 90 | 5 | 5 |  |  |  |
|  |  |  |  |  | \% | \% | \% |  |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 12/19/2012-Small areas of surface delaminations near the groundline at the cold joints. Right column of Bent 5 has a small spalled area. |  |  |  |  |  |  |  |  |  | UIGZ |
| 12/27/2010-Small delaminations to sack patches at construction joint near groundline with the Left column of Bent 4 being the worse. Some small scrapes and surface spalls on the web ties from construction. |  |  |  |  |  |  |  |  |  |  |
| 11/19/2008 - Condition State 3 for small delamiantions observed in the Left column at Bent 4. Some small scrapes/spalls from construction acivities and the webwalls for Bents 3 and 4 show some cracks and delaminations. |  |  |  |  |  |  |  |  |  | TEDU |
| 11/02/2006 - Tight surface shrinkage cracks. Several small areas where tie wire is exposed and rusting. Some small surface spalling along the exposed tie wire. |  |  |  |  |  |  |  |  |  | CXDN IZHQ |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |



Span : Main-0 - (cont.)


Span : Main-0 - (cont.)

| Element Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |  | Stat 5 |
| Element 334 - Metal Rail Coated Singe W-Beam with Round Steel Handrail w Steel Posts |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 |  | m . |  | $85 \quad 10$ |  | 5 | 0 |  | 0 |
|  |  |  |  |  |  |  | \% | \% | \% |  | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Faded paint, spot rust, and paint loss. Minor surface pitting on the rail posts near the curb line. |  |  |  |  |  |  |  |  |  |  | UIGZ |
| 12/27/2010 - Paint loss, minor surface pitting, and scale on the W-Beam and posts. Sanding material starting to build up behind the barrier on the top of the curb and against the rail posts. <br> 11/19/2008 - No significant change. |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { ZWDZ } \\ & \text { TEDU } \end{aligned}$ |
| 11/02/2006-Rust, pitting, paint peel, and exposed prime coat on the rail posts and top handrail pipe. W-Beam has some rusty spots throughout. |  |  |  |  |  |  |  |  |  |  | CXDN |
| $10 / 07 / 2002-109.42 * 2=218.84 \mathrm{~m}$ Rusty spots with pitting throughout rail and posts. The metal rail and posts are now behind a concrete barrier rail.04/14/1998 - None |  |  |  |  |  |  |  |  |  |  | $\mathrm{IZHQ}$ |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Element 358 - Deck Cracking SmFlag |  |  |  |  |  |  |  |  |  |  |  |
| X | 1 | 3 |  | ea. | X |  | 100 | 0 |  |  |  |
|  |  |  |  |  |  |  | \% | \% | \% |  | \% |
| Previous Inspection Notes |  |  |  |  |  |  |  |  |  |  |  |
| 12/19/2012 - Unchanged from previous inspections. |  |  |  |  |  |  |  |  |  |  | UIGZ |
| 12/27/2010 - Wide cracks over un-jointed Bents. Some wider mapping cracks in all Spans. |  |  |  |  |  |  |  |  |  |  | ZWDZ |
| 11/19/2008 - Condition State 2 due to size of the cracks and nearing the density limit also. |  |  |  |  |  |  |  |  |  |  | TEDU |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |


| General Inspection Notes |  |
| :---: | :---: |
| 12/19/2012 - Good markers on the corners of Abutment 7. | UIGZ |
| 12/27/2010-Good markers on both sides of Abutment 7 for approaching traffic. Minor erosion on all (4) corners. | ZWDZ |
| 11/19/2008-NBI 58, deck, rated a "6" due to small delamiantions and cracking. | TEDU |
| Bumps on and off of the structure. Markers on both corners of Abutment 7, approach roadway, and in Fair condition. |  |
| 11/02/2006 - Minor bumps on and off of the structure. There are markers on the Right and Left approach rail into the bridge and in Fair to Good condition. | CXDN |
| 10/07/2002 - Markers on North end of the structure, approach side, and in Good condition. | IZHQ |
| 04/14/1998 - None | RHHJ |
| 02/01/1994 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:44:30 | REFI |
| Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:07 |  |
| 01/01/1992- Updated with tape 1994 | NB94 |
| 03/01/1990-Updated with tape 1991 | NB91 |
| 02/01/1988- Updated with tape 1989 | NB89 |
| 02/01/1986- Updated with tape 1988 | NB88 |
| 01/01/1984 - Updated with tape 1985 | NB85 |
| 08/01/1981 - Updated with tape 1984 | NB84 |
| 03/01/1979 - Updated with tape 1980 | NB80 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 32.6 mton | B ASD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 : | 48.6 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

| Structure Length : | 3.86 m |
| ---: | :---: |
| Deck Area : | 0.00 m sq |
| Deck Roadway Width : | 0.00 m |
| Approach Roadway Width : | $\mathbf{2 3 . 1 6 \mathrm { m }}$ |
| Median Code, Description : | 0 No median |

## Span Data

## Main Span

## Number Spans : 1

Material Type Code, Description: 3 Steel
Span Design Code, Description: $\mathbf{1 9}$ Culvert (includes frame culverts) Deck
Deck Structure Type: N Not applicable
Deck Surfacing Type :
Deck Protection Type Deck Membrain Type :

N Not Applicable (applies only to strutures with no dec N Not applicable (applies only to structures with no de N Not applicable (applies only to structures with no de

## Approach Span

Number of Spans : $\mathbf{0}$
Material Type Code, Description:
Span Design Code, Description :

| Structure Vertical and Horizontal Clearance Data : |  |
| ---: | :---: |
| Vertical Clearance Over the Structure : | $\mathbf{9 9 . 9 9 \mathrm { m }}$ |
| Reference Feature for Vertical Clearance : | N Feature not hwy or RR |
| Vertical Clearance Under the Structure : | $\mathbf{0 . 0 0 ~ m}$ |
| Reference Feature for Lateral Underclearance : | N Feature not hwy or RR |
| Minimum Lateral Under Clearance Right : | $\mathbf{0 . 0 0 ~ m}$ |
| Minimum Lateral Under Clearance Left : | $\mathbf{0 . 0 0 ~ m}$ |

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name |

Inspection Data
Sufficiency Rating : $\mathbf{8 0}$
Structure Status : Not Deficient

Inspection Due Date : 28 April 2016
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



Deck Surfacing Depth :


Inspection Hours


| Inspection Work Candidates |  | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested | Approved | High | M Main | 240 Steel Culvert | Rehab Elem |  |
| D31-FY2006-000196 | 03 May 2006 | Apren |  |  |  |  |  |

Clean debris from inlet and outlet of the pipe and back to R/W. Also complete the outlet drainage ditch so as to drain the standing water in the pipe. 05-03-2010 Lots of tumbleweeds at both ends today.
05-07-2012 Pipe was clean today. Ditch needs to be taken past R/W to get rid of standing water.
04-28-2014 Inlet is full of tumbleweeds today and outlet needs to be cleaned up.
Approved. DRC

Late Reason:
Inspection Date: 04/28/2014

## Element Inspection Data




## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 54.4 mton | B ASD Assigned | Truck 2 Type 3-S3 |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 | 120.29 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & 5.49 \mathrm{~m} \\
\text { Deck Area : } & \mathbf{2 1 0 . 0 0 \mathrm { m } \mathrm { sq }} \\
\text { k Roadway Width : } & \mathbf{3 8 . 3 0 \mathrm { m }} \\
\text { h Roadway Width : } & \mathbf{2 2 . 0 0 \mathrm { m }} \\
\text { Code, Description: } & \text { 0 }
\end{array}
$$

| Structure Vertical and Horizontal Clearance Data : |  |
| ---: | :---: |
| Vertical Clearance Over the Structure : | $\mathbf{9 9 . 9 9 \mathrm { m }}$ |
| Reference Feature for Vertical Clearance : | N Feature not hwy or RR |
| Vertical Clearance Under the Structure : | 3.58 m |
| Reference Feature for Lateral Underclearance : | N Feature not hwy or RR |
| Minimum Lateral Under Clearance Right : | $\mathbf{0 . 0 0 ~ m}$ |
| Minimum Lateral Under Clearance Left : | $\mathbf{0 . 0 0 ~ m}$ |

Structure Vertical and Horizontal Clearance Data :

## Span Data

## Approach Span

Number Spans: 1
Material Type Code, Description :1 Concrete Span Design Code, Description: 1 Slab
Deck
Deck Structure Type: $\mathbf{1}$ Concrete Cast-in-Place
Deck Surfacing Type: $\mathbf{6}$ Bituminous
Deck Protection Type: $\mathbf{0}$ None
Deck Membrain Type: $\mathbf{0}$ None

Number of Spans: $\mathbf{0}$
Material Type Code, Description:
Span Design Code, Description :

## Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| Route On Structure | 100015 | South | 99.99 m | 11.00 m | North | 99.99 m | 11.00 m |

Inspection Data
Sufficiency Rating : 96.6
Structure Status : Not Deficient

Inspection Due Date : 06 August 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data


D31-FY2005-000030 07 October 2004 Approved $\quad$ Low $\quad$ M Main $\quad 39$ Unp Conc Slab/AC Ovl Min Repair

Seal cracks between the deck slabs and the median slab. Also between the slab and asphalt surfacing. Some done, 8-6-2012.
Approved. DRC

Late Reason:
Inspection Date: 08/06/2012

## Element Inspection Data

**********Span : Main-0 - **********

| Element Description <br> Smart Flag <br> Scale Factor <br> Element 39 - Unp Conc Slab/AC Ovl$\quad 1$ |
| :--- |


| Inspection Notes: |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Element 215-R/Conc Abutment |  |  |  |  |  |  |  |  |
| 1 | 2 | 101 | m . | 90 | 5 | 5 | 0 |  |
|  |  |  |  | \% | \% | \% | \% | \% |

Previous Inspection Notes:
$08 / 06 / 2012$ - Some small delaminated areas near cracks with effloresence. Still partially buried backwall drains. On both abutments worse cracks
are from corners of spalls under traveled lanes.
$08 / 09 / 2010$ - No change from the previous inspections.
$07 / 10 / 2008$ - 5 percent in Condition State 3 for a small delmainated areas. 5 percent in Condition State 2 for cracks with efflorescence. Left
wingwall at Abutment 1 has a slight seperation from the backwall. Some backwall drains are partially buried.
$06 / 08 / 2006$ - Same as previously reported plus some spalled patch, 4 " $\times 10$ ", on the Right end of Abutment 1 just under the deck.
$09 / 21 / 2004$ - Cracking from the corners of lane slabs with efflorescence on the cracks. Wingwalls are tight to the backwalls.
$10 / 07 / 2002$ - Same as previous report. Add weep drains along both backwalls are either buried or partially covered.
$08 / 02 / 2000-(38.3 * 2)+(4 * 6.10)=101.00 \mathrm{~m}$
Cracks with some water marking at the joints of the median section to the sections under the roadway. Slight seperation on the left end at the
wingwalls to the backwall joint.
$04 / 14 / 1998$ - None
$12 / 01 / 1995$ - None
$02 / 01 / 1994$ - None

Inspection Notes:

Span : Main-0 - (cont.)


Inspection Notes:

## General Inspection Notes

| 08/06/2012 - Area under bridge was dry today as was all of the exposed backwall drains. |
| :--- |
| 08/09/2010 - NBI 36A, bridge rail, rated a "1" as if meets the "no retro-fit needed" policy of the Bridge Bureau. |
| NB-Right end shoe is lapped against traffic flow. |
| 07/10/2008 - Median barrier, PVC pipe, is in Good condition. |
| 06/08/2006 - NBI 58, deck, rated a "7" due to minor rutting and cracks in the asphalt surfacing. |
| NBI 59, superstructure, rated a "7" due to minor cracking on the underside of the deck slab. |
| Small delineators on the rail blocks. |
| 09/21/2004 - Weep drains on both of the backwalls and they are parially buried. Should be uncovered and cleaned out. |
| 10/07/2002 - NBI 36A, B, and D do not meet current standards. 36 is part of continuous run and is only W-beam with steel posts. |
| 08/02/2000 - New seal and cover in 1999. |
| 04/14/1998 - None |
| 12/01/1995 - Sufficiency Rating Calculation Accepted by PONTIS31 at 2/20/97 16:59:27 |
| Sufficiency Rating Calculation Accepted by ops $\$ 49004$ at $2 / 19 / 9714: 15: 08$ |
| 02/01/1994 - |
| 01/01/1992 - Updated with tape 1994 |
| 03/01/1990 - Updated with tape 1991 |
| 02/01/1988 - Updated with tape 1989 |
| 02/01/1986 - Updated with tape 1988 |
| 01/01/1984 - Updated with tape 1985 |
| $08 / 01 / 1981$ - Updated with tape 1984 |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 36.2 mton | A LFD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 : | 72.91 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & 89.61 \mathrm{~m} \\
\text { Deck Area : } & \mathbf{1 , 4 7 5 . 0 0 \mathrm { m } \mathrm { sq }} \\
\text { Deck Roadway Width : } & \mathbf{1 3 . 7 2 \mathrm { m }} \\
\text { Approach Roadway Width : } & \mathbf{1 5 . 0 0 \mathrm { m }} \\
\text { Median Code, Description : } & \mathbf{2} \text { Closed median (no barrier) }
\end{array}
$$

Structure Vertical and Horizontal Clearance Data :
Vertical Clearance Over the Structure :
99.99 m

H Hwy beneath struct 5.48 m

H Hwy beneath struct
3.55 m
6.70 m

## Span Data

## Main Span

Number Spans : 5
Material Type Code, Description : 5 Prestressed concrete
Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

| Deck Structure Type : | $\mathbf{1}$ Concrete Cast-in-Place |
| :--- | :--- |
| Deck Surfacing Type : | $\mathbf{5}$ Epoxy Overlay |
| Deck Protection Type : | $\mathbf{0}$ None |
| Deck Membrain Type : | $\mathbf{0}$ None |

## Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under | 100015 | South | 6.75 m | 11.58 m | North | 5.48 m | 11.58 m |
| I-15 NB AND SB |  |  |  |  |  |  |  |
| Route On Structure | 100315 | West | 99.99 m | 8.53 m | East | 99.99 m | 4.88 m |
| 10TH AVE. SOUTH INT. |  |  |  |  |  |  |  |


| Inspection Data |
| :--- |
| Sufficiency Rating : 88.4 |
| Structure Status : Not Deficient |

Inspection Due Date : 05 December 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



| D31-FY2004-000074 | 28 January 2004 | Approved | Low | All Spans | Bridge | Spot Paint (flex) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Clean and paint bearings. |  |  |  |  |  |  |

Approved. DRC

| D31-FY2011-000022 | 28 December 2010 | Not Approved | Low | M Main | 205 R/Conc Column | Min Repair |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Repair spalling / delaminations on the Right column of Bent 4. |  |  |  |  |  |  |

[^11]
## Element Inspection Data

Span : Main-0 - (cont.)
Element Description

| Smart Flag |
| :--- |
| Scale Factor |
| Element $215-$ R/Conc Abutment 1 and 6 |

Inspection Notes:

Element 234 - R/Conc Cap Bent 2, 3, 4, and 5

|  | 1 | 1 | 77 | m. |  | 90 | 5 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes:
12/05/2012 - Spall on the Left end of Bent 3's cap had not changed. Bent 4's cap is stained and has surface spalls and delaminations on its'
bottom at rebar chair feet.
12/06/2010 - Spall on the Left end of Bent 3's cap on the Span 2 side; photo. Delamainations on the Right end of Bent 4's cap. Some small spalls GAEZ
on the surface of the cap bottoms from shallow rebar chair feet.
$11 / 17 / 2008$ - Spall on Bent 3's cap has not gotten any worse. Surface delaminations and spalls on the underside of the caps from shallow tie wire RZDZ
and exposed rebar chair feet.
11/02/2006 - Underside of the caps have small surface spalls where rusty rebar chairs are exposed. Also staining around the spalls. Left end of
the cap at Bent 3 has a spall under the Span 2 side bearing; see photo.
$10 / 16 / 2002-19.19 * 4=76.76 \mathrm{~m}$

| Inspection Notes: |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Element 300 - Strip Seal Exp Joint |  |  |  |  |  |  |  |
| 1 | 3 |  | m. | 95 | 5 | 0 |  |
|  |  |  |  | \% | \% | \% | \% |

Previous Inspection Notes:
12/05/2012 - Joint is packed with sanding material today. Steel sounds solid when tapped on. Small delaminations in header concrete along the

Span : Main-0 - (cont.)


Span : Main-0 - (cont.)



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 35.3 mton | A LFD Assigned | Truck 2 Type 3-S3 : |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 : | 83.84 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

## Structure Length : $\quad 45.72$ m

Deck Area: $\quad 546.00 \mathrm{~m}$ sq
10.96 m
10.96 m 0 No median

Structure Vertical and Horizontal Clearance Data :

## Vertical Clearance Over the Structure : <br> 99.99 m

Reference Feature for Vertical Clearance :
Vertical Clearance Under the Structure :
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right :
Minimum Lateral Under Clearance Left :

## Span Data

## Main Span

Number Spans: 3
Material Type Code, Description : 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

Deck Structure Type : 1 Concrete Cast-in-Place
Deck Surfacing Type : $\mathbf{1}$ Monolithic concrete (concurrently placed with struct
Deck Protection Type : 0 None
Deck Membrain Type : 0 None

## Approach Span

Number of Spans : 0
Material Type Code, Description:
Span Design Code, Description :

H Hwy beneath struct 5.26 m

H Hwy beneath struct 1.70 m 0.00 m

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under | U05225 | Both | 5.26 m | 9.14 m | N/A |  |  |
| 14TH STREET SW |  |  |  |  |  |  |  |
| Route On Structure | 100315 | N/A |  |  | North | 99.99 m | 10.96 m |
| 1-315 EB |  |  |  |  |  |  |  |

Inspection Data
Sufficiency Rating : 93
Structure Status : Not Deficient

Inspection Due Date : 05 December 2014
(91) Inspection Frequency (months) : 24

## NBI Inspection Data



| (58) Deck Rating : | 5 |  |
| ---: | :--- | :--- |
| (59) Superstructure Rating : 8 |  |  |
| (60) Substructure Rating : | 7 |  |
|  | (72) App Rdwy Align : |  |



| Inspection Work Candidates |  | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested | Approved | Low | All Spans | Bridge | Spot Paint (flex) |  |
| D31-FY2004-000075 | 28 January 2004 | Apprex |  |  |  |  |  |
| Clean and paint bearings. |  |  |  |  |  |  |  |

Clean and paint bearings.
Approved. DRC

| D31-FY2007-000039 | 26 December 2006 | Approved | Medium | M Main | 12 Bare Concrete Deck | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Approved. DRC

## Late Reason:

Inspection Date: 12/05/2012

## Element Inspection Data

**********Span: Main-0 - **********



Inspection Notes:

Element 109 - P/S Conc Open Girder


Previous Inspection Notes:
12/05/2012 - (2) small spall on the Right column of Bent 3 . Tight surface shrinkage cracks in all (4) columns. Columns are in Good condition.
$12 / 06 / 2010$ - Tight surface shrinkage cracks in all (4) columns. (2) small spalls on the Right column of Bent 3 ; patch has popped off. Generally in GZEV
Good condition.
$11 / 17 / 2008$ - Generally in Good condition. Small delamianted patch on the Right column of Bent 3 for Condition State 3 and a small spall near the RCDZ
sidewalk line on the same column for Condition State 2 .
$11 / 02 / 2006$ - Tight surface shrinkge cracks. Right/South Column at Bent 3 has a small chipped area near the sidewalk and some delamianted
areas of the patch at its construction joint to the cap.
$10 / 10 / 2002$ - Some minor wear, weathering, and shrinkage cracks.

10/10/2002 - Some minor wear, weathering, and shrinkage cracks.
Inspection Notes:

Span : Main-0 - (cont.)


Span : Main-0 - (cont.)



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 35.3 mton | A LFD Assigned | Truck 2 Type 3-S3 |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3: | 83.84 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

## Structure Length : $\quad 44.20 \mathrm{~m}$

Deck Area: $\quad 639.00 \mathrm{~m}$ sq
13.65 m
14.00 m 0 No median

Structure Vertical and Horizontal Clearance Data :

## Vertical Clearance Over the Structure : <br> 99.99 m

Reference Feature for Vertical Clearance :
Vertical Clearance Under the Structure :
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right :
Minimum Lateral Under Clearance Left :

H Hwy beneath struct 5.20 m

H Hwy beneath struct 1.70 m 0.00 m

## Span Data

## Main Span

Number Spans: 3
Material Type Code, Description : 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

Deck Structure Type : 1 Concrete Cast-in-Place
Deck Surfacing Type : $\mathbf{1}$ Monolithic concrete (concurrently placed with struct
Deck Protection Type: 0 None
Deck Membrain Type : 0 None

## Approach Span

Number of Spans : 0
Material Type Code, Description:
Span Design Code, Description :
State Highway Agency 0.34
Inspection Data
Sufficiency Rating : 96
Structure Status : Not Deficient

Inspection Due Date : 06 December 2014
(91) Inspection Frequency (months) : 48

## NBI Inspection Data



Inspection Hours


| Inspection Work Candidates |  | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested | Approved | Low | All Spans | Bridge | Spot Paint (flex) |  |
| D31-FY2004-000076 | 28 January 2004 | Apprex |  |  |  |  |  |
| Clean and paint bearings. |  |  |  |  |  |  |  |

Clean and paint bearings.
Approved. DRC

| D31-FY2007-000041 | 26 December 2006 | Approved | Medium M Main | 12 Bare Concrete Deck | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Approved. DRC

[^12]
## Element Inspection Data

**********Span: Main-0 - **********

| Element Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| Element 12 - Bare Concrete Deck |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 639 | sq.m. | X | 0 | 100 | 0 | 0 |  |
|  |  |  |  |  |  | \% | \% | \% | \% |  |

Previous Inspection Notes:


Inspection Notes:

Element 205 - R/Conc Column Bent 2 and 3


Previous Inspection Notes:
12/06/2010 - Surface shrinkage cracks. Generally in Good condition.
11/02/2006 - Tight surface shrinkage cracks. Left two(2) columns on the newer portion of the bridge have some loose/spalled patches over the construction joint to the cap.
10/10/2002 - Some wear, weathering, shrinkage cracks.
Inspection Notes:

Element 215-R/Conc Abutment 1 and 4


Previous Inspection Notes:
12/06/2010-(1) small spall near girder embedment at Abutment 4. Some tight shrinkage cracks.
11/02/2006 - Minor and tight cracks in both caps with one small spalleed area in the backwall where the girders are embedded.
10/10/2002 - A little more erosion and weathering of the concrete.


| General Inspection Notes |  |
| :---: | :---: |
| 12/06/2010-Minor bumps on and off of the bridge. | GZEW |
| 11/02/2006 - Recent patches on the East approach to the structure and still a minor bump on and off of the structure. | CZDO |
| 10/10/2002 - None | KYKZ |
| 06/03/1998 - None | QFIX |
| 02/01/1994 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:04 Sufficiency Rating Calculation Accepted by ops $\$ u 9004$ at 2/19/97 14:15:34 | REFI |
| 01/01/1992-Updated with tape 1994 | NB94 |
| 01/01/1990-Updated with tape 1991 | NB91 |
| 02/01/1988- Updated with tape 1989 | NB89 |
| 02/01/1986- Updated with tape 1988 | NB88 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 34.6 mton | A LFD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3: | 48.6 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

## Structure Length :

Deck Area :
Deck Roadway Width :
Approach Roadway Width :
Median Code, Description: O No median

Structure Vertical and Horizontal Clearance Data :

## Vertical Clearance Over the Structure : <br> 99.99 m

Reference Feature for Vertical Clearance :
Vertical Clearance Under the Structure :
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right :
Minimum Lateral Under Clearance Left : $\quad \mathbf{0 . 5 0} \mathbf{m}$

## Span Data

## Main Span

Number Spans: 3
Material Type Code, Description : 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

Deck Structure Type : 1 Concrete Cast-in-Place
Deck Surfacing Type :
Deck Protection Type : Deck Membrain Type :

## Approach Span

Number of Spans : 0
Material Type Code, Description:
Span Design Code, Description :

H Hwy beneath struct 5.71 m

H Hwy beneath struct 1.90 m

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory <br> Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under | U05225 | Both | 5.71 m | 9.14 m | N/A |  |  |
| 14TH ST SW/BRIDGE ST |  |  |  |  |  |  |  |
| Route On Structure | 100315 | N/A |  |  | East | 99.99 m | 7.11 m |
| I-315 EB OFF RAMP |  |  |  |  |  |  |  |

Inspection Data
Sufficiency Rating : 96
Structure Status : Not Deficient

Inspection Due Date : 16 June 2015
(91) Inspection Frequency (months) : 48

## NBI Inspection Data



| (58) Deck Rating : | 7 |  |
| ---: | :--- | :--- |
| (59) Superstructure Rating : | 7 |  |
| (60) Substructure Rating : | 7 |  |
|  | 7 |  |



Inspection Hours


| Inspection Work Candidates |  | Status | Priority | $\begin{array}{c}\text { Effected } \\ \text { Structure } \\ \text { Unit }\end{array}$ | $\begin{array}{c}\text { Scope of } \\ \text { Work }\end{array}$ | $\begin{array}{c}\text { Action }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | $\begin{array}{c}\text { Date } \\ \text { Requested }\end{array}$ | Covered |  |  |  |  |
| Condition |  |  |  |  |  |  |
| States |  |  |  |  |  |  |$\}$

Approved. DRC

Late Reason:
Inspection Date: 06/16/2011

## Element Inspection Data

Span : Main-0 - - * * * * * * * * * *



Previous Inspection Notes:
$06 / 16 / 2011$ - Generally in Good condition with some small area where small sacked patches are peeling off. Small spall on the Right column of
Bent 3 from construction.
$05 / 31 / 2007$ - Placed 5 percent into Condition State 2 as sacked patches are loose and peeling off of the columns. None of these areas are a
problem.
$05 / 04 / 2005$ - Same on the small popouts.
$04 / 30 / 2003$ - No problems noted. A couple of small popouts in areas that were sacked during construction.
$08 / 27 / 2001$ - None
$12 / 23 / 1998$ - _

Inspection Notes:


| Element Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| Element 331 - Conc Bridge Railing |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 83 | m. |  | 95 |  | 0 | 0 |  |
|  |  |  |  |  |  |  |  |  | \% |  |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 06/16/2011 - Generally in Good condition with some tight shrinkage cracks. Small chips on the Right barrier in Span 3. 05/31/2007 - Rest of the comments from prior reports still apply. |  |  |  |  |  |  |  |  |  | RZGB |
|  |  |  |  |  |  |  |  |  | 05/31/2007 - Rest of the comments from prior reports still apply. | EZHZ |
| 05/04/2005 - Same as last report and add some small nicks out of the top of the barrier in Span 3 - Right side. ( 40.93 * $2=81.86$ NMS) |  |  |  |  |  |  |  |  |  | EIFR |
| $04 / 30 / 2003$ - Vertical cracking, mostly tight, throughout both barriers. A couple of small popouts in concrete surface of the barriers.$08 / 27 / 2001-41.45 * 2=82.90 \mathrm{~m}$ |  |  |  |  |  |  |  |  |  | BPHZ |
|  |  |  |  |  |  |  |  |  |  | NHCO |
| 12/23/1998 - None |  |  |  |  |  |  |  |  |  | KBGR |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Element 358 - Deck Cracking SmFlag |  |  |  |  |  |  |  |  |  |  |
| X | 1 | 3 | 1 | ea. | X |  | 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  | \% |

Previous Inspection Notes :
$06 / 16 / 2011$ - Added as cracking seemed excessive over the Bents and some of the cracks are a little bigger, 0.5 to 0.7 mm in size. Mostly to start RZGB a closer monitoring of the cracks.
Inspection Notes:

## General Inspection Notes

06/16/2011 - NBI 72, roadway alignmnet, rated a "7" as deck is slightly narrower than the approach roadway and it is on a curve.
05/31/2007 - NBI 59, superstructure, rated a "7" due to nick in G1S1 on the girders' bottom flange.
NBI 60, substructure, rated a "7" due to small delaminations in the patches on the columns and caps.
Erosion has been repaired on the Left side of Abutment 1.
$05 / 04 / 2005$ - Erosion at the NW corner of the structure is worse with some erosion to the fill under the wingwall. This could become a problem if flow gets under the concrete slope protection underneath the structure.
04/30/2003 - Same comments as 08-2001 report. Blocking on approach sections of the guardrail are loose and need to be tightened down and toe-nailes.
08/27/2001 - Guardrail underneath the structure to protect the bents. On the west(back on line) side it is barrier rail at the Bent with W-beam rail approach sections. End anchors do not meet current standards. Rigth (east) side has impact attunators for end anchors and do meet current standards.
12/23/1998 - None

|  |
| :--- |
|  |
|  |
|  |
|  |


Inspection Data
Sufficiency Rating : 75.4
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 28 June 2014
(91) Inspection Frequency (months) : $\mathbf{2 4}$

## NBI Inspection Data



| Last Inspected By $:$ Charles Pepos - 107 |  |
| ---: | :--- |
| Inspected By |  |
|  |  |

 Deck Surfacing Depth


Inspection Hours


| Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :--- | :---: | :--- | :--- |
| All Spans | 215 R/Conc Abutment | Min Repair |  |

Approved. DRC

| D31-FY2005-000241 | 13 July 2005 | Approved | Low | M Main | 234 R/Conc Cap | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fix/repair the small delaminated area on the Span 2 of Bent 2's cap. 06-28-2012 Also (1) on the Span 1 side of Bent 2's and on (1) on the Span 3 side of Bent 3's. <br> Approved. DRC |  |  |  |  |  |  |  |

[^13]
## Element Inspection Data

**********Span : Main-0 - **********

| Element Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |  | tat 5 |
| Element 12 - Bare Concrete Deck |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 787 | sq.m. | X |  | 0 | 100 |  |  | 0 |
|  |  |  |  |  |  | \% | \% | \% |  |  | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |  |  |
| 06/28/2012 - Spalling and delaminations in all (3) Spans. Lots of cracking in all of the Spans. Poor skid resistance on the older portion of the deck. <br> 05/07/2010 - No change from the previous inspections. |  |  |  |  |  |  |  |  |  |  | ZRGZ |
| $06 / 16 / 2008$ - Delamiantions/spalls in all (3) spans, but mostly in the newer portion of the deck. About $1 / 3$ of 1 lane is mostly delamiantated as found in a quick chain drag. Old deck surface has little skid resistance remaining. <br> 05/31/2007 - None |  |  |  |  |  |  |  |  |  |  | RZDZ EVHZ |
| $05 / 04 / 2005$ - Wear in the wheel paths. Some cracking throughout. Newer portion appears to be cracking over the rebar, transverse, on 6 " to 8 " centers. Placed in Condition State 2 as there are a couple of delaminated areas. Same on the low skid resistance. |  |  |  |  |  |  |  |  |  |  | FZDZ |
| 04/30/2003 - Minor areas of efflorescence on the underside of the deck. Tight transverse cracks throughout the deck; more evident over Bents 2 and 3 . Wear in the wheel paths with exposed aggregate. Very low skid resistance. |  |  |  |  |  |  |  |  |  |  | ZHEB |
| 08/06/2001 | $54.25 * 14.50=$ | $86.63$ |  |  |  |  |  |  |  |  | NHGN |
| Studded tire wear in the wheel paths. <br> 01/14/1999 - Small tight transverse cracks in deck surface. Minor efflorescence on underside of deck. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | UAIV |
| 04/01/1996 - None |  |  |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  |  | REFI |

Inspection Notes:

Element 107 - Paint Stl Opn Girder


Previous Inspection Notes:
06/28/2012 - Some fading of the paint on the newer girders and the Right side of the Left most older girder. Some rust, scale, and surface pitting of the older girders.
05/07/2010 - No change from the previous inspections.
06/16/2008 - Newer girders show minor fading of the coating system on the Outer-Right side of the Right most girder. Older portion of the
structure's girders has some rusty spots, scale, and surface pitting; especially under open joints. Numerous broken welds on the attached blast plate.
05/31/2007 - None
$05 / 04 / 2005$ - Rusty spots, scale, minor paint loss, and smoke on the lower flange and lower portions of the web area on the older girders. New girders have no problems noted as of now.
04/30/2003 - Some spot rust on the original girders. Worse rust spots are under leaking joints. No paint on the back side of bolts used for ZHEB connecting diaphragms to old girders and they are rusted. Some pack rust noted in the bottom flange area over both Bents.
08/06/2001-7*54.25 $=379.75 \mathrm{~m}$
01/14/1999 - Very minor rust on original painted steel beams.
04/01/1996 - None
02/01/1994 - None

[^14]Span : Main-0 - (cont.)


Span : Main-0 - (cont.)


Inspection Notes:

Element 301 - Pourable Joint Seal Bents 2 and 3

|  | 1 | 3 | m. |  | 90 | 10 | 0 | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes:
$06 / 28 / 2012$ - Joint steel in the older portion of the deck only. Steel is solid when tapped on. Delaminations and spalls along the edge of the steel. No sealant in the joints.
05/07/2010 - No change from the previous inspections and in mostly Good condition.
06/16/2008 - Joints leak. Spalls along the steel guard angles. The steel sounds solid when tapped on.
05/31/2007 - None
$05 / 04 / 2005-10.21 * 2=20.42 \mathrm{~m}$ Double guard angle type joints in the older portions of the deck. When newer deck was added, there was no
continuation of the joints.
Inspection Notes:

Element 310 - Elastomeric Bearing New girders at Bent 2 and 3

|  | 1 | 1 | 4 | ea. | 100 | 0 | 0 |  |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- |
|  |  |  |  |  | $\%$ | $\%$ | $\%$ | $\%$ |

Previous Inspection Notes :

| $06 / 28 / 2012$ - Rubber portion is Good. Spot rust on the steel portion of the bearings. | ZRGZ |
| :--- | :--- |
| $05 / 07 / 2010$ - No change from the previous inspections and in Good condition. | HZMS |
| $06 / 16 / 2008$ - Unchanged. Spot rust on the steel portions and bird debris starting to build up. | RZDZ |
| $05 / 31 / 2007$ - None | EVHZ |
| $05 / 04 / 2005$ - Spot rust on the steel potions of the bearings. | FZDZ |
| $04 / 30 / 2003$ - Some minor spot rust forming on the steel potion of the bearings. | NHEB |
| $08 / 06 / 2001$ - Bent \#2 \& \#3 under the new girders. |  |

Inspection Notes:

Span : Main-0 - (cont.)


Span : Main-0 - (cont.)

Inspection Notes:

## General Inspection Notes

| 06/28/2012 - Access is tough at this bridge due to erosion and fences. | ZRGZ |
| :---: | :---: |
| 05/07/2010 - None | HZMS |
| 06/16/2008 - Deck is getting worse. | R7D7 |
| Some asphalt placed in the erosion at the NE corner of the bridge. |  |
| 05/31/2007 - None | EVHZ |
| 05/04/2005-NBI 58, deck, rated at a "6" due to delaminations and minor spalling. | FZD7 |
| 04/30/2003-NBI 60, substructure, rated at a "7" due to some cracking in the substructure concrete. | ZHEB |
| 08/06/2001 - None | NHGN |
| 01/14/1999 - None | UAIV |
| 04/01/1996 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:05 Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:35 | YDNF |
| 02/01/1994 - | REFI |
| 08/01/1992-Updated with tape 1994 | NB94 |
| 01/01/1991-Updated with tape 1992 | NB92 |
| 03/01/1989 - Updated with tape 1991 | NB91 |
| 04/01/1987 - Updated with tape 1989 | NB89 |
| 09/01/1984 - Updated with tape 1986 | NB86 |

$\square$

Inspection Data
Sufficiency Rating : 93.8
Structure Status : Not Deficient

Inspection Due Date : 16 June 2015
(91) Inspection Frequency (months) : 24

## NBI Inspection Data

(90) Date of Last Inspection : 17 June 2013
(90) Inspection Date :
Last Inspected By

| Charles Pepos - 107 |
| :--- |



| Crew Hours for inspection : | 4 |
| :---: | :---: |
| Helper Hours : | 0 |
| Special Crew Hours : | 0 |
| Special Equipment Hours : | 0 |



| Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :---: | :---: | :---: | :---: | :---: |
| High | All Spans | 301 Pourable Joint Seal | Min Repair |  |

Seal leaking joints.
Approved. DRC

| D31-FY2003-000436 | 27 June 2003 | Approved | Low | A Approach | 12 Bare Concrete Deck | Min Repair |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Repair pot hole starting in the deck near centerline over Bent 4. |  |  |  |  |  |  |
| $05 / 31 / 2007$ Add repairs to the spalls and delamiantions also. |  |  |  |  |  |  |
| $06 / 15 / 2011$ More starting to spall. |  |  |  |  |  |  |
| Approved. DRC |  |  |  |  |  |  |

Approved. DRC


Late Reason:
Inspection Date: 06/17/2013

Page 3 of 11
Form: bms001d

## Element Inspection Data

Span : Main-0 - STEEL WF - SPAN 3



* Span : Main-0 - STEEL WF - SPAN 3 (cont.)



## Previous Inspection Notes:

$06 / 17 / 2013$ - Rubber portion of the bearings is in Good condition with some tight surface rust and faded paint on the steel portions.
$06 / 16 / 2011$ - Spot rust on the steel portions of the bearings. Rubber areas are Good.
$06 / 30 / 2009$ - Unchanged from prior reports. Some spot rust on steel portions with spot painting done during snooper inspection.
$05 / 31 / 2007$ - Minor spot rust and faded paint on the steel portions. A minor tear in the rubber of the bearing at Bent 3; see photo.
$05 / 04 / 2005$ - Some spot rust and minor paint loss.
$04 / 30 / 2003$ - One slotted and one fixed(Bent 4). Some spot rust on steel portions of the bearings.
08/06/2001 - Under the new girder; left most.
$01 / 14 / 1999$ - None
$04 / 01 / 1996$ - None
$02 / 01 / 1994$ - None

[^15]Span : Main-0 - STEEL WF - SPAN 3 (cont.)
Element Description


Previous Inspection Notes :

| $06 / 17 / 2013$ - Rust, scale, debris, peeling paint, and faded paint. | RZEV |
| :--- | :--- |
| $06 / 16 / 2011$ - Spot rust, some debris, and scale on the bearings. | RMGH |
| $06 / 30 / 2009$ - Rusty areas, dirt, debris, and scale on steel portions. Some spot painting done. | ZZDZ |
| $05 / 31 / 2007$ - Unchanged with lots of new nests. Some areas blew off and spot overcoat painted. | FZHZ |
| $05 / 04 / 2005$ - Spot rust, minor paint loss, and bird debris at the bearings. | ZZEB |
| $04 / 30 / 2003$ - Some rust and paint loss. |  |


| Inspection Notes: |
| :--- |
|  |
| Element 331 - Conc Bridge Railing |


|  | 1 | 3 |  | m. |  | 95 | 5 | 0 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \% | \% | \% | \% | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |  |
| 06/17/2013 - Generally in Good condition. Left side has a small spall on its' backside. Random shrinakge cracks. |  |  |  |  |  |  |  |  |  | RZEV |
| 06/16/2011 - Generally in Good condition with some random vertical cracking throughout. |  |  |  |  |  |  |  |  |  | RMGH |
| 06/30/2009 - Generally good condition. Some cracking between chamfered areas on both side of structure. |  |  |  |  |  |  |  |  |  | ZZDZ |
| 05/31/2007 - Minor popouts and tight surface shrinkage cracks. |  |  |  |  |  |  |  |  |  | EZHZ |
| 05/04/2005 - No change from previous reports. ( 15.70 * $2=31.40$ ) Nate. |  |  |  |  |  |  |  |  |  | FZMK |
| 04/30/2003 - Vertical cracks throughout both rails. Some minor popouts in the concrete of the rails. |  |  |  |  |  |  |  |  |  | ZZEB |
| 08/06/2001-15.85 * $2=31.70 \mathrm{~m}$ |  |  |  |  |  |  |  |  |  | NHGO |
| 01/14/1999 - None |  |  |  |  |  |  |  |  |  | DCHF |
| 04/01/1996 - None |  |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  | REFI |

Inspection Notes:


* Span : Appr-1 - P/S CONC SPANS - 1,2,4,and 5 (cont.)
Element Description



[^16]


| General Inspection Notes |  |
| :---: | :---: |
| 06/17/2013 - End shoes at East Abutment, 6, are lapped against traffic flow. | RZEV |
| Homeless person living under Span 5. Wasn't happy about the intrusion during the inspection. |  |
| 06/16/2011 - End shoes on the W-Beam at the bridge ends are lapped against traffic on the East end of the structure. | RMGH |
| Homeless household along with a fire pit near Abutment 6. |  |
| 06/30/2009-NBI 58, deck, rated at "5" due to increasing delaminations and spalling in deck surface. | Z7DZ |
| W-beam end shoes at abutment 6 are lapped against traffic flow. |  |
| 05/31/2007-NBI 59, superstructure, rated a "6" due to rust, scale, and minor pitting of the steel girders in the main span. | EZHZ |
| Areas under the joints were very wet from overnight rain and could not be cleaned and overcoat painted very well. |  |
| 05/04/2005-NBI 58, deck, rated at a "6" due to delamination, minor potholes, and wear to the surface. | FZMMK |
| NBI 60, substructure, rated at a "7" due to minor cracking at the construction joints and small popouts in the bottoms of the caps from exposed rebar chairs. |  |
| 04/30/2003 - None | ZZEB |
| 08/06/2001 - None | NHGO |
| 01/14/1999 - None | DCHF |
| 04/01/1996 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:05 | YDNF |
| Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:15:35 |  |
| 02/01/1994 - | REFI |
| 08/01/1992-Updated with tape 1994 | NB94 |
| 01/01/1991-Updated with tape 1992 | NB92 |
| 03/01/1989 - Updated with tape 1991 | NB91 |
| 04/01/1987- Updated with tape 1989 | NB89 |
| 09/01/1984 - Updated with tape 1986 | NB86 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | A LFD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 32.6 mton | A LFD Assigned | Truck 2 Type 3-S3 |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 | 48.6 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & \mathbf{5 6 . 6 9 \mathrm { m }} \\
\text { Deck Area : } & \mathbf{4 5 6 . 0 0 \mathrm { m } \text { sq }} \\
\text { Deck Roadway Width : } & \mathbf{7 . 1 1 \mathrm { m }} \\
\text { Approach Roadway Width : } & \mathbf{7 . 2 0 ~ \mathbf { ~ m }} \\
\text { Median Code, Description: } \mathbf{0} \text { No median }
\end{array}
$$

## Span Data

## Main Span

## Number Spans : 5

Material Type Code, Description : 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck
Deck Structure Type : $\mathbf{1}$ Concrete Cast-in-Place
Deck Surfacing Type : $\mathbf{1}$ Monolithic concrete (concurrently placed with struct
Deck Protection Type : $\mathbf{1}$ Epoxy Coated Reinforcing
Deck Membrain Type : $\mathbf{0}$ None

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| Route On Structure | 100315 | West | 99.99 m | 7.11 m | N/A |  |  |

## Approach Span

Number of Spans : 0
Material Type Code, Description:
Span Design Code, Description :

Structure Vertical and Horizontal Clearance Data :

## Vertical Clearance Over the Structure : <br> 99.99 m

Reference Feature for Vertical Clearance :
Vertical Clearance Under the Structure :
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right :
Minimum Lateral Under Clearance Left :
R Railroad beneath struc 6.98 m

R Railroad beneath struc 1.70 m
0.00 m

Inspection Data
Sufficiency Rating : 94
Structure Status : Functionally Obsolete

Inspection Due Date : 16 June 2015
(91) Inspection Frequency (months) : 48

## NBI Inspection Data




Deck Surfacing Depth


Inspection Hours


| Status | Priority | Effected <br> Structure <br> Unit |
| :---: | :---: | :---: |
| Approved | High | M Main |


| Scope of <br> Work |
| :---: | :---: |
| 300 Strip Seal Exp Jo |


| Action | Covered Condition States |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Min Repair | X | X | X | X | X |

Clean dirt and debris out of the joint at Abutment 1. 06/16/2011 Full of sanding material today.

Approved. DRC

## Late Reason:

Inspection Date: 06/16/2011

## Element Inspection Data

\author{

* Span : Main-0 - Spans 1,2,3,4,\&5
}


Span : Main-0 - Spans 1,2,3,4,\&5 (cont.)





## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 32.6 mton | B ASD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 : | 85 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & 167.94 \mathrm{~m} \\
\text { Deck Area : } & 2,684.00 \mathrm{~m} \text { sq } \\
\text { Deck Roadway Width : } & \mathbf{8 . 3 2 \mathrm { m }} \\
\text { Approach Roadway Width : } & \mathbf{8 . 3 2 \mathrm { m }} \\
\text { Median Code, Description : } & \text { 0 } \\
\text { No median }
\end{array}
$$

## Span Data

## Main Span

## Number Spans : 4

Material Type Code, Description : 4 Steel continuous
Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

| Deck Structure Type : | $\mathbf{1}$ Concrete Cast-in-Place |
| :--- | :--- |
| Deck Surfacing Type : | $\mathbf{3}$ Latex Concrete or similar additive |
| Deck Protection Type : | $\mathbf{0}$ None |
| Deck Membrain Type : | $\mathbf{0}$ None |

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Inventory <br> Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under |  | Both | 5.16 m | 7.32 m | N/A |  |  |
| GAULT AVE. |  |  |  |  | East | 99.99 m | 8.32 m |
| Route On Structure | N00103 | N/A |  |  |  |  |  |
| CENTRAL AVE WEST - EB |  |  |  |  |  |  |  |

## Approach Span

Number of Spans : 2
Material Type Code, Description: 3 Steel Span Design Code, Description : 2 Stringer/Multi-beam or Girder

Montana Department of Transportation

Inspection Data<br>Sufficiency Rating : 91.4<br>Structure Status : Functionally Obsolete

Inspection Due Date : 12 September 2014
(91) Inspection Frequency (months) : 2

24
Next Other Insp Due Date : 23 Aug 2016 Other Insp Type : Pin and Hanger
24

## NBI Inspection Data


Last Inspected By




## Inspection Hours



| Inspection Work Candidates | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date <br> Requested | Approved | Low | All Spans | Bridge | Spot Paint (flex) |
| D31-FY2005-000060 | 15 October 2004 | Ap |  |  |  |  |
| Clean and paint bearings. <br> 10-12-2006: Some spot overcoat painting of the bearings. <br> Approved. DRC |  |  |  |  |  |  |


| D31-FY2005-000061 | 15 October 2004 | Approved | High | All Spans | 301 Pourable Joint Seal | Min Repair |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reseal the joints. |  |  |  |  |  |  |  |
| Approved. DRC |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| D31-FY2011-000150 | 07 February 2011 | Not Approved | Medium | All Spans | 107 Paint Stl Opn Girder | Min Repair |  |
| Clean and paint girders. <br> 10-12-2006: Some spot overcoat painting of the girders. |  |  |  |  |  |  |  |


| D31-FY2011-000151 | 07 February 2011 | Not Approved | Medium | All Spans | 334 Metal Rail Coated | Repl Paint |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Clean and paint rail. |  |  |  |  |  |  |



## Element Inspection Data

*     *         *             *                 *                     *                         *                             *                                 *                                     * Span : Main-0 - Steel Girder over RR - Spans 3 thru 6 * * * * * * * * * *


Previous Inspection Notes:
09/12/2012 - Lower flange tops in areas that collect water are rusted and some surface pitting under rust blisters. Faded and chalking paint.

09/24/2008 - G3S4L near pin connection has a crack on the gusset weld for the diagonal brace. Rusty spots, scale, paint loss, and minor surface
pitting in areas where water can sit on the girders.
07/25/2006 - Rust spots, pitting, some pack rust, and paint loss; especially under the joints. Left two(2) girders have some missing bolts in the
 on a diagonal bracing was missing and replaced during snooper inspection.
09/29/2004 - Some rust spots, peeling paint and pitting of the girders, especially under the joints and on the lower portions of the web/lower flange.
2nd girder from the right in Span 3 is very rusty with paint peeling for 20 feet.
10/21/2002 - Minor rusty spots under leaking joints and along the bottom flange/web area.
$08 / 30 / 2000-\left(4^{*} 137.20\right)+32.8+25.0=606.6 \mathrm{~m}$
Some rust and pitting.
06/03/1998 - Some early signs of rust \& pitting.
12/01/1995 - None
02/01/1994 - None
Inspection Notes:

| Element Description |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| Element 161 - Paint Stl Pin/Hanger (4) Pin and Hanger Assemblies plus (4) End Girder Connection Pins |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 |  |  |  |  | 0 | 0 | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |
| 09/12/2012 - Pins and hangers where UT tested in August 2012. No serious problems observed (see Collins Engineering report). |  |  |  |  |  |  |  |  | MWHP |
| 09/20/2010 - Still Good paint where re-painted by UT inspectors. Refer to report by Collins Engineering. No "noteables" were fond in the UT inspection with little to no wear also noted. <br> 09/24/2008 - Will be UT'd this Fall. Some minor rust on the pins and hangers. |  |  |  |  |  |  |  |  | WZBZ |
|  |  |  |  |  |  |  |  |  | YQCZ |
| $07 / 25 / 2006$ - Some spot rust showing through areas that were tested and re-painted. Testing in 2005 showed no significant wear or problems. |  |  |  |  |  |  |  |  | NZDN |
| 09/29/2004 - Ends of the pins, nuts, and hangers showing some minor rust where they were cleaned in 2001 for UT testing. |  |  |  |  |  |  |  |  | ZZIO |
| 10/21/2002-See 2001 NDT report. Some minor wear of several pins. |  |  |  |  |  |  |  |  | VIKC |
| 08/30/2000 - Some minor rust and pitting. |  |  |  |  |  |  |  |  | FILQ |
| 06/03/1998 - Some minor rust \& pitting. Eight(8) sets of the pins have been UDT'ed and were ok. |  |  |  |  |  |  |  |  | XKGJ |
| 12/01/1995 - None |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Element 205 - R/Conc Column (2) at Bent 3, 4, 5, and (3) at 6 |  |  |  |  |  |  |  |  |  |
| $\square$ |  | 1 |  |  |  | 5 | 5 | 0 |  |
|  |  |  |  |  |  | \% | \% | \% | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |
| 09/12/2012 - Right column at Bent 5 has vertical cracking along corners and areas are delaminated. Some spall/scrapes on columns. Shallow tie wire has caused surface spalls and rust on some columns. <br> 09/20/2010 - Bent 3's Right column has a delaminated edge and cracking; photo. Some tight cracks and small surface spalls from shallow tie wire. <br> 09/24/2008 - Some tight cracks and small spalls. Condition State 3 for delaminations on edges. Some painted areas to cover graffiti. |  |  |  |  |  |  |  |  | tie MWHP |
|  |  |  |  |  |  |  |  |  | wzBz |
|  |  |  |  |  |  |  |  |  | YQCZ |
| 07/25/2006 - Same as past inspections with some small areas of delamination on the edges of the columns where cracked. Middle column at Bent 6 has some spalls from being hot from campfires. <br> 09/29/2004 - Much graffiti painted on the columns and smoke/soot from camp fires. Mapping surface shrinkage cracks. Vertical cracking on the Right column at Bent 3. Tight cracking at the construction joint to the cap. <br> 10/21/2002 - Small, tight shrinkage cracks. Graffti and smoke from fires started by homeless people under the structure. |  |  |  |  |  |  |  |  | NZDN |
|  |  |  |  |  |  |  |  |  | ZZIO |
|  |  |  |  |  |  |  |  |  | VIKC |
| 08/30/2000 - No change. |  |  |  |  |  |  |  |  | FILQ |
| 06/03/1998 - Some hairline, tight cracks in the concrete. |  |  |  |  |  |  |  |  | XKGJ |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |







Page 10 of 13


Element 205-R/Conc Column Bent 2



Page 12 of 13

* Span : Appr-1 - Steel Girder - Spans 1 and 2 (cont.)


Span : Appr-1 - Steel Girder - Spans 1 and 2 (cont.)
Element Description


Inspection Notes:

## General Inspection Notes

09/12/2012 - Area under east abutment has a small village of homeless people. Lots of soot on underside in area from camp fires.

| Non-destructive testing of the pin and hanger connections performed by Collins Engineers. CRH 09/20/2010 - Lots of campers beneath the bridge today. | WZBZ |
| :---: | :---: |
| 09/24/2008 - Showed 31-01B where bolts need to be installed in the bearings at Bent 6 . | YQCZ |
| 07/25/2006 - NBI 58, deck, rated a "6" due to wear and delamiantions. NBI 59, superstrucutre, rated a " 6 " due to rust, scale, and pitting in portions of the girders. NBI 60, substructure, rated a " 6 " due to spalls in the columns and caps. 09/29/2004 - Deck cracking is about the same as the last inspection. | NZDN |
| 10/21/2002 - Deck cracking appears to have gotten worse since the traffic control island was placed on the strucure. Unsure if extra dead load has caused cracks to get worse or if the deicer is causing some crack problems to worsen <br> 08/30/2000 - Doubful that I can snooper this bridge anymore due to guard fence that was placed in 1999. | VIKC |
| 06/03/1998 - None | XKGJ |
| 12/01/1995 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:45 Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:25:13 | YDNF |
| 02/01/1994 - | REFI |
| 08/01/1992-Updated with tape 1994 | NB94 |
| 01/01/1991- Updated with tape 1992 | NB92 |
| 04/01/1989 - Updated with tape 1991 | NB91 |
| 04/01/1987- Updated with tape 1989 | NB89 |
| 09/01/1984 - Updated with tape 1986 | NB86 |
| 07/01/1981 - Updated with tape 1984 | NB84 |
| 04/01/1979 - Updated with tape 1980 | NB80 |


|  |
| :--- |
|  |
|  |
|  |
|  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 32.6 mton | B ASD Assigned | Truck 2 Type 3-S3: |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3 : | 85 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

Structure Length :
Deck Area :
Deck Roadway Width :
Approach Roadway Width :
Median Code, Description: 0 No median

## Span Data

## Main Span

## Number Spans : 4

Material Type Code, Description : 4 Steel continuous
Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

| Deck Structure Type : | $\mathbf{1}$ Concrete Cast-in-Place |
| :--- | :--- |
| Deck Surfacing Type : | $\mathbf{3}$ Latex Concrete or similar additive |
| Deck Protection Type : | $\mathbf{0}$ None |
| Deck Membrain Type : | $\mathbf{0}$ None |

Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Inventory <br> Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under |  | N/A | 5.11 m | 7.32 m | $\mathrm{~N} / \mathrm{A}$ |  |  |
| GUALT AVE |  |  |  |  |  |  |  |
| Route On Structure | N00103 | Both | 99.99 m | 8.32 m | $\mathrm{~N} / \mathrm{A}$ |  |  |
| CENTRAL AVE. WEST - WB |  |  |  |  |  |  |  |

Montana Department of Transportation
Inspection Data
Sufficiency Rating : 76.3
Structure Status : Func Obs - Elg Rehab

Inspection Due Date : 13 September 2014
(91) Inspection Frequency (months) : 24

24
Next Other Insp Due Date : 22 Aug 2016 Other Insp Type : Pin and Hanger

## NBI Inspection Data




[^17]Inspection Date: 09/13/2012

## Element Inspection Data

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 *

| Element Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |  | Stat 5 |
| Element 12 - Bare Concrete Deck |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 2003 | sq.m. | X | 0 | 100 | 0 | 0 |  | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
| 09/13/2012 - Studded tire wear in wheel paths. Spalls/Delaminations along edges of joint steel. Mapping cracks in all spans. |  |  |  |  |  |  |  |  |  |  | NLGQ |
| 09/21/2010 - Lots of tight mapping cracks. Wear in the wheel paths. Small spalls and delaminations along joint steel. |  |  |  |  |  |  |  |  |  |  | WZBZ |
| 09/23/2008 - Wear in the wheel paths. Transverse and mapping cracks in areas. Small spalls and surface delaminations along the joint edges. |  |  |  |  |  |  |  |  |  |  | YZCZ |
| 10/13/2006 - Wear in the wheel paths. Right lane has more mapping cracks in it. Spalls/Delaminations along the joint achorage's steel. |  |  |  |  |  |  |  |  |  |  | NADO |
| 09/29/2004 - Put the deck into Condition State 2 as there are some small areas of delamination along the joint edges. |  |  |  |  |  |  |  |  |  |  | ZAIP |
| 10/21/2002-14.60* 137.20 = 2003.12 Deck element changed to a "12" as the Latex concrete was placed back to the original depths after the 1999 hydromill and Class B repair operations. Cracks in latex where sealed in 1999 with HMWM. Many tight transverse deck cracks. MDT |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Maintenance is spraying the deck with freeze guard. Cracks are soaking ip the freeze guard. |  |  |  |  |  |  |  |  |  |  |  |
| 08/30/2000 - New Latex concrete overlay in 1999 with some transverse cracking(small and tight). Cracks sealed with HMWM before construction was completed. Delaminated areas were removed by hydrodemolition and replaced with latex concrete. |  |  |  |  |  |  |  |  |  |  | FIKL |
| $06 / 03 / 1998-14.60$ * $137.20=2003.12$. Numerous small, tight transverse cracking throughout with small areas of delamination when it was checked several years ago. Studded tires have left a fairly smooth wear surface. |  |  |  |  |  |  |  |  |  |  | MHIL |
| 12/01/1995 - None |  |  |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Element 107 - Paint Stl Opn Girder |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 549 | m. |  | 80 | 15 | 5 | 0 |  | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
| 09/13/2012 - Rust blisters, minor surface pitting, and paint loss on tops of lower girder flanges where water and debris has collected. Diagonals between G2 and G3 were removed and intersecting welds in tension reversal zones were drilled early in 2012 under statewide steel rehab job. |  |  |  |  |  |  |  |  |  |  | NLGQ |
| 09/21/2010 - Dirty, grime, bird debris, and rust blisters on top of the bottom flanges. Some surface pitting under rust blsiters. Faded and chalky paint. |  |  |  |  |  |  |  |  |  |  | WZBZ |
| 09/23/2008 - Rust, scale, paint loss, and some surface pitting under rust blisters. Outer girders and areas under leaky joints are the worse. Very dirty from diesel smoke, bird debris, and de-icer. |  |  |  |  |  |  |  |  |  |  | YZCZ |
| 10/13/2006 - Rust, scale, pitting and paint loss. Most notiable under joints, outside girders, and where piegon nest/debris are built-up. Pulled most of this stuff off. |  |  |  |  |  |  |  |  |  |  | NADO |
| 09/29/2004 - Rusty, scale, peeling paint, and minor pitting; mostly under the joints and on the lower flange/web areas. |  |  |  |  |  |  |  |  |  |  | ZAIP |
| 10/21/2002 - Rusty spots throughout and some pitting. Mostly under leaking joints and on the bottom flange/lower web area. |  |  |  |  |  |  |  |  |  |  | VZKC |
| 08/30/2000 - No Change; mainly under the joints. |  |  |  |  |  |  |  |  |  |  | FIKL |
| 06/03/1998-4*137.20 = 548.80. Show some signs of early rust \& pitting. |  |  |  |  |  |  |  |  |  |  | MHIL |
| 12/01/1995-None |  |  |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity |  | Units | Insp Each | Pct Stat 1 | Pct Stat 2 |  | Pct Stat 3 | Pct Stat 4 |  | Pct Stat 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 161 - Paint Stl Pin/Hanger (4) Pin and Hanger Assemblies plus (4) End Girder Connection Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 |  | 12 | ea. |  |  |  | 5 | 0 |  | 0 | 0 |
|  |  |  |  |  |  |  |  |  | \% | \% |  | \% | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 09/13/2012 - Pins and hangers were UT tested in August 2012 and no excessive wear was noted (see Collins Engineering reports). |  |  |  |  |  |  |  |  |  |  |  |  | NLGQ |
| 09/21/2010 - Still Good paint where re-painted by UT inspectors. Refer to report by Collins Engineering. No "noteables" were fond in the UT inspection with little to no wear also noted. <br> 09/23/2008-2005 UT showed no problems. Some minor rust on the pins and hangers. |  |  |  |  |  |  |  |  |  |  |  |  | WZBZ YZCZ |
| 10/13/2006 - Showed ok in 2005 UT testing. |  |  |  |  |  |  |  |  |  |  |  |  | NADO |
| 09/29/2004 - Ends of the pins, nuts, and hangers are showing some minor rust where the paint was removed for UT testing. No major wear or problems noted in UT inspection in 2001. <br> 10/21/2002 - See Bills report from 2001. |  |  |  |  |  |  |  |  |  |  |  |  | ZAIP VZKC |
| 08/30/2000 - No Change; mainly under the joints. |  |  |  |  |  |  |  |  |  |  |  |  | FIKL |
| 06/03/1998 - Some minor rusting and pitting. Eight(8) pins have been UDT'ed and are ok. |  |  |  |  |  |  |  |  |  |  |  |  | MHIL |
| 12/01/1995 - None |  |  |  |  |  |  |  |  |  |  |  |  | YDNF |
| 02/01/1994 - None |  |  |  |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Element 205 - R/Conc Column Bent 3, 4, 5, 6, and 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  1 <br>   |  | 1 |  | 8 | ea. |  |  |  | 5 | 5 |  | 0 |  |
|  |  |  |  |  |  |  |  |  | \% | \% |  | \% | \% |

Previous Inspection Notes:
09/13/2012 - Shallow surface delaminations near tiewire or reinforcing chair feet. Some columns have tight vertical cracks near their corners.

```
09/23/2008 - Tight cracking in most of the columns. Some surface spalls and small delaminations from shallow tie wire or exposed feet of the
06/03/1998 - Some hairline, tight cracking in the concrete.

\section*{12/01/1995 - None}

02/01/1994 - None

\footnotetext{
Inspection Notes:
}

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 (cont.)
Element Description


Inspection Notes:

Element 234 - R/Conc Cap Bent 3, 4, 5, 6, and 7


Inspection Notes:

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 (cont.)
Element Description
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Smart Flag & Scale Factor & Env & Quantity & Units & Insp Each & Pct Stat 1 & Pct Stat 2 & Pct Stat 3 & Pct Stat 4 & & Stat 5 \\
\hline \multicolumn{12}{|l|}{Element 301-Pourable Joint Seal} \\
\hline & 1 & 3 & 29 & m. & & & & & & & \\
\hline & & & & & & & & & & & \% \\
\hline \multicolumn{12}{|l|}{Previous Inspection Notes:} \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
09/13/2012 - Steel portions sound solid when tapped on. Minor spalling and deterioration on underside of deck and joints. Sealant is loose, torn, and missing in joints. Small delaminations/spalls along edge of joint steel. \\
09/21/2010 - Several areas of loose and pushed down sealant. Some small areas of torn sealant.
\end{tabular}} &  \\
\hline \multicolumn{11}{|l|}{09/23/2008 - Leaky, sanding material pushed in, and loose sealant along the joints edges. Some small surface mortar spalls/delaminations along the steel edges. 10/13/2006 - Unchanged from previous rpeorts.} & \[
\begin{aligned}
& \text { YZCZ } \\
& \text { NADO }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
09/29/2004 putting prre 10/21/2002 joints. \\
08/30/2000 \\
Some miss
\end{tabular} & \begin{tabular}{l}
Several areas sure on the sea Sanding mater
\[
14.60 * 2=29
\] \\
g material and
\end{tabular} & ere th t. and & alant has lost in joints. So orning" rial in the join & \begin{tabular}{l}
conta \\
me ar \\
t.
\end{tabular} & \begin{tabular}{l}
and is pull \\
s where
\end{tabular} & \begin{tabular}{l}
away. Jo \\
Corning h
\end{tabular} & \begin{tabular}{l}
e leaking. \\
led away o
\end{tabular} & \begin{tabular}{l}
debris/dirt \\
forced op
\end{tabular} & \begin{tabular}{l}
joints and \\
m debris in
\end{tabular} & & \begin{tabular}{l}
ZAIP \\
VZKC \\
FIKL
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Inspection Notes:} \\
\hline \multicolumn{12}{|l|}{} \\
\hline \multicolumn{11}{|l|}{Element 305 - Assm Jt w/o Seal} & \\
\hline & 1 & 3 & 29 & m. & & & 兂 & & & & \\
\hline & & & & & & & & & & & \% \\
\hline
\end{tabular}

Previous Inspection Notes:
\begin{tabular}{l}
\(09 / 13 / 2012\) - Steel sounds solid when tapped on and finger alignment is good. Small spalls/delaminations along edge of joint steel. Minor spalling \\
and deterioration on underside of deck at joint area. \\
\(09 / 21 / 2010\) - Good alignment on the fingers. Small spalls and surface delaminations along the joint edges. Steel sounds solid when tapped on. \\
Minor deterioration and spalling of the deck concrete on the bottom side under the steel. \\
\(09 / 23 / 2008\) - Steel sounds solid when tapped on. Finger alignment is Good. Some cracking and small spalls along the underside of the deck \\
edges at the joints. \\
\(10 / 13 / 2006\) - Steel portions of the joints sound solid when tapped on. Some delaminations/spalls along the steel. Finger alignment is Good this \\
summer. \\
\(09 / 29 / 2004\) - West most sliding plate has a small section of delamination on its' edge, 8 to 12". Finger joint alignment is Good. \\
\(10 / 21 / 2002\) - Minor rusty spots. Joints are in good alignment. \\
\(08 / 30 / 2000\) - No Change. \\
\(06 / 03 / 1998\) - 14.60 * 2. Some rust and pitting. (1) Finger \& (1) Sliding Plate Joints. \\
\(12 / 01 / 1995\) - None \\
\(02 / 01 / 1994\) - None \\
Inspection Notes: \\
\hline
\end{tabular}

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 (cont.)
Element Description


Inspection Notes:

Element 313 - Fixed Bearing
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 12 ea. & 95 & 5 & 0 & & \\
\hline & & & \% & \% & \% & \% & \% \\
\hline \multicolumn{8}{|l|}{Previous Inspection Notes} \\
\hline \multicolumn{8}{|l|}{09/13/2012 - Spot rust and fading paint. NLGQ} \\
\hline \multicolumn{7}{|l|}{09/21/2010 - Some dirt and grime. Paint still looks Good with only some spot rust.} & wzBz \\
\hline \multicolumn{7}{|l|}{09/23/2008 - Some spot rust. Cleaned and overcoat spot painted.} & YZCZ \\
\hline \multicolumn{7}{|l|}{10/13/2006 - Same as previous reports. Clean and overcoat painted.} & NADO \\
\hline \multicolumn{7}{|l|}{09/29/2004 - Rust spots and pitting. Pigeon nest around some of the bearings.} & ZAIP \\
\hline \multicolumn{7}{|l|}{10/21/2002 - Minor rusting spots and pits.} & VZKC \\
\hline \multicolumn{7}{|l|}{08/30/2000 - No change.} & FIKL \\
\hline \multicolumn{7}{|l|}{06/03/1998-Some rust \& pitting.} & MHIL \\
\hline \multicolumn{7}{|l|}{12/01/1995-None} & YDNF \\
\hline \multicolumn{7}{|l|}{02/01/1994 - None} & REFI \\
\hline
\end{tabular}

Inspection Notes:

Span : Main-0 - Steel Girders over RR - Spans 3 thru 6 (cont.)
Element Description


Previous Inspection Notes :


Inspection Notes:


Previous Inspection Notes :


\section*{Inspection Notes:}

Page 10 of 13

Span : Appr-1 - Steel Girders - Span 1 and 2 (cont.)


Element 205-R/Conc Column Bent 2


ㄴ

Span : Appr-1 - Steel Girders - Span 1 and 2 (cont.)


Previous Inspection Notes:
\begin{tabular}{ll} 
09/13/2012 - Steel sounds solid when tapped on. Some delaminations/spalls along edges of joint steel. & NLGQ \\
\(09 / 21 / 2010\) - Small spalls along the joint steel edge. Steel sounds solid when tapped on. & WZBZ \\
\(09 / 23 / 2008\) - Steel sounds solid when tapped on. Some small surface spalls and delaminations along the joint edges. & YZCZ \\
\(10 / 13 / 2006\) - Steel all sounds solid when tapped on. Small spots of delaminated concrete and small spalls in a couple of areas along the joint's & NADO \\
anchorage. & ZAIP \\
\(09 / 29 / 2004\) - Small spot of delamination on the joint edge, 4 " . Leaky also. & VZKC \\
\(10 / 21 / 2002\) - Minor rusty spots. Leaking as normal for a sliding plate joint. & FIKL \\
\(08 / 30 / 2000\) - Leaking. & MHIL \\
\(06 / 03 / 1998\) - Sliding Plate. &
\end{tabular}

\section*{Inspection Notes:}

\section*{Element 311 - Moveable Bearing}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 3 & 8 & ea. & & 95 & 5 & 0 & & \(\%\) \\
\hline
\end{tabular}

Previous Inspection Notes :
```

09/13/2012 - Bearings are towards slight expansion (65 degeers F). Paint is faded, dirty, and has spot rust.
NLGQ
09/21/2010 - Slight expansion; 50F. Some spot rust and debris.
wZBZ
09/23/2008 - Good to Fair alignment today as slightly in expansion; 48F. Some cleaning and overcoat painting done. YZCZ
10/13/2006 - Rust, scale, and some paint loss. Alignment is Good.
09/29/2004 - Spot rust and pitting from leaking joint. ZAIP
10/21/2002 - Minor rusty spots with some pitting under leaking joints. VZKC
08/30/2000 - No change.
FIKL
06/03/1998 - Some rust \& pitting.

Page 12 of 13

* Span : Appr-1 - Steel Girders - Span 1 and 2 (cont.)


Previous Inspection Notes:


[^18]09/13/2012 - Tight shrinkage cracking. Small spalls where hand rail was removed. ..... NLGQ
09/21/2010 - Unchanged from past inspection comments. ..... WZBZ
09/23/2008 - Vertical cracking along the relief cuts. Small spalls where handrail was removed on the Left rail. ..... YZCZ
10/13/2006 - Same as past reports. ..... NADO
09/29/2004 - Vertical cracking between the relief cuts. Some fractured concrete where the hand rail was removed. ..... ZAIP
10/21/2002 - Minor vertical cracks and some shrinkage cracks throughout. ..... VZKC
08/30/2000 - Replaced matel rail with concrete barrier in 1999. ..... FIKL
$06 / 03 / 1998-30.74$ * $2=61.48$. Some rust \& pitting of the rail posts \& bridge rail.MHIL
Inspection Notes:

Span: Appr-1 - Steel Girders - Span 1 and 2 (cont.)
Element Description


## General Inspection Notes

09/13/2012 - Big bump going off of bridge from approach slab settlement.
Non-destructive pin and hanger testing performed by Collins Engineers. CRH
09/21/2010 - NBI 72, roadway alignmnet, rated a "7" as bridge is slightly narrower than the approach roadway.
Several homeless people under the bridge today.
09/23/2008 - Lots of campers under the bridge today.
10/13/2006 - NBI 58, deck, rated a " 6 " due to wear and small delaminations along the joints.
NBI 59, superstructure, rated a " 6 " due to rust, scale, and pitting of the girders.
NBI 60, substructure, rated a " 6 " due to spalls and delaminations in the caps and columns.
09/29/2004 - Cleaning of the bearings and caps could be done with ladders and/or bucket truck from the underside of the structure. Cap on the ZAIP electical is loose and one is missing.
10/21/2002 - Some of the caps that the electrical pull boxes are missing on the sidewalk allowing wires to be exposed. VZKC
08/30/2000 - Doubtful if the snooper can be used anymore as new guard fence in 1999.
02-28 and 03-01-2001: Cleaning, UT inspection, and mag. particle inspection of the (4) pin \& hanger assemblies and the (8) pins on th is structure. Nothing foundwith mag. particle inspection of note. Some minor wear on a couple of the pins was found and noted in the proper report.
06/03/1998-. 48 m curb on the right and a 1.52 m sidewalk on the left with inside of curb to inside of sidewal as 8.61 m .
12/01/1995 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:45
Sufficiency Rating Calculation Accepted by ops $\$ u 9004$ at 2/19/97 14:25:13
02/01/1994 -
08/01/1992 - Updated with tape 1994
01/01/1991 - Updated with tape 1992
04/01/1989 - Updated with tape 1991
04/01/1987 - Updated with tape 1989
09/01/1984 - Updated with tape 1986
07/01/1981 - Updated with tape 1984

|  |
| :--- |
|  |
|  |
|  |
|  |



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3: |  |  |  |
| Operating Load, Design | 32.6 mton | B ASD Assigned | Truck 2 Type 3-S3 |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3: | 48.6 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & 646.79 \mathrm{~m} \\
\text { Deck Area : } & 10,192.00 \mathrm{~m} \mathrm{sq} \\
\text { Deck Roadway Width : } & 12.10 \mathrm{~m} \\
\text { Approach Roadway Width : } & \mathbf{1 2 . 1 9 \mathrm { m }} \\
\text { Median Code, Description : } & \mathbf{0} \text { No median }
\end{array}
$$

Structure Vertical and Horizontal Clearance Data :
Vertical Clearance Over the Structure : 99.99 m
Reference Feature for Vertical Clearance: H Hwy beneath struct
Vertical Clearance Under the Structure : $\quad 6.46 \mathrm{~m}$
Reference Feature for Lateral Underclearance :
Minimum Lateral Under Clearance Right : $\quad \mathbf{7 . 4 0}$ m
Minimum Lateral Under Clearance Left : $\quad \mathbf{0 . 0 0} \mathbf{~ m}$

## Span Data

## Main Span

Number Spans: 6
Material Type Code, Description: 4 Steel continuous
Span Design Code, Description : 2 Stringer/Multi-beam or Girder Deck

Deck Structure Type : 1 Concrete Cast-in-Place
Deck Surfacing Type : $\mathbf{1}$ Monolithic concrete (concurrently placed with struct
Deck Protection Type: 0 None
Deck Membrain Type: 0 None

## Approach Span

Number of Spans: $\mathbf{1 4}$
Material Type Code, Description: 5 Prestressed concrete Span Design Code, Description : 2 Stringer/Multi-beam or Girder

Structure Vertical and Horizontal Clearance Data Inventory Route :


| Over / Under Direction | Inventory <br> Name | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Uoute | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under |  | Both | 6.46 m | 7.32 m | $\mathrm{~N} / \mathrm{A}$ |  |  |  |
| RIVER ROAD |  |  |  |  |  |  |  |  |
| Route On Structure | P00060 | West | 99.99 m | 12.10 m | $\mathrm{~N} / \mathrm{A}$ |  |  |  |
| 10TH AVE SOUTH WB |  |  |  |  |  |  |  |  |

Inspection Data
Sufficiency Rating: 96.3
Structure Status : Not Deficient

Sufficiency Rating : 96.3 Structure Status : Not Deficient

Inspection Due Date : 19 September 2014
(91) Inspection Frequency (months) :

Next Under Water Insp: 15 Nov 2016 Under Water Insp Type : Type II

## NBI Inspection Data

(90) Date of Last Inspection : 19 September 2012
(90) Inspection Date :
Last Inspected By :Charles Pepos-107
Inspected By

(62) Culvert Rating :
(61) Channel Rating :
(71) Waterway Adequacy
(113) Scour Critical :


## Inspection Hours

Crew Hours for inspection :
Helper Hours :
Special Crew Hours :
Special Equipment Hours :


| Inspection Work Candidates | Status | Priority | Effected <br> Structure <br> Unit | Scope of <br> Work | Action | Covered <br> Condition <br> States |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date <br> Requested | Low ID | All Spans | Bridge | Spot Paint (flex) |  |  |
| D31-FY2004-000264 | 02 February 2004 | Approved | Low |  |  |  |
| Clean and paint ice breakers. |  |  |  |  |  |  |
| Approved. DRC |  |  |  |  |  |  |



Clean Drains throughout.
2003-08-05: Cleaned drains on the left roadway side. W.A.Lay
Approved. DRC

| D31-FY2005-000076 | 18 October 2004 | Approved | Low | All Spans | 334 Metal Rail Coated | Rehab Elem |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Clean and spot paint the rail posts and rail tubes on the right barrier and Outside-Right edge of the structure.
Approved. DRC


| Inspection Work Candidates |  | Status | Priority | Effected Structure Unit | Scope of Work | Action | Covered Condition States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date Requested |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| D31-FY2013-000004 | 02 October 2012 | Not Approved | High | A Approach | 305 Assm Jt w/o Seal | Rehab Elem |  |
| Repair the loose finger joint at Bent 8 on the Left side of the bridge. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| D31-FY2013-000005 | 02 October 2012 | Not Approved | High | All Spans | Bridge | Rehab (flex) |  |
| Repair the spalls along all of the joints. |  |  |  |  |  |  |  |

Late Reason:
Inspection Date: 09/19/2012

## Element Inspection Data



Span : Main-0 - Steel Girder Spans 14-19 (cont.)
Element Description

Inspection Notes:

Element 220-R/C Sub Pile Cap/Ftg Pier 15 thru 19


Span : Main-0 - Steel Girder Spans 14-19 (cont.)
Element Description


Inspection Notes:

Element 305 - Assm Jt w/o Seal Finger Joint at Pier 17 and Sliding Plate at Bent 14 and Pier 20


Span : Main-0 - Steel Girder Spans 14-19 (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 311- Moveable Bearing Pier 14, 15, 17(doubles), 18, and 20 |  |  |  |  |  |  |  |  |  |

Previous Inspection Notes :
09/19/2012 - Bearing for G4S17 for Span 17 has broken anchor bolts and is rocked over to its' limit; photo. Bearing anchor bolts for G5S17 are
also broken. Spot rust, staining, and debris at the leaky joints.
$09 / 27 / 2010$ - Spot rust and debris on some of the bearings. Alignment is ok today. Same on previously reported broken anchor bolts.
06/20/2008 - Broken anchor bolts for both sides of G4S17 and G5S17 for Condition State 3; Bridge notified this date. Loose anchor bolts,, but still
tight in their bearings as previously reported for Condition State 2. Some overcoat painting done, but still some rusty and paint loss on others.
$08 / 17 / 2006$ - None
10/06/2004 - Rust spots, pitting and some paint loss on the bearings. Unchanged from previous reports when viewed by binoculars.
10/21/2002 - Loose anchor bolts but tight in their holes at Pier 18 for G4L, G3L and R, and G2R. Some rust, pitting, minor paint loss and debris at
all bearings.
$08 / 23 / 2000$ - Env. \#2 as under joints. Some rust and pitting.
12/11/1997 - 5 shoes each at Pier 20, Pier 18, Pier 17 (two lines), Pier 15 and Bent 14
$10 / 01 / 1995$ - None
$09 / 01 / 1992$ - None


Inspection Notes:

Span : Main-0 - Steel Girder Spans 14-19 (cont.)


Previous Inspection Notes:

| $09 / 19 / 2012$ - Spot rust, exposed base coat, and faded paint throughout. Chainlink fabric is in Good condition. | ZZJO |
| :--- | :--- |
| $09 / 27 / 2010$ - Spot rust, exposed primer coat, and paint loss throughout. | EZJZ |
| $06 / 20 / 2008$ - Rsuty spots, paint loss, and visible prime coat throughout. | OZKZ |
| $08 / 17 / 2006$ - None | GIDZ |
| $10 / 06 / 2004$ - Rusty spots on the rail posts and tubes. | IZHX |
| $10 / 21 / 2002$ - Add some scrapes and paint loss throughout. | FIAS |
| $08 / 23 / 2000$ - Some rust and pitting. | FKAR |
| $12 / 11 / 1997$ - Pedestrian rail on North side of bridge. | YDNF |
| $10 / 01 / 1995$ - None | REFI |

Inspection Notes:

Element 358 - Deck Cracking SmFlag


Previous Inspection Notes :

## 09/19/2012 - Both size and density come into play.

ZZJO
09/27/2010 - Lots of cracking with some small delaminations in the worse areas. EZJZ
06/20/2008 - Unchanged. OZKZ
08/17/2006 - None
10/06/2004 - Numerous wider cracks in all spans. Cracks are mostly moderate in size, 0.50 to 1.00 mm . There are a few cracks that are in the severe range of greater than 1.00 mm .
Inspection Notes:

Span : Appr-1 - P/S Concrete Spans 1 thru 13 and 20 (cont.)


Span : Appr-1 - P/S Concrete Spans 1 thru 13 and 20 (cont.)


Span : Appr-1 - P/S Concrete Spans 1 thru 13 and 20 (cont.)


[^19]Span : Appr-1 - P/S Concrete Spans 1 thru 13 and 20 (cont.)



[^20]Span : Appr-1 - P/S Concrete Spans 1 thru 13 and 20 (cont.)



Inspection Notes: $\quad$

\begin{tabular}{|c|c|}
\hline General Inspection Notes \& \\
\hline \begin{tabular}{l}
09/19/2012 - David Crumley was notified about the finger joint failing at Bent 8 on 09-18-2012. He set up a check for 09-21-2012 in the am with 31-01 and Bill Lay. He and 31-01's crew with Charlie and Henry repaired the joint on 09-26-2012. \\
09/27/2010 - Deck cracks are more visible after a brief shower. \\
From the 2011 underwater inspection by Infrastructure Engineers there is no change to the channel or scour conditions at this bridge. There is light timber debris at the upstream nose of Piers 3 and 4 . CRH \\
06/20/2008 - NBI 59, superstructure, rated a "6" due to broken or loose anchor bolts in the Main span.
\end{tabular} \& ZZJO \\
\hline \begin{tabular}{l}
08/17/2006 - Per Infrastructure Engineers August 24, 2006 underwater inspection, There are no significant defects present below the high waterline. There is no significant local or general scour present at the bridge site. There are no significant restrictions in the channel that will adversely impact flow. There is a local scour cone 5 feet in diameter by 3 feet deep at the upstream nose of pier 6 . Construction debris at the upstream nose of pier 5 and the downstream nose of pier 4. Debris consists of rebar protruding from the mudline 3 feet high with a 55 gallon barrel along side of it. ITEM 61 CHANGED PER INFRASTRUCTURE ENGINEERS UNDERWATER INSPECTION. \\
\(10 / 06 / 2004\) - NBI 58 , deck, rates at a " 6 " due to cracking in all spans and spalls along the joint edges. \\
NBI 60 , substructure, rated at a " 6 " due to minor spalls on the underside of some caps and minor/tight cracks in the columns. \\
10/21/2002 - None
\end{tabular} \& TZCZ

GIDZ
IZHX <br>
\hline 08/23/2000 - None \& FIAS <br>
\hline 12/11/1997-None \& FKAR <br>
\hline 10/01/1995 - Sufficiency Rating Calculation Accepted by ops\$u5963 at 3/11/97 10:45:22 Sufficiency Rating Calculation Accepted by ops\$u5963 at 2/26/97 10:59:10 Sufficiency Rating Calculation Accepted by ops\$u9004 at 2/19/97 14:23:33 \& YDNF <br>
\hline 09/01/1992- \& REFI <br>
\hline 01/01/1991- Updated with tape 1993 \& NB93 <br>
\hline 05/01/1989 - Updated with tape 1991 \& NB91 <br>
\hline 04/01/1987- Updated with tape 1989 \& NB89 <br>
\hline 10/01/1984 - Updated with tape 1986 \& NB86 <br>
\hline \& <br>
\hline
\end{tabular}



## Structure Loading, Rating and Posting Data

Loading Data :

| Design Loading : |  | 5 MS 18 (HS 20) | Rating Data : | Operating | Inventory | Posting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inventory Load, Design | 32.6 mton | B ASD Assigned | Truck 1 Type 3 : |  |  |  |
| Operating Load, Design | 32.6 mton | B ASD Assigned | Truck 2 Type 3-S3 : |  |  |  |
| Posting |  | 5 At/Above Legal Loads | Truck 3 Type 3-3: | 86 |  |  |

## Structure, Roadway and Clearance Data

## Structure Deck, Roadway and Span Data :

$$
\begin{array}{rc}
\text { Structure Length : } & 637.90 \mathrm{~m} \\
\text { Deck Area : } & \mathbf{6 , 9 6 0 . 0 0 \mathrm { m } \text { sq }} \\
\text { Deck Roadway Width : } & \mathbf{8 . 5 3 \mathrm { m }} \\
\text { oroach Roadway Width : } & \mathbf{1 0 . 9 0 \mathrm { m }} \\
\text { dian Code, Description : } 0 \text { No median }
\end{array}
$$

| Structure Vertical and Horizontal Clearance Data : |  |
| ---: | :---: |
| Vertical Clearance Over the Structure : | 99.99 m |
| Reference Feature for Vertical Clearance : | H Hwy beneath struct |
| Vertical Clearance Under the Structure : | 5.49 m |
| Reference Feature for Lateral Underclearance : | H Hwy beneath struct |
| Minimum Lateral Under Clearance Right : | 3.50 m |
| Minimum Lateral Under Clearance Left : | $\mathbf{0 . 0 0 \mathrm { m }}$ |

Structure Vertical and Horizontal Clearance Data :
99.99 m

H Hwy beneath struct 5.49 m
3.50 m
0.00 m

## Span Data

## Main Span

## Number Spans : 6

Material Type Code, Description: 4 Steel continuous
Span Design Code, Description : 3 Girder and Floorbeam System Deck

| Deck Structure Type: | $\mathbf{1}$ Concrete Cast-in-Place |
| :--- | :--- |
| Deck Surfacing Type : | $\mathbf{3}$ Latex Concrete or similar additive |
| Deck Protection Type : | $\mathbf{0}$ None |
| Deck Membrain Type : | $\mathbf{0}$ None |

## Structure Vertical and Horizontal Clearance Data Inventory Route :

| Over / Under Direction Name | Inventory Route | South, West or Bi-directional Travel |  |  | North or East Travel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direction | Vertical | Horizontal | Direction | Vertical | Horizontal |
| One Route Under | U05205 | Both | 5.49 m | 7.92 m | N/A |  |  |
| RIVER ROAD / U05205 |  |  |  |  |  |  |  |
| Route On Structure | P00060 | N/A | $99.99 \mathrm{~m}$ | $8.53 \mathrm{~m}$ | East |  |  |
| 10TH AVE. SOUTH - EB |  |  |  |  |  |  |  |


| Inspection Data |  | Inspection Due Date : 05 September 2015 |
| :--- | :--- | ---: |
| Sufficiency Rating : 75.7 |  | Next Under Water Insp : $\mathbf{1 5}$ Nov $\mathbf{2 0 1 6}$ |
| Structure Status : Func Obs - Elg Rehab |  | Next Fracture Critical Due Date : 05 Sep $\mathbf{2 0 1 5}$ |
|  | Fracture Critical Detail : $\mathbf{1}$ or $\mathbf{2}$ Stl-girder systms | Under Water Insp Type : Type II |
|  |  |  |

## NBI Inspection Data

(90) Date of Last Inspection : 05 September 2013
(90) Inspection Date :
Last Inspected By

| Charles Pepos - 107 |
| :--- |
|  |



## Inspection Hours





Deck Surfacing Depth : 0.00 in


| Inspection Work Candidates |  | Status | Priority | Effected Structure Unit | Scope of Work | Action | Covered Condition States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate ID | Date Requested |  |  |  |  |  |  |
| D31-FY2006-000012 | 19 October 2005 | Approved | Medium | All Spans | Bridge | Spot Paint (flex) |  |

## Clean and paint the bearings.

08/27/2007 Blew off and overcoat painted bearings on Main Span during snooper inspection.
09/06/2011 Did this again.
Approved. DRC


## Element Inspection Data

*     *         *             *                 *                     *                         *                             *                                 *                                     * Span : Main-0 - Steel Girder - Spans 21 thru 26 * * * * * * * * * *

| Element Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 |  | Stat 5 |
| Element 12 - Bare Concrete Deck 2011 Mill and Overlay w $\backslash$ Silica Fume |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 3226 | sq.m. | X | 100 | 0 | 0 | 0 |  | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |  |  |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - Mapping cracks reflecting up through the 2011 overlay. No delaminations found during chaining in the closed Right lane. |  |  |  |  |  |  |  |  |  |  | FPDZ |
| 09/06/2011 - Removed and replaced 2" of the existing surface with Silica Fume Concrete in June 2011. |  |  |  |  |  |  |  |  |  |  | GCCY |
| 08/25/2009 - Mapping cracks in all spans. Delaminated and spalled concrete along the joints. Poor skid resistance remains. Deck was evaluated by Helena earlier this summer and their report is on file in Helena. |  |  |  |  |  |  |  |  |  |  | ZQDZ |
| 08/27/2007 - Quick chain drag showed delaminations or spalls every 20 to 30 ft or less than 10 percent for Condition State 3; may be more with a more through evaluation. Delaimantions/spalls concrete at the joint anchorages. Rest of the previous comments still apply. |  |  |  |  |  |  |  |  |  |  | ZZBZ |
| $06 / 28 / 2005$ - Tight mapping cracks in all spans with some areas that are delaminated. Some areas of spalling along the edges of the joints. May be nearing the 2 percent limit for Condition State 2. Very little ski resistance remaining. (295.66 * $10.91=3225.65$ ) Nate |  |  |  |  |  |  |  |  |  |  | SZMI |
| 07/24/2003 - Same as previous report. Some delamination at the drain scuppers with exposed and rusty reinforcing on the undeside od the deck soffits. Also covered with deck soffit smart flag. |  |  |  |  |  |  |  |  |  |  | YADZ |
| 09/27/2001-306.75 * 10.91 = 3346.64 Tight mapping cracks throughout the deck area. Minor spalling at all the joints. Some cracks are wide with efflorescence on the under side of the deck. Wear in the wheel paths. |  |  |  |  |  |  |  |  |  |  | NIBL |
| 09/02/1998 - Small, tight cracks throughout the deck. |  |  |  |  |  |  |  |  |  |  | GKLH |
| 09/01/1992-None |  |  |  |  |  |  |  |  |  |  | REFI |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Element 107 - Paint Stl Opn Girder |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 591 | m. |  | 75 | 15 | 5 | 5 |  | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% |  | \% |

Previous Inspection Notes:
09/05/2013 - Faded and dirty paint. Rust blisters w surface pitting under the blisters. Worst areas are under leaking joints. Not much leakage since the 2011 deck/joint rehab.
09/06/2011 - No change from previous inspections except alittle more paint loss and rust noted.
08/25/2009 - Paint is faded, dirty, peeling, and scaling in areas that moisture can get to the girders. Lots of heavy rust blisters in areas with surface
piting under the blisters. Bottom flange top side is stickey from the deicer placed on the deck.
08/27/2007-G2 at Pier 26 has some deep surface corrosion, $1 / 8$ ", at the lower web longitudinal stiffner. Outside of the girders and under leaky joints show the worse paint loss and rust. Paint is very dirty in areas that mag. chloride/sanding material has accumulated.
06/28/2005 - Rust, pack rust, pitting, paint loss, and paint peel; especially under or near leaky joints. Some area on the lower portions of the web
have pack rust blisters, mostly still tight, on them. Mag chloride/dirt laying on the outside of the girders on the top of the bottom flange. (295.66 * 2
= 591.32) Nate.
07/24/2003 - Rusty spots with pack rust and minor section loss on girder webs; especially under leaking joints. See photos from past FC
09/27/2001-306.75 * $2=613.50 \mathrm{~m}$
Rusty spots under all the joints and near the drains.
09/02/1998 - None
09/01/1992 - None

[^21]Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)

| Element Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units $\mid$ Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct | tat 5 |
| Element 113 - Paint Stl Stringer |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 1 | 887 | m. | 90 | 10 | 0 | 0 |  | 0 |
|  |  |  |  |  | \% | \% | \% | \% |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - Some paint loss and peeling paint in areas. Generally in Good paint system. Stringers are dirty. |  |  |  |  |  |  |  |  |  | FPDZ |
| 09/06/2011 - No change from previous inspections except alittle more paint loss and rust noted. |  |  |  |  |  |  |  |  |  | GCCY |
| 08/25/2009 - Paint is generally in good condition. Some rust and scale in area near joints. |  |  |  |  |  |  |  |  |  | ZQDZ |
| 08/27/2007 - Same as past comments on rust at the deck to stringer flange area. |  |  |  |  |  |  |  |  |  | ZZBZ |
| $06 / 28 / 2005$ - Some rusty spots on the edges of the top flange where they meet the concrete deck. Some rusty spots and staining where the stringers are in the area of leaking joints. (295.66 * $3=886.98$ <br> 07/24/2003 - Minor rusty spots on the underside of the flanges; mainly near concrete connections under and near leaking joints. |  |  |  |  |  |  |  |  |  | SZMI YADZ |
| $09 / 27 / 2001-3 * 306.75=920.25 \mathrm{~m}$ <br> Minor rust spots; mostly at the top flange to concrete connection and under the joints. 09/02/1998 - |  |  |  |  |  |  |  |  |  | NIBL |
|  |  |  |  |  |  |  |  |  |  | GKLH |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| Element 152 - Paint Stl Floor Beam |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 458 | m. | 80 | 10 | 5 | 5 |  | 0 |
|  |  |  |  |  | \% | \% | \% | \% |  | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - Faded and dirty paint, rust blisters, and surface pitting in those areas of past leakage and where water can gather. |  |  |  |  |  |  |  |  |  | FPDZ |
| 09/06/2011 - No change from previous inspections except alittle more paint loss and rust noted. |  |  |  |  |  |  |  |  |  | GCCY |
| 08/25/2009 - Floorbeams show dirty paint, some peeling, and rust blisters on those under the leaky joints. No change on 3rd floorbeam back from pier 25 on loose rivot. <br> 08/27/2007 - Floorbeams under leaky joints show rust blisters, pitting, paint loss, and minor section loss in open rust blisters. 3rd floorbeam back of Pier 25 in span 24 has (1) loose rivet; not a problem. <br> 06/28/2005 - Same comments with paint loss, pitting and some tight pack rust also noted and mostly near the leaking joints. |  |  |  |  |  |  |  |  |  | ZQDZ |
|  |  |  |  |  |  |  |  |  |  | ZZBZ |
|  |  |  |  |  |  |  |  |  |  | SZMI |
| 07/24/2003 - Rusty spots throughout the floorbeams. Worse rust is in areas under leaking joints. Those floorbeams under leaking joints show some minor rust blisters and pack rust at connections. <br> 09/27/2001-10.91 * $42=458.22 \mathrm{~m}$ All are in contact with the steel stringers. <br> Rusty spots; especially under the joints. Need to verify number when snooper inspected. 09/02/1998 - None |  |  |  |  |  |  |  |  |  | YADZ |
|  |  |  |  |  |  |  |  |  |  | NIBL |
|  |  |  |  |  |  |  |  |  |  | GKLH |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |

Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)


Element 220 - R/C Sub Pile Cap/Ftg Pier 24 and 25



Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)
Element Description


Inspection Notes:

Element 301 - Pourable Joint Seal Pier 22, 23, 25, and 26

| 1 | 3 | 44 | m. |  | 95 | 5 | $\%$ | $\%$ | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Previous Inspection Notes:
09/05/2013 - Sealant is generally in Good condition with a small area of Pier 23's where the sealant is loose. Steel portions sound solid when FPDZ tapped on.
09/06/2011 - New sealant in June 2011.
08/25/2009 - Torn and missing sealant in all joints. Some spalling and delamination along the edges of the joint steel.
08/27/2007 - All have torn or missing sealant with leakage noted underneath. All have some delamiantions/spalls in the concrete along the
anchorages. Some nicks to the guard angles.
$06 / 28 / 2005$ - Loose and torn sealant in all (4) joints. Some dirt/debris in sealant areas. Minor delamination with some small spalls along the joint SZMI
angle anchorages. Caps under the joints are wet from an overnight rain.
07/24/2003 - Same as last report.
09/27/2001-4 * $10.91=43.64 \mathrm{~m}$
Double guard angle pourable joints. Some areas of loose sealant.
Inspection Notes:

Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)


Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)


Span : Main-0 - Steel Girder - Spans 21 thru 26 (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 334 - Metal Rail Coated |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 591 | m. |  | 60 | 25 | 10 | 5 | 0 |
|  |  |  |  |  |  | \% | \% | \% | \% | \% |

Previous Inspection Notes:
09/05/2013 - Rusty spots, thin paint, exposed base paint, rusted post webs at the curb line with section loss to the webs. On-going repairs to the FPDZ rails. Delaminated and spalling on the curbs.
09/06/2011 - No change from previous inspections. Reapired some rail on the Left side in June 2011. Noted seveal posts and panels damaged
over the Labor Day Weekend on the Rigth side near the West Abutment.
08/25/2009 - Same comments as past inspections. Several post have been repaired where webs have been rotted away.
08/27/2007-5th post from Pier 26 on the Right/Median side is broken loose from the concrete. One bent post in Span 23 on the Right side. Lots of rust in the lower rail post webs causing section loss. Posts have been hit and bent over as web crumples. Most of the top coat of paint is faded to the primer coat.
2007/09/10. Bent posts straightened and fixed today.
06/28/2005 - Faded paint and rust spots where paint is chipped off. Red primer coat is coming through in most of the rail. A couple of areas rattle SZMI
under traffic. (295.66*2 $=591.32$ ) Nate
07/24/2003 - Same as last report.
09/27/2001-306.75 * $2=613.50 \mathrm{~m}$
Paint is chaulky and pitted from sanding material. Rusty spots throughout. Rattling with some loose areas noted when traffic is crossing. 09/02/1998 - Minor areas of rust throughout.

09/01/1992 - None

Element Description

| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| Element 359 - Soffit Smart Flag |  |  |  |  |  |  |  |  |  |  |
| X | 1 | 1 |  | 1 | ea. | X |  | 0 | 0 |  |

Previous Inspection Notes:

| 09/05/2013 - Spalling and deteriorated concrete throughout. Exposed and rusty rebar under post areas with delaminated concrete. | FPDZ |
| :--- | :--- |
| 09/06/2011 - No change from previous inspections, but continueing to get worse. | GCCY |
| $08 / 25 / 2009$ - Outlets on the drains show deteriorated and crumbling concrete with exposed and rusty reiforcing steel. Spalling and delaminated | ZQDZ |
| areas throughout underside of the curbs. |  |
| $08 / 27 / 2007$ - Same and lots of it throughout the bridge; see photos. | ZZBZ |
| $06 / 28 / 2005$ - Unchanged from last report or maybe slightly more deterioration/spalling. | SZMI |
| $07 / 24 / 2003$ - The outlets of the drain scuppers are deteriorating with some exposed and rusting reinforcing steel. Some deteriorating concrete is | YADZ |
| falling off and/or is loose. |  |

Inspection Notes:

* Span : Appr-1 - Steel Girders - Spans 1 thru 20

| Element Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct | tat 5 |
| Element 12 - Bare Concrete Deck |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 | 3609 | sq.m. | X | 0 |  |  |  |  |  |
|  |  |  |  |  |  | \% |  |  |  | \% |  |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - (1) small delamination found along Bent 5 and Bent 9's joints. Deck looks Good with minor wear in the wheel paths. Lots of mapping cracks. <br> 09/06/2011 - Removed and replaced 2" of the existing surface with Silica Fume Concrete in June 2011. |  |  |  |  |  |  |  |  |  |  | FPDZ |
| 08/25/2009 - Poor skid resistance, and wear from studded tires. Helena did an indepth scan of delamination and spalling in the deck this past summer and their report is in Helena. |  |  |  |  |  |  |  |  |  |  |  |
| 08/27/2007 - Quick chain drag showed delaminations or spalls every 30 to 40 ft or less than 10 percent for Condition State 3; may be more with a more through evaluation. Delaimantions/spalls concrete at the joint anchorages. Rest of the previous comments still apply. |  |  |  |  |  |  |  |  |  |  | ZZBZ |
| $06 / 28 / 2005$ - Mapping cracks throughout all spans with some small areas of delamination and spalling; probably less than 2 percent. Very little skid resistance with wear in the wheel paths. ( 330.83 * $10.91=3609.36$ ) Nate. |  |  |  |  |  |  |  |  |  |  | SZMI |
| 07/24/2003 - Same on deck comments and on scuppers. Wear on deck with some exposed aggregate. Tight mapping cracks throughout the deck. Soffitt smart flag for popouts around scuppers. |  |  |  |  |  |  |  |  |  |  | YADZ |
| $09 / 27 / 2001-331.12 * 10.91=3613.39$ Cracking throughout. Some concrete is poping out under all drain scuppers with some exposed reinforcing steel. Some concrete popouts along the top flange of the main girders. |  |  |  |  |  |  |  |  |  |  | NIBL |
| 09/02/1998- minor cracking throughout. |  |  |  |  |  |  |  |  |  |  | GKLH |

[^22]

Span: Appr-1 - Steel Girders - Spans 1 thru 20 (cont.)



Span: Appr-1 - Steel Girders - Spans 1 thru 20 (cont.)
Element Description

| Smart Flag | Scale Factor | Env | Quantity | Units Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element 234-R/Conc Cap Bents 2 thru 20 |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 219 | m. | 85 |  | 5 |  | 0 |  |
|  |  |  |  |  |  |  |  |  |  | \% |
| Previous Inspection Notes : |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - Staining on those that had leaking deck joints. Spalling from shallow rebar chairs and tie wire. Cracks with efflorescence on ends of some of the caps. Delaminations on Bent 6, 9, and 15. <br> 09/06/2011 - No change from previous inspections. |  |  |  |  |  |  |  |  |  | FPDZ |
| 08/25/2009 - Same comments as prior inspections. |  |  |  |  |  |  |  |  |  | ZQDZ |
| 08/27/2007 - Bent 4 has delaminated area with some spalls and rusty rebar on its Left end and under G1. Bent 5's cap has a spall on the Span 4 side's Left corner. Bent 6 has a $2^{\prime}(w) \times 1^{\prime}(h)$ delamination under G1S6. Bent 15 's cap has a 1 x $\times 1^{\prime}$ spall on the underside of the Right end and a delamianted area near centerline on the Span 15 side. Lots of rusty rebar chair feet on the underside of some of the caps. Lots of staining under leaky joints also noted with some sanding material also. |  |  |  |  |  |  |  |  |  | ZZBZ |
| 06/28/2005 - Same as previous reports. Add that the Left end of the caps under the bearings at Bents 3 and 4 show some cracking and spalling starting. Staining from leaking joints. |  |  |  |  |  |  |  |  |  | SZMI |
| $07 / 24 / 2003$ - Same as previous and add that the south end of the cap at Bent 2 is cracked with delaminated concrete. Some minor delaminations also noted at Bent 3 and 4 in the column to cap connection areas. |  |  |  |  |  |  |  |  |  | YADZ |
| 09/27/2001-( 5 * 10.91) $+(4$ * 13.84) $=219.01 \mathrm{~m}$ |  |  |  |  |  |  |  |  |  | NBL |
| Minor cracks at ends of several caps. Need to look at with snooper for condition state. |  |  |  |  |  |  |  |  |  | KıH |

## Inspection Notes:

Element 301 - Pourable Joint Seal Bents 3(skewed), 5(Skewed), 6, 9, 12, 15, and 18

|  |
| :--- |

Span : Appr-1 - Steel Girders - Spans 1 thru 20 (cont.)



## Inspection Notes:

Span : Appr-2 - Tower Abutment - Span 27

| Element Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smart Flag | Scale Factor | Env | Quantity | Units | Insp Each | Pct Stat 1 | Pct Stat 2 | Pct Stat 3 | Pct Stat 4 | Pct Stat 5 |
| Element 62 - Bare Top Flang |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 3 |  | sq.m | X |  |  |  | 0 | 0 |
|  |  |  |  |  |  |  |  |  | \% | \% |
| Previous Inspection Notes: |  |  |  |  |  |  |  |  |  |  |
| 09/05/2013 - Generally in Good condition with some random mapping cracks. Wear in the wheel paths. |  |  |  |  |  |  |  |  |  | FPDZ |
| 09/06/2011 - Removed and then replaced top 2" with Silica Fume Concrete in June 2011. |  |  |  |  |  |  |  |  |  | GCCY |
| 08/25/2009 - Wear from studded tires. Small delaminated area near the guard angle. |  |  |  |  |  |  |  |  |  | ZQDZ |
| $08 / 27 / 2007-11.30 * 10.91=123.28$ Some wear in the wheel paths with reduced skid resistance. Some delamianted concrete along the joint. Some tight mapping cracks throughout. |  |  |  |  |  |  |  |  |  | ZZBZ |
| Inspection Notes: |  |  |  |  |  |  |  |  |  |  |




[^23]


## APPENDIX B

Traffic Data Collection

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Turning Movement Data

| Start Time | Airport Rd <br> Southbound |  |  |  | Tri Hill Frontage Northbound |  |  |  | Airport Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thru | Right | Peds | App. Total | Left | Thru | Peds | App. Total | Left | Right | Peds | App. Total |  |
| 7:00 AM | 15 | 13 | 0 | 28 | 4 | 41 | 0 | 45 | 11 | 2 | 0 | 13 | 86 |
| 7:15 AM | 16 | 15 | 0 | 31 | 1 | 34 | 0 | 35 | 16 | 4 | 0 | 20 | 86 |
| 7:30 AM | 22 | 29 | 0 | 51 | 2 | 54 | 0 | 56 | 20 | 10 | 0 | 30 | 137 |
| 7:45 AM | 24 | 26 | 0 | 50 | 4 | 53 | 0 | 57 | 16 | 2 | 0 | 18 | 125 |
| Hourly Total | 77 | 83 | 0 | 160 | 11 | 182 | 0 | 193 | 63 | 18 | 0 | 81 | 434 |
| 8:00 AM | 26 | 19 | 0 | 45 | 2 | 36 | 0 | 38 | 19 | 2 | 0 | 21 | 104 |
| 8:15 AM | 25 | 14 | 0 | 39 | 1 | 46 | 0 | 47 | 28 | 5 | 0 | 33 | 119 |
| 8:30 AM | 31 | 13 | 0 | 44 | 0 | 34 | 0 | 34 | 15 | 5 | 0 | 20 | 98 |
| 8:45 AM | 26 | 6 | 0 | 32 | 0 | 50 | 0 | 50 | 8 | 2 | 0 | 10 | 92 |
| Hourly Total | 108 | 52 | 0 | 160 | 3 | 166 | 0 | 169 | 70 | 14 | 0 | 84 | 413 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 50 | 26 | 0 | 76 | 3 | 48 | 0 | 51 | 21 | 2 | 0 | 23 | 150 |
| 4:15 PM | 37 | 16 | 0 | 53 | 1 | 43 | 0 | 44 | 11 | 5 | 0 | 16 | 113 |
| 4:30 PM | 61 | 18 | 0 | 79 | 1 | 50 | 0 | 51 | 14 | 1 | 0 | 15 | 145 |
| 4:45 PM | 45 | 12 | 0 | 57 | 2 | 41 | 0 | 43 | 16 | 1 | 0 | 17 | 117 |
| Hourly Total | 193 | 72 | 0 | 265 | 7 | 182 | 0 | 189 | 62 | 9 | 0 | 71 | 525 |
| 5:00 PM | 46 | 21 | 0 | 67 | 3 | 31 | 0 | 34 | 33 | 1 | 0 | 34 | 135 |
| 5:15 PM | 55 | 19 | 0 | 74 | 3 | 38 | 0 | 41 | 12 | 4 | 0 | 16 | 131 |
| 5:30 PM | 57 | 16 | 0 | 73 | 4 | 38 | 0 | 42 | 12 | 2 | 0 | 14 | 129 |
| 5:45 PM | 51 | 19 | 0 | 70 | 2 | 35 | 0 | 37 | 14 | 5 | 0 | 19 | 126 |
| Hourly Total | 209 | 75 | 0 | 284 | 12 | 142 | 0 | 154 | 71 | 12 | 0 | 83 | 521 |
| Grand Total | 587 | 282 | 0 | 869 | 33 | 672 | 0 | 705 | 266 | 53 | 0 | 319 | 1893 |
| Approach \% | 67.5 | 32.5 | - | - | 4.7 | 95.3 | - | - | 83.4 | 16.6 | - | - | - |
| Total \% | 31.0 | 14.9 | - | 45.9 | 1.7 | 35.5 | - | 37.2 | 14.1 | 2.8 | - | 16.9 | - |
| Motorcycles | 17 | 2 | - | 19 | 0 | 14 | - | 14 | 1 | 1 | - | 2 | 35 |
| \% Motorcycles | 2.9 | 0.7 | - | 2.2 | 0.0 | 2.1 | - | 2.0 | 0.4 | 1.9 | - | 0.6 | 1.8 |
| Cars | 325 | 168 | - | 493 | 13 | 343 | - | 356 | 154 | 15 | - | 169 | 1018 |
| \% Cars | 55.4 | 59.6 | - | 56.7 | 39.4 | 51.0 | - | 50.5 | 57.9 | 28.3 | - | 53.0 | 53.8 |
| Light Goods Vehicles | 102 | 87 | - | 189 | 11 | 112 | - | 123 | 80 | 25 | - | 105 | 417 |
| \% Light Goods Vehicles | 17.4 | 30.9 | - | 21.7 | 33.3 | 16.7 | - | 17.4 | 30.1 | 47.2 | - | 32.9 | 22.0 |
| Buses | 4 | 1 | - | 5 | 0 | 5 | - | 5 | 0 | 2 | - | 2 | 12 |
| \% Buses | 0.7 | 0.4 | - | 0.6 | 0.0 | 0.7 | - | 0.7 | 0.0 | 3.8 | - | 0.6 | 0.6 |
| Single-Unit Trucks | 33 | 19 | - | 52 | 6 | 45 | - | 51 | 29 | 7 | - | 36 | 139 |
| \% Single-Unit Trucks | 5.6 | 6.7 | - | 6.0 | 18.2 | 6.7 | - | 7.2 | 10.9 | 13.2 | - | 11.3 | 7.3 |
| Articulated Trucks | 105 | 5 | - | 110 | 0 | 153 | - | 153 | 2 | 3 | - | 5 | 268 |
| \% Articulated Trucks | 17.9 | 1.8 | - | 12.7 | 0.0 | 22.8 | - | 21.7 | 0.8 | 5.7 | - | 1.6 | 14.2 |
| Bicycles on Road | 1 | 0 | - | 1 | 3 | 0 | - | 3 | 0 | 0 | - | 0 | 4 |
| \% Bicycles on Road | 0.2 | 0.0 |  | 0.1 | 9.1 | 0.0 | - | 0.4 | 0.0 | 0.0 |  | 0.0 | 0.2 |



Turning Movement Data Plot

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 01-TriHillFrontage_AirportRd TMC Site Code: TMC-01 Start Date: 07/16/2014
Page No: 4

Turning Movement Peak Hour Data (7:30 AM)

| Start Time | Turning Movement Peak Hour Data (7:30 AM) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Rd <br> Southbound |  |  |  | Tri Hill Frontage Northbound |  |  |  | Airport Rd <br> Eastbound |  |  |  | Int. Total |
|  | Thru | Right | Peds | App. Total | Left | Thru | Peds | App. Total | Left | Right | Peds | App. Total |  |
| 7:30 AM | 22 | 29 | 0 | 51 | 2 | 54 | 0 | 56 | 20 | 10 | 0 | 30 | 137 |
| 7:45 AM | 24 | 26 | 0 | 50 | 4 | 53 | 0 | 57 | 16 | 2 | 0 | 18 | 125 |
| 8:00 AM | 26 | 19 | 0 | 45 | 2 | 36 | 0 | 38 | 19 | 2 |  | 21 | 104 |
| 8:15 AM | 25 | 14 | 0 | 39 | 1 | 46 | 0 | 47 | 28 | 5 | 0 | 33 | 119 |
| Total | 97 | 88 | 0 | 185 | 9 | 189 | 0 | 198 | 83 | 19 | 0 | 102 | 485 |
| Approach \% | 52.4 | 47.6 | - | - | 4.5 | 95.5 | - | - | 81.4 | 18.6 | - | - | - |
| Total \% | 20.0 | 18.1 | - | 38.1 | 1.9 | 39.0 | - | 40.8 | 17.1 | 3.9 | - | 21.0 | - |
| PHF | 0.933 | 0.759 | - | 0.907 | 0.563 | 0.875 | - | 0.868 | 0.741 | 0.475 | - | 0.773 | 0.885 |
| Motorcycles | 1 | 0 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 |
| \% Motorcycles | 1.0 | 0.0 | - | 0.5 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.2 |
| Cars | 56 | 56 | - | 112 | 3 | 91 | - | 94 | 34 | 5 | - | 39 | 245 |
| \% Cars | 57.7 | 63.6 | - | 60.5 | 33.3 | 48.1 | - | 47.5 | 41.0 | 26.3 | - | 38.2 | 50.5 |
| Light Goods Vehicles | 15 | 26 | - | 41 | 4 | 44 | - | 48 | 31 | 9 | - | 40 | 129 |
| \% Light Goods Vehicles | 15.5 | 29.5 | - | 22.2 | 44.4 | 23.3 | - | 24.2 | 37.3 | 47.4 | - | 39.2 | 26.6 |
| Buses | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 2 |
| \% Buses | 0.0 | 1.1 | - | 0.5 | 0.0 | 0.0 | - | 0.0 | 0.0 | 5.3 | - | 1.0 | 0.4 |
| Single-Unit Trucks | 8 | 3 | - | 11 | 2 | 14 | - | 16 | 17 | 3 | - | 20 | 47 |
| \% Single-Unit Trucks | 8.2 | 3.4 | - | 5.9 | 22.2 | 7.4 | - | 8.1 | 20.5 | 15.8 | - | 19.6 | 9.7 |
| Articulated Trucks | 17 | 2 | - | 19 | 0 | 40 | - | 40 | 1 | 1 | - | 2 | 61 |
| \% Articulated Trucks | 17.5 | 2.3 | - | 10.3 | 0.0 | 21.2 | - | 20.2 | 1.2 | 5.3 | - | 2.0 | 12.6 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 01-TriHillFrontage_AirportRd TMC Site Code: TMC-01 Start Date: 07/16/2014
Page No: 6

Turning Movement Peak Hour Data (4:30 PM)

| Start Time | Airport Rd Southbound |  |  |  | Tri Hill Frontage Northbound |  |  |  | Airport Rd <br> Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thru | Right | Peds | App. Total | Left | Thru | Peds | App. Total | Left | Right | Peds | App. Total |  |
| 4:30 PM | 61 | 18 | 0 | 79 | 1 | 50 | 0 | 51 | 14 | 1 | 0 | 15 | 145 |
| 4:45 PM | 45 | 12 | 0 | 57 | 2 | 41 | 0 | 43 | 16 | 1 | 0 | 17 | 117 |
| 5:00 PM | 46 | 21 | 0 | 67 | 3 | 31 | 0 | 34 | 33 | 1 | 0 | 34 | 135 |
| 5:15 PM | 55 | 19 | 0 | 74 | 3 | 38 | 0 | 41 | 12 | 4 | 0 | 16 | 131 |
| Total | 207 | 70 | 0 | 277 | 9 | 160 | 0 | 169 | 75 | 7 | 0 | 82 | 528 |
| Approach \% | 74.7 | 25.3 | - | - | 5.3 | 94.7 | - | - | 91.5 | 8.5 | - | - | - |
| Total \% | 39.2 | 13.3 | - | 52.5 | 1.7 | 30.3 | - | 32.0 | 14.2 | 1.3 | - | 15.5 | - |
| PHF | 0.848 | 0.833 | - | 0.877 | 0.750 | 0.800 | - | 0.828 | 0.568 | 0.438 | - | 0.603 | 0.910 |
| Motorcycles | 10 | 0 | - | 10 | 0 | 3 | - | 3 | 0 | 0 | - | 0 | 13 |
| \% Motorcycles | 4.8 | 0.0 | - | 3.6 | 0.0 | 1.9 | - | 1.8 | 0.0 | 0.0 | - | 0.0 | 2.5 |
| Cars | 115 | 42 | - | 157 | 5 | 88 | - | 93 | 53 | 3 | - | 56 | 306 |
| \% Cars | 55.6 | 60.0 | - | 56.7 | 55.6 | 55.0 | - | 55.0 | 70.7 | 42.9 | - | 68.3 | 58.0 |
| Light Goods Vehicles | 42 | 17 | - | 59 | 2 | 14 | - | 16 | 20 | 4 | - | 24 | 99 |
| \% Light Goods Vehicles | 20.3 | 24.3 | - | 21.3 | 22.2 | 8.8 | - | 9.5 | 26.7 | 57.1 | - | 29.3 | 18.8 |
| Buses | 1 | 0 | - | 1 | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 2 |
| \% Buses | 0.5 | 0.0 | - | 0.4 | 0.0 | 0.6 | - | 0.6 | 0.0 | 0.0 | - | 0.0 | 0.4 |
| Single-Unit Trucks | 8 | 9 | - | 17 | 2 | 14 | - | 16 | 2 | 0 | - | 2 | 35 |
| \% Single-Unit Trucks | 3.9 | 12.9 | - | 6.1 | 22.2 | 8.8 | - | 9.5 | 2.7 | 0.0 | - | 2.4 | 6.6 |
| Articulated Trucks | 31 | 2 | - | 33 | 0 | 40 | - | 40 | 0 | 0 | - | 0 | 73 |
| \% Articulated Trucks | 15.0 | 2.9 | - | 11.9 | 0.0 | 25.0 | - | 23.7 | 0.0 | 0.0 | - | 0.0 | 13.8 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:30 PM)

## Turning Movement Data

| Start Time | Southbound St. Southbound |  |  |  | Airport Rd <br> Northbound |  |  |  | I-15 NB On Westbound |  | I-15 NB Off Eastbound |  |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Peds | App. Total | Right | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 23 | 16 | 0 | 39 | 44 | 8 | 0 | 52 | 1 | 0 | 6 | 0 | 2 | 0 | 8 | 99 |
| 7:15 AM | 28 | 16 | 0 | 44 | 42 | 8 | 0 | 50 | 0 | 0 | 2 | 1 | 1 | 0 | 4 | 98 |
| 7:30 AM | 48 | 16 | 0 | 64 | 64 | 9 | 0 | 73 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 142 |
| 7:45 AM | 47 | 12 | 0 | 59 | 54 | 15 | 0 | 69 | 0 | 0 | 3 | 0 | 2 | 0 | 5 | 133 |
| Hourly Total | 146 | 60 | 0 | 206 | 204 | 40 | 0 | 244 | 1 | 0 | 15 | 1 | 6 | 0 | 22 | 472 |
| 8:00 AM | 43 | 28 | 0 | 71 | 47 | 8 | 0 | 55 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 128 |
| 8:15 AM | 35 | 23 | 0 | 58 | 57 | 17 | 0 | 74 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 137 |
| 8:30 AM | 33 | 17 | 0 | 50 | 40 | 10 | 0 | 50 | 0 | 0 | 8 | 0 | 1 | 0 | 9 | 109 |
| 8:45 AM | 29 | 19 | 0 | 48 | 44 | 13 | 0 | 57 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 108 |
| Hourly Total | 140 | 87 | 0 | 227 | 188 | 48 | 0 | 236 | 0 | 0 | 17 | 0 | 2 | 0 | 19 | 482 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 68 | 107 | 0 | 175 | 60 | 8 | 0 | 68 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 251 |
| 4:15 PM | 46 | 50 | 0 | 96 | 47 | 9 | 0 | 56 | 0 | 0 | 9 | 1 | 0 | 0 | 10 | 162 |
| 4:30 PM | 68 | 111 | 0 | 179 | 47 | 17 | 0 | 64 | 0 | 0 | 10 | 1 | 1 | 0 | 12 | 255 |
| 4:45 PM | 54 | 39 | 0 | 93 | 43 | 13 | 0 | 56 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 154 |
| Hourly Total | 236 | 307 | 0 | 543 | 197 | 47 | 0 | 244 | 0 | 0 | 31 | 2 | 2 | 0 | 35 | 822 |
| 5:00 PM | 63 | 53 | 0 | 116 | 55 | 8 | 0 | 63 | 0 | 0 | 5 | 0 | 0 | 0 | 5 | 184 |
| 5:15 PM | 66 | 44 | 0 | 110 | 39 | 12 | 0 | 51 | 0 | 0 | 7 | 0 | 1 | 0 | 8 | 169 |
| 5:30 PM | 65 | 29 | 0 | 94 | 39 | 11 | 0 | 50 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 151 |
| 5:45 PM | 59 | 21 | 0 | 80 | 38 | 12 | 0 | 50 | 0 | 0 | 12 | 0 | 0 | 0 | 12 | 142 |
| Hourly Total | 253 | 147 | 0 | 400 | 171 | 43 | 0 | 214 | 0 | 0 | 31 | 0 | 1 | 0 | 32 | 646 |
| Grand Total | 775 | 601 | 0 | 1376 | 760 | 178 | 0 | 938 | 1 | 0 | 94 | 3 | 11 | 0 | 108 | 2422 |
| Approach \% | 56.3 | 43.7 | - | - | 81.0 | 19.0 | - | - | - | - | 87.0 | 2.8 | 10.2 | - | - | - |
| Total \% | 32.0 | 24.8 | - | 56.8 | 31.4 | 7.3 | - | 38.7 | - | 0.0 | 3.9 | 0.1 | 0.5 | - | 4.5 | - |
| Motorcycles | 18 | 13 | - | 31 | 12 | 2 | - | 14 | - | 0 | 2 | 0 | 0 | - | 2 | 47 |
| \% Motorcycles | 2.3 | 2.2 | - | 2.3 | 1.6 | 1.1 | - | 1.5 | - | - | 2.1 | 0.0 | 0.0 | - | 1.9 | 1.9 |
| Cars | 425 | 392 | - | 817 | 409 | 68 | - | 477 | - | 0 | 36 | 2 | 9 | - | 47 | 1341 |
| \% Cars | 54.8 | 65.2 | - | 59.4 | 53.8 | 38.2 | - | 50.9 | - | - | 38.3 | 66.7 | 81.8 | - | 43.5 | 55.4 |
| Light Goods Vehicles | 208 | 175 | - | 383 | 165 | 36 | - | 201 | - | 0 | 17 | 1 | 2 | - | 20 | 604 |
| \% Light Goods Vehicles | 26.8 | 29.1 | - | 27.8 | 21.7 | 20.2 | - | 21.4 | - | - | 18.1 | 33.3 | 18.2 | - | 18.5 | 24.9 |
| Buses | 5 | 0 | - | 5 | 2 | 2 | - | 4 | - | 0 | 0 | 0 | 0 | - | 0 | 9 |
| \% Buses | 0.6 | 0.0 | - | 0.4 | 0.3 | 1.1 | - | 0.4 | - | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.4 |
| Single-Unit Trucks | 45 | 13 | - | 58 | 78 | 17 | - | 95 | - | 0 | 8 | 0 | 0 | - | 8 | 161 |
| \% Single-Unit Trucks | 5.8 | 2.2 | - | 4.2 | 10.3 | 9.6 | - | 10.1 | - | - | 8.5 | 0.0 | 0.0 | - | 7.4 | 6.6 |
| Articulated Trucks | 72 | 8 | - | 80 | 94 | 53 | - | 147 | - | 0 | 31 | 0 | 0 | - | 31 | 258 |
| \% Articulated Trucks | 9.3 | 1.3 | - | 5.8 | 12.4 | 29.8 | - | 15.7 | - | - | 33.0 | 0.0 | 0.0 | - | 28.7 | 10.7 |
| Bicycles on Road | 2 | 0 | - | 2 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 2 |
| \% Bicycles on Road | 0.3 | 0.0 | - | 0.1 | 0.0 | 0.0 | - | 0.0 |  | - | 0.0 | 0.0 | 0.0 |  | 0.0 | 0.1 |




Turning Movement Data Plot

Turning Movement Peak Hour Data (7:30 AM)

| Start Time | Southbound St. <br> Southbound |  |  |  | Airport Rd Northbound |  |  |  | I-15 NB On <br> Westbound |  | I-15 NB Off Eastbound |  |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Peds | App. Total | Right | Thru | Left | Peds | App. Total |  |
| 7:30 AM | 48 | 16 | 0 | 64 | 64 | 9 | 0 | 73 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 142 |
| 7:45 AM | 47 | 12 | 0 | 59 | 54 | 15 | 0 | 69 | 0 | 0 | 3 | 0 | 2 | 0 | 5 | 133 |
| 8:00 AM | 43 | 28 | 0 | 71 | 47 | 8 | 0 | 55 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 128 |
| 8:15 AM | 35 | 23 | 0 | 58 | 57 | 17 | 0 | 74 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 137 |
| Total | 173 | 79 | 0 | 252 | 222 | 49 | 0 | 271 | 0 | 0 | 13 | 0 | 4 | 0 | 17 | 540 |
| Approach \% | 68.7 | 31.3 | - | - | 81.9 | 18.1 | - | - | - | - | 76.5 | 0.0 | 23.5 | - | - | - |
| Total \% | 32.0 | 14.6 | - | 46.7 | 41.1 | 9.1 | - | 50.2 | - | 0.0 | 2.4 | 0.0 | 0.7 | - | 3.1 | - |
| PHF | 0.901 | 0.705 | - | 0.887 | 0.867 | 0.721 | - | 0.916 | - | 0.000 | 0.813 | 0.000 | 0.500 | - | 0.850 | 0.951 |
| Motorcycles | 1 | 0 | - | 1 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Motorcycles | 0.6 | 0.0 | - | 0.4 | 0.0 | 0.0 | - | 0.0 | - | - | 0.0 | - | 0.0 | - | 0.0 | 0.2 |
| Cars | 93 | 38 | - | 131 | 114 | 17 | - | 131 | - | 0 | 4 | 0 | 4 | - | 8 | 270 |
| \% Cars | 53.8 | 48.1 | - | 52.0 | 51.4 | 34.7 | - | 48.3 | - | - | 30.8 | - | 100.0 | - | 47.1 | 50.0 |
| Light Goods Vehicles | 59 | 31 | - | 90 | 49 | 12 | - | 61 | - | 0 | 3 | 0 | 0 | - | 3 | 154 |
| \% Light Goods Vehicles | 34.1 | 39.2 | - | 35.7 | 22.1 | 24.5 | - | 22.5 | - | - | 23.1 | - | 0.0 | - | 17.6 | 28.5 |
| Buses | 1 | 0 | - | 1 | 0 | 1 | - | 1 | - | 0 | 0 | 0 | 0 | $\checkmark$ | 0 | 2 |
| \% Buses | 0.6 | 0.0 | - | 0.4 | 0.0 | 2.0 | - | 0.4 | - | - | 0.0 | - | 0.0 | - | 0.0 | 0.4 |
| Single-Unit Trucks | 12 | 4 | - | 16 | 33 | 5 | - | 38 | - | 0 | 1 | 0 | 0 | $\checkmark$ | 1 | 55 |
| \% Single-Unit Trucks | 6.9 | 5.1 | - | 6.3 | 14.9 | 10.2 | - | 14.0 | - | - | 7.7 | - | 0.0 | - | 5.9 | 10.2 |
| Articulated Trucks | 7 | 6 | - | 13 | 26 | 14 | - | 40 | - | 0 | 5 | 0 | 0 | - | 5 | 58 |
| \% Articulated Trucks | 4.0 | 7.6 | - | 5.2 | 11.7 | 28.6 | - | 14.8 | - | - | 38.5 | - | 0.0 | - | 29.4 | 10.7 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | 0.0 | - | 0.0 | $\checkmark$ | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | 0 | - | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Turning Movement Peak Hour Data (4:00 PM)

| Start Time | Southbound St. Southbound |  |  |  | Airport Rd <br> Northbound |  |  |  | I-15 NB On Westbound |  | I-15 NB Off Eastbound |  |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Peds | App. Total | Right | Thru | Left | Peds | App. Total |  |
| 4:00 PM | 68 | 107 | 0 | 175 | 60 | 8 | 0 | 68 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 251 |
| 4:15 PM | 46 | 50 | 0 | 96 | 47 | 9 | 0 | 56 | 0 | 0 | 9 | 1 | 0 | 0 | 10 | 162 |
| 4:30 PM | 68 | 111 | 0 | 179 | 47 | 17 | 0 | 64 | 0 | 0 | 10 | 1 | 1 | 0 | 12 | 255 |
| 4:45 PM | 54 | 39 | 0 | 93 | 43 | 13 | 0 | 56 | 0 | 0 | 4 | 0 | 1 | 0 | 5 | 154 |
| Total | 236 | 307 | 0 | 543 | 197 | 47 | 0 | 244 | 0 | 0 | 31 | 2 | 2 | 0 | 35 | 822 |
| Approach \% | 43.5 | 56.5 | - | - | 80.7 | 19.3 | - | - | - | - | 88.6 | 5.7 | 5.7 | - | - | - |
| Total \% | 28.7 | 37.3 | - | 66.1 | 24.0 | 5.7 | - | 29.7 | - | 0.0 | 3.8 | 0.2 | 0.2 | - | 4.3 | - |
| PHF | 0.868 | 0.691 | - | 0.758 | 0.821 | 0.691 | - | 0.897 | - | 0.000 | 0.775 | 0.500 | 0.500 | - | 0.729 | 0.806 |
| Motorcycles | 8 | 8 | - | 16 | 7 | 1 | - | 8 | - | 0 | 1 | 0 | 0 | - | 1 | 25 |
| \% Motorcycles | 3.4 | 2.6 | - | 2.9 | 3.6 | 2.1 | - | 3.3 | - | - | 3.2 | 0.0 | 0.0 | - | 2.9 | 3.0 |
| Cars | 112 | 211 | - | 323 | 100 | 19 | - | 119 | - | 0 | 8 | 1 | 0 | - | 9 | 451 |
| \% Cars | 47.5 | 68.7 | - | 59.5 | 50.8 | 40.4 | - | 48.8 | - | - | 25.8 | 50.0 | 0.0 | - | 25.7 | 54.9 |
| Light Goods Vehicles | 74 | 86 | - | 160 | 48 | 8 | - | 56 | - | 0 | 7 | 1 | 2 | - | 10 | 226 |
| \% Light Goods Vehicles | 31.4 | 28.0 | - | 29.5 | 24.4 | 17.0 | - | 23.0 | - | - | 22.6 | 50.0 | 100.0 | - | 28.6 | 27.5 |
| Buses | 0 | 0 | - | 0 | 1 | 0 | - | 1 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Buses | 0.0 | 0.0 | - | 0.0 | 0.5 | 0.0 | - | 0.4 | - | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.1 |
| Single-Unit Trucks | 12 | 2 | - | 14 | 13 | 5 | - | 18 | - | 0 | 2 | 0 | 0 | - | 2 | 34 |
| \% Single-Unit Trucks | 5.1 | 0.7 | - | 2.6 | 6.6 | 10.6 | - | 7.4 | - | - | 6.5 | 0.0 | 0.0 | - | 5.7 | 4.1 |
| Articulated Trucks | 29 | 0 | - | 29 | 28 | 14 | - | 42 | - | 0 | 13 | 0 | 0 | - | 13 | 84 |
| \% Ariculated Trucks | 12.3 | 0.0 | - | 5.3 | 14.2 | 29.8 | - | 17.2 | - | - | 41.9 | 0.0 | 0.0 | - | 37.1 | 10.2 |
| Bicycles on Road | 1 | 0 | - | 1 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Bicycles on Road | 0.4 | 0.0 | - | 0.2 | 0.0 | 0.0 | - | 0.0 | - | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.1 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | 0 | - | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | . |



Turning Movement Peak Hour Data Plot (4:00 PM)

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 03-115SBOn_AirportRd TMC Site Code: TMC-03 7/16/2014
Page No: 1

Turning Movement Data

| Start Time | Airport Rd Southbound |  |  |  |  | Airport Rd <br> Northbound |  |  |  | I-15 SB On <br> Eastbound |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Peds | App. Total |  |
| 7:00 AM | 0 | 41 | 0 | 0 | 41 | 5 | 5 |  | 10 | 0 | 0 | 51 |
| 7:15 AM | 1 | 44 | 0 | 0 | 45 | 4 | 5 | 0 | 9 | 0 | 0 | 54 |
| 7:30 AM | 1 | 63 | 0 | 0 | 64 | 5 | 5 | 0 | 10 | 0 | 0 | 74 |
| 7:45 AM | 1 | 61 | 0 | 0 | 62 | 9 | 9 |  | 18 | 0 | 0 | 80 |
| Hourly Total | 3 | 209 | 0 | 0 | 212 | 23 | 24 | 0 | 47 | 0 | 0 | 259 |
| 8:00 AM | 0 | 72 | 0 | 0 | 72 | 2 | 6 | 0 | 8 | 0 | 0 | 80 |
| 8:15 AM | 4 | 55 | 0 | 0 | 59 | 7 | 12 | 0 | 19 | 0 | 0 | 78 |
| 8:30 AM | 1 | 55 | 1 | 0 | 57 | 6 | 5 | 0 | 11 | 0 | 0 | 68 |
| 8:45 AM | 2 | 48 | 0 | 0 | 50 | 8 | 5 | 0 | 13 | 0 | 0 | 63 |
| Hourly Total | 7 | 230 | 1 | 0 | 238 | 23 | 28 | 0 | 51 | 0 | 0 | 289 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 5 | 175 | 0 | 0 | 180 | 4 | 3 | 0 | 7 | 0 | 0 | 187 |
| 4:15 PM | 3 | 94 | 0 | 0 | 97 | 4 | 5 | 0 | 9 | 0 | 0 | 106 |
| 4:30 PM | 2 | 182 | 0 | 0 | 184 | 6 | 10 | 0 | 16 | 0 | 0 | 200 |
| 4:45 PM | 4 | 91 | 0 | 0 | 95 | 7 | 7 | 0 | 14 | 0 | 0 | 109 |
| Hourly Total | 14 | 542 | 0 | 0 | 556 | 21 | 25 | 0 | 46 | 0 | 0 | 602 |
| 5:00 PM | 0 | 117 | 0 | 0 | 117 | 2 | 6 | 0 | 8 | 0 | 0 | 125 |
| 5:15 PM | 2 | 108 | 0 | 0 | 110 | 4 | 9 | 0 | 13 | 0 | 0 | 123 |
| 5:30 PM | 4 | 96 | 0 | 0 | 100 | 3 | 6 | 0 | 9 | 0 | 0 | 109 |
| 5:45 PM | 1 | 78 | 0 | 0 | 79 | 2 | 9 | 0 | 11 | 0 | 0 | 90 |
| Hourly Total | 7 | 399 | 0 | 0 | 406 | 11 | 30 | 0 | 41 | 0 | 0 | 447 |
| Grand Total | 31 | 1380 | 1 | 0 | 1412 | 78 | 107 | 0 | 185 | 0 | 0 | 1597 |
| Approach \% | 2.2 | 97.7 | 0.1 | - | - | 42.2 | 57.8 | - | - | - | - | - |
| Total \% | 1.9 | 86.4 | 0.1 | - | 88.4 | 4.9 | 6.7 | - | 11.6 | - | 0.0 | - |
| Motorcycles | 0 | 32 | 0 | - | 32 | 1 | 1 | - | 2 | - | 0 | 34 |
| \% Motorcycles | 0.0 | 2.3 | 0.0 | - | 2.3 | 1.3 | 0.9 | - | 1.1 | - | - | 2.1 |
| Cars | 20 | 765 | 1 | - | 786 | 43 | 25 | - | 68 | - | 0 | 854 |
| \% Cars | 64.5 | 55.4 | 100.0 | - | 55.7 | 55.1 | 23.4 | - | 36.8 | - | - | 53.5 |
| Light Goods Vehicles | 9 | 432 | 0 | - | 441 | 22 | 21 | - | 43 | - | 0 | 484 |
| \% Light Goods Vehicles | 29.0 | 31.3 | 0.0 | - | 31.2 | 28.2 | 19.6 | - | 23.2 | - | - | 30.3 |
| Buses | 0 | 2 | 0 | - | 2 | 0 | 0 | - | 0 | - | 0 | 2 |
| \% Buses | 0.0 | 0.1 | 0.0 | - | 0.1 | 0.0 | 0.0 | - | 0.0 | - | - | 0.1 |
| Single-Unit Trucks | 1 | 61 | 0 | - | 62 | 5 | 10 | - | 15 | - | 0 | 77 |
| \% Single-Unit Trucks | 3.2 | 4.4 | 0.0 | - | 4.4 | 6.4 | 9.3 | - | 8.1 | - | - | 4.8 |
| Articulated Trucks | 1 | 85 | 0 | - | 86 | 7 | 49 | - | 56 | - | 0 | 142 |
| \% Articulated Trucks | 3.2 | 6.2 | 0.0 | - | 6.1 | 9.0 | 45.8 | - | 30.3 | - | - | 8.9 |
| Bicycles on Road | 0 | 3 | 0 | - | 3 | 0 | 1 | - | 1 | - | 0 | 4 |
| \% Bicycles on Road | 0.0 | 0.2 | 0.0 | - | 0.2 | 0.0 | 0.9 | - | 0.5 | - | - | 0.3 |



Turning Movement Data Plot

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Turning Movement Peak Hour Data (7:30 AM)

| Start Time | Airport Rd <br> Southbound |  |  |  |  | Airport Rd Northbound |  |  |  | I-15 SB On <br> Eastbound |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Peds | App. Total |  |
| 7:30 AM | 1 | 63 | 0 | 0 | 64 | 5 | 5 | 0 | 10 | 0 | 0 | 74 |
| 7:45 AM | 1 | 61 | 0 | 0 | 62 | 9 | 9 | 0 | 18 | 0 | 0 | 80 |
| 8:00 AM | 0 | 72 | 0 | 0 | 72 | 2 | 6 | 0 | 8 | 0 | 0 | 80 |
| 8:15 AM | 4 | 55 | 0 | 0 | 59 | 7 | 12 | 0 | 19 | 0 | 0 | 78 |
| Total | 6 | 251 | 0 | 0 | 257 | 23 | 32 | 0 | 55 | 0 | 0 | 312 |
| Approach \% | 2.3 | 97.7 | 0.0 | - | - | 41.8 | 58.2 | - | - | - | - | - |
| Total \% | 1.9 | 80.4 | 0.0 | - | 82.4 | 7.4 | 10.3 | - | 17.6 | - | 0.0 | - |
| PHF | 0.375 | 0.872 | 0.000 | - | 0.892 | 0.639 | 0.667 | - | 0.724 | - | 0.000 | 0.975 |
| Motorcycles | 0 | 1 | 0 | - | 1 | 0 | 0 | - | 0 | - | 0 | 1 |
| \% Motorcycles | 0.0 | 0.4 | - | - | 0.4 | 0.0 | 0.0 | - | 0.0 | - | - | 0.3 |
| Cars | 4 | 102 | 0 | - | 106 | 13 | 7 | - | 20 | - | 0 | 126 |
| \% Cars | 66.7 | 40.6 | - | - | 41.2 | 56.5 | 21.9 | - | 36.4 | - | - | 40.4 |
| Light Goods Vehicles | 1 | 113 | 0 | - | 114 | 5 | 10 | - | 15 | - | 0 | 129 |
| \% Light Goods Vehicles | 16.7 | 45.0 | - | - | 44.4 | 21.7 | 31.3 | - | 27.3 | - | - | 41.3 |
| Buses | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | - | 0 | 0 |
| \% Buses | 0.0 | 0.0 | - | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | 0.0 |
| Single-Unit Trucks | 1 | 17 | 0 | - | 18 | 2 | 3 | - | 5 | - | 0 | 23 |
| \% Single-Unit Trucks | 16.7 | 6.8 | - | - | 7.0 | 8.7 | 9.4 | - | 9.1 | - | - | 7.4 |
| Articulated Trucks | 0 | 18 | 0 | - | 18 | 3 | 11 | - | 14 | - | 0 | 32 |
| \% Articulated Trucks | 0.0 | 7.2 | - | - | 7.0 | 13.0 | 34.4 | - | 25.5 | - | - | 10.3 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | 0 | 1 | - | 1 | - | 0 | 1 |
| \% Bicycles on Road | 0.0 | 0.0 | - | - | 0.0 | 0.0 | 3.1 | - | 1.8 | - | - | 0.3 |
| Pedestrians | - | - | - | 0 | - | - | - | 0 | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | $\checkmark$ | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Turning Movement Peak Hour Data (4:00 PM)

| Start Time | Airport Rd Southbound |  |  |  |  | Airport Rd Northbound |  |  |  | I-15 SB On <br> Eastbound |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Peds | App. Total |  |
| 4:00 PM | 5 | 175 | 0 | 0 | 180 | 4 | 3 | 0 | 7 | 0 | 0 | 187 |
| 4:15 PM | 3 | 94 | 0 | 0 | 97 | 4 | 5 | 0 | 9 | 0 | 0 | 106 |
| 4:30 PM | 2 | 182 | 0 | 0 | 184 | 6 | 10 | 0 | 16 | 0 | 0 | 200 |
| 4:45 PM | 4 | 91 | 0 | 0 | 95 | 7 | 7 | 0 | 14 | 0 | 0 | 109 |
| Total | 14 | 542 | 0 | 0 | 556 | 21 | 25 | 0 | 46 | 0 | 0 | 602 |
| Approach \% | 2.5 | 97.5 | 0.0 | - | - | 45.7 | 54.3 | - | - | - | - | - |
| Total \% | 2.3 | 90.0 | 0.0 | - | 92.4 | 3.5 | 4.2 | - | 7.6 | - | 0.0 | - |
| PHF | 0.700 | 0.745 | 0.000 | - | 0.755 | 0.750 | 0.625 | - | 0.719 | - | 0.000 | 0.753 |
| Motorcycles | 0 | 16 | 0 | - | 16 | 0 | 1 | - | 1 | - | 0 | 17 |
| \% Motorcycles | 0.0 | 3.0 | - | - | 2.9 | 0.0 | 4.0 | - | 2.2 | - | - | 2.8 |
| Cars | 9 | 331 | 0 | - | 340 | 10 | 6 | - | 16 | - | 0 | 356 |
| \% Cars | 64.3 | 61.1 | - | - | 61.2 | 47.6 | 24.0 | - | 34.8 | - | - | 59.1 |
| Light Goods Vehicles | 5 | 154 | 0 | - | 159 | 7 | 2 | - | 9 | - | 0 | 168 |
| \% Light Goods Vehicles | 35.7 | 28.4 | - | - | 28.6 | 33.3 | 8.0 | - | 19.6 | - | - | 27.9 |
| Buses | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | - | 0 | 0 |
| \% Buses | 0.0 | 0.0 | - | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | 0.0 |
| Single-Unit Trucks | 0 | 17 | 0 | - | 17 | 1 | 5 | - | 6 | $\checkmark$ | 0 | 23 |
| \% Single-Unit Trucks | 0.0 | 3.1 | - | - | 3.1 | 4.8 | 20.0 | - | 13.0 | - | - | 3.8 |
| Articulated Trucks | 0 | 23 | 0 | - | 23 | 3 | 11 | - | 14 | - | 0 | 37 |
| \% Articulated Trucks | 0.0 | 4.2 | - | - | 4.1 | 14.3 | 44.0 | - | 30.4 | - | - | 6.1 |
| Bicycles on Road | 0 | 1 | 0 | - | 1 | 0 | 0 | - | 0 | - | 0 | 1 |
| \% Bicycles on Road | 0.0 | 0.2 | - | - | 0.2 | 0.0 | 0.0 | - | 0.0 | - | - | 0.2 |
| Pedestrians | - | - | - | 0 | - | - | - | 0 | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:00 PM)

Robert Peccia \& Associates 825 Custer Ave

Count Name: 03-I15SBOn_AirportRd TMC Site Code: TMC-03
Helena, Montana, United States 59604
406-447-5000 scottr@rpa-hIn.com

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hln.com

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-04
Start Date: 07/16/2014
Page No: 1

Turning Movement Data

| Start Time | Airport Rd Southbound |  |  |  | Airport Rd Northbound |  |  |  | I-15 SB Off Westbound |  |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total |  |
| 7:00 AM | 0 | 13 | 0 | 13 | 5 | 0 | 0 | 5 | 47 | 4 | 22 | 0 | 73 | 5 | 0 | 0 | 5 | 96 |
| 7:15 AM | 1 | 9 | 0 | 10 | 4 | 0 | 0 | 4 | 34 | 13 | 31 | 0 | 78 | 5 | 1 | 0 | 6 | 98 |
| 7:30 AM | 0 | 9 | 0 | 9 | 3 | 2 | 0 | 5 | 18 | 13 | 43 | 0 | 74 | 12 | 0 | 0 | 12 | 100 |
| 7:45 AM | 1 | 9 | 0 | 10 | 4 | 5 | 0 | 9 | 28 | 15 | 49 | 0 | 92 | 6 | 3 | 0 | 9 | 120 |
| Hourly Total | 2 | 40 | 0 | 42 | 16 | 7 | 0 | 23 | 127 | 45 | 145 | 0 | 317 | 28 | 4 | 0 | 32 | 414 |
| 8:00 AM | 2 | 13 | 0 | 15 | 1 | 1 | 0 | 2 | 16 | 13 | 36 |  | 65 | 21 | 1 | 0 | 22 | 104 |
| 8:15 AM | 0 | 12 | 0 | 12 | 3 | 4 | 0 | 7 | 8 | 13 | 33 | 0 | 54 | 15 | 1 | 0 | 16 | 89 |
| 8:30 AM | 1 | 13 | 0 | 14 | 2 | 5 | 0 | 7 | 13 | 2 | 36 | 0 | 51 | 7 | 0 | 0 | 7 | 79 |
| 8:45 AM | 1 | 11 | 0 | 12 | 6 | 2 | 0 | 8 | 17 | 10 | 23 | 0 | 50 | 16 | 2 | 0 | 18 | 88 |
| Hourly Total | 4 | 49 | 0 | 53 | 12 | 12 | 0 | 24 | 54 | 38 | 128 | 0 | 220 | 59 | 4 | 0 | 63 | 360 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 0 | 101 | 0 | 101 | 2 | 3 | 0 | 5 | 13 | 4 | 61 | 0 | 78 | 19 | 0 | 0 | 19 | 203 |
| 4:15 PM | 0 | 44 | 0 | 44 | 3 | 1 | 0 | 4 | 10 | 7 | 37 | 0 | 54 | 14 | 0 | 0 | 14 | 116 |
| 4:30 PM | 1 | 105 | 0 | 106 | 5 | 3 | 0 | 8 | 7 | 6 | 65 | 0 | 78 | 14 | 0 | 0 | 14 | 206 |
| 4:45 PM | 0 | 36 | 0 | 36 | 5 | 1 | 0 | 6 | 17 | 9 | 54 | 0 | 80 | 8 | 0 | 0 | 8 | 130 |
| Hourly Total | 1 | 286 | 0 | 287 | 15 | 8 | 0 | 23 | 47 | 26 | 217 | 0 | 290 | 55 | 0 | 0 | 55 | 655 |
| 5:00 PM | 0 | 40 | 0 | 40 | 2 | 0 | 0 | 2 | 8 | 13 | 57 | 0 | 78 | 21 | 0 | 0 | 21 | 141 |
| 5:15 PM | 1 | 37 | 0 | 38 | 3 | 1 | 0 | 4 | 10 | 5 | 65 | 0 | 80 | 7 | 0 | 0 | 7 | 129 |
| 5:30 PM | 0 | 25 | 0 | 25 | 3 | 1 | 0 | 4 | 7 | 4 | 65 | 0 | 76 | 11 | 0 | 0 | 11 | 116 |
| 5:45 PM | 0 | 16 | 0 | 16 | 1 | 1 | 0 | 2 | 16 | 6 | 56 | 0 | 78 | 5 | 0 | 0 | 5 | 101 |
| Hourly Total | 1 | 118 | 0 | 119 | 9 | 3 | 0 | 12 | 41 | 28 | 243 | 0 | 312 | 44 | 0 | 0 | 44 | 487 |
| Grand Total | 8 | 493 | 0 | 501 | 52 | 30 | 0 | 82 | 269 | 137 | 733 | 0 | 1139 | 186 | 8 | 0 | 194 | 1916 |
| Approach \% | 1.6 | 98.4 | - | - | 63.4 | 36.6 | - | - | 23.6 | 12.0 | 64.4 | - | - | 95.9 | 4.1 | - | - | - |
| Total \% | 0.4 | 25.7 | - | 26.1 | 2.7 | 1.6 | - | 4.3 | 14.0 | 7.2 | 38.3 | - | 59.4 | 9.7 | 0.4 | - | 10.1 | - |
| Motorcycles | 0 | 11 | - | 11 | 0 | 0 | - | 0 | 6 | 2 | 15 | - | 23 | 4 | 0 | - | 4 | 38 |
| \% Motorcycles | 0.0 | 2.2 | - | 2.2 | 0.0 | 0.0 | - | 0.0 | 2.2 | 1.5 | 2.0 | - | 2.0 | 2.2 | 0.0 | - | 2.1 | 2.0 |
| Cars | 5 | 320 | - | 325 | 41 | 10 | - | 51 | 173 | 87 | 363 | - | 623 | 90 | 4 | - | 94 | 1093 |
| \% Cars | 62.5 | 64.9 | - | 64.9 | 78.8 | 33.3 | - | 62.2 | 64.3 | 63.5 | 49.5 | - | 54.7 | 48.4 | 50.0 | - | 48.5 | 57.0 |
| Light Goods Vehicles | 3 | 149 | - | 152 | 6 | 13 | - | 19 | 83 | 37 | 218 | - | 338 | 75 | 3 | - | 78 | 587 |
| \% Light Goods Vehicles | 37.5 | 30.2 | - | 30.3 | 11.5 | 43.3 | - | 23.2 | 30.9 | 27.0 | 29.7 | - | 29.7 | 40.3 | 37.5 | - | 40.2 | 30.6 |
| Buses | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | 8 | - | 8 | 0 | 0 | - | 0 | 9 |
| \% Buses | 0.0 | 0.2 | - | 0.2 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 1.1 | - | 0.7 | 0.0 | 0.0 | - | 0.0 | 0.5 |
| Single-Unit Trucks | 0 | 6 | - | 6 | 3 | 2 | - | 5 | 4 | 2 | 46 | - | 52 | 7 | 0 | - | 7 | 70 |
| \% Single-Unit Trucks | 0.0 | 1.2 | - | 1.2 | 5.8 | 6.7 | - | 6.1 | 1.5 | 1.5 | 6.3 | - | 4.6 | 3.8 | 0.0 | - | 3.6 | 3.7 |
| Articulated Trucks | 0 | 3 | - | 3 | 2 | 5 | - | 7 | 3 | 7 | 83 | - | 93 | 10 | 1 | - | 11 | 114 |
| \% Articulated Trucks | 0.0 | 0.6 | - | 0.6 | 3.8 | 16.7 | - | 8.5 | 1.1 | 5.1 | 11.3 | - | 8.2 | 5.4 | 12.5 | - | 5.7 | 5.9 |
| Bicycles on Road | 0 | 3 | - | 3 | 0 | 0 | - | 0 | 0 | 2 | 0 | - | 2 | 0 | 0 | - | 0 | 5 |
| \% Bicycles on Road | 0.0 | 0.6 |  | 0.6 | 0.0 | 0.0 |  | 0.0 | 0.0 | 1.5 | 0.0 |  | 0.2 | 0.0 | 0.0 |  | 0.0 | 0.3 |



Robert Peccia \& Associates

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-0
Start Date: 07/16/2014
Page No: 3


Turning Movement Data Plot

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hln.com

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-0
Start Date: 07/16/2014
Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

| Start Time | Airport Rd Southbound |  |  |  | Airport Rd <br> Northbound |  |  |  | I-15 SB Off <br> Westbound |  |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total |  |
| 7:15 AM | 1 | 9 | 0 | 10 | 4 | 0 | 0 | 4 | 34 | 13 | 31 | 0 | 78 | 5 | 1 | 0 | 6 | 98 |
| 7:30 AM | 0 | 9 | 0 | 9 | 3 | 2 | 0 | 5 | 18 | 13 | 43 |  | 74 | 12 | 0 | 0 | 12 | 100 |
| 7:45 AM | 1 | 9 | 0 | 10 | 4 | 5 | 0 | 9 | 28 | 15 | 49 | 0 | 92 | 6 | 3 | 0 | 9 | 120 |
| 8:00 AM | 2 | 13 | 0 | 15 | 1 | 1 | 0 | 2 | 16 | 13 | 36 | 0 | 65 | 21 | 1 | 0 | 22 | 104 |
| Total | 4 | 40 | 0 | 44 | 12 | 8 | 0 | 20 | 96 | 54 | 159 | 0 | 309 | 44 | 5 | 0 | 49 | 422 |
| Approach \% | 9.1 | 90.9 | - | - | 60.0 | 40.0 | - | - | 31.1 | 17.5 | 51.5 | - | - | 89.8 | 10.2 | - | - | - |
| Total \% | 0.9 | 9.5 | - | 10.4 | 2.8 | 1.9 | - | 4.7 | 22.7 | 12.8 | 37.7 | - | 73.2 | 10.4 | 1.2 | - | 11.6 | - |
| PHF | 0.500 | 0.769 | - | 0.733 | 0.750 | 0.400 | - | 0.556 | 0.706 | 0.900 | 0.811 | - | 0.840 | 0.524 | 0.417 | - | 0.557 | 0.879 |
| Motorcycles | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 2 | 1 | 1 | - | 4 | 0 | 0 | - | 0 | 4 |
| \% Motorcycles | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 2.1 | 1.9 | 0.6 | - | 1.3 | 0.0 | 0.0 | - | 0.0 | 0.9 |
| Cars | 2 | 21 | - | 23 | 10 | 4 | - | 14 | 60 | 36 | 80 | - | 176 | 20 | 3 | - | 23 | 236 |
| \% Cars | 50.0 | 52.5 | - | 52.3 | 83.3 | 50.0 | - | 70.0 | 62.5 | 66.7 | 50.3 | - | 57.0 | 45.5 | 60.0 | - | 46.9 | 55.9 |
| Light Goods Vehicles | 2 | 18 | - | 20 | 1 | 3 | - | 4 | 31 | 13 | 61 | - | 105 | 19 | 2 | - | 21 | 150 |
| \% Light Goods Vehicles | 50.0 | 45.0 | - | 45.5 | 8.3 | 37.5 | - | 20.0 | 32.3 | 24.1 | 38.4 | - | 34.0 | 43.2 | 40.0 | - | 42.9 | 35.5 |
| Buses | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 1 |
| \% Buses | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.6 | - | 0.3 | 0.0 | 0.0 | - | 0.0 | 0.2 |
| Single-Unit Trucks | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 | 0 | 6 | - | 7 | 3 | 0 | - | 3 | 10 |
| \% Single-Unit Trucks | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 1.0 | 0.0 | 3.8 | - | 2.3 | 6.8 | 0.0 | - | 6.1 | 2.4 |
| Articulated Trucks | 0 | 1 | - | 1 | 1 | 1 | - | 2 | 2 | 4 | 10 | - | 16 | 2 | 0 | - | 2 | 21 |
| \% Ariculated Trucks | 0.0 | 2.5 | - | 2.3 | 8.3 | 12.5 | - | 10.0 | 2.1 | 7.4 | 6.3 | - | 5.2 | 4.5 | 0.0 | - | 4.1 | 5.0 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

Robert Peccia \& Associates

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-0
Start Date: 07/16/2014
Page No: 5


Turning Movement Peak Hour Data Plot (7:15 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hln.com

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-0
Start Date: 07/16/2014
Page No: 6

Turning Movement Peak Hour Data (4:00 PM)

| Start Time | Airport Rd Southbound |  |  |  | Airport Rd Northbound |  |  |  | I-15 SB Off Westbound |  |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total |  |
| 4:00 PM | 0 | 101 | 0 | 101 | 2 | 3 | 0 | 5 | 13 | 4 | 61 | 0 | 78 | 19 | 0 | 0 | 19 | 203 |
| 4:15 PM | 0 | 44 | 0 | 44 | 3 | 1 | 0 | 4 | 10 | 7 | 37 | 0 | 54 | 14 | 0 | 0 | 14 | 116 |
| 4:30 PM | 1 | 105 | 0 | 106 | 5 | 3 | 0 | 8 | 7 | 6 | 65 | 0 | 78 | 14 | 0 | 0 | 14 | 206 |
| 4:45 PM | 0 | 36 | 0 | 36 | 5 | 1 | 0 | 6 | 17 | 9 | 54 | 0 | 80 | 8 | 0 | 0 | 8 | 130 |
| Total | 1 | 286 | 0 | 287 | 15 | 8 | 0 | 23 | 47 | 26 | 217 | 0 | 290 | 55 | 0 | 0 | 55 | 655 |
| Approach \% | 0.3 | 99.7 | - | - | 65.2 | 34.8 | - | - | 16.2 | 9.0 | 74.8 | - | - | 100.0 | 0.0 | - | - | - |
| Total \% | 0.2 | 43.7 | - | 43.8 | 2.3 | 1.2 | - | 3.5 | 7.2 | 4.0 | 33.1 | - | 44.3 | 8.4 | 0.0 | - | 8.4 | - |
| PHF | 0.250 | 0.681 | - | 0.677 | 0.750 | 0.667 | - | 0.719 | 0.691 | 0.722 | 0.835 | - | 0.906 | 0.724 | 0.000 | - | 0.724 | 0.795 |
| Motorcycles | 0 | 8 | - | 8 | 0 | 0 | - | 0 | 0 | 1 | 6 | - | 7 | 1 | 0 | - | 1 | 16 |
| \% Motorcycles | 0.0 | 2.8 | - | 2.8 | 0.0 | 0.0 | - | 0.0 | 0.0 | 3.8 | 2.8 | - | 2.4 | 1.8 | - | - | 1.8 | 2.4 |
| Cars | 1 | 195 | - | 196 | 14 | 1 | - | 15 | 36 | 16 | 104 | - | 156 | 27 | 0 | - | 27 | 394 |
| \% Cars | 100.0 | 68.2 | - | 68.3 | 93.3 | 12.5 | - | 65.2 | 76.6 | 61.5 | 47.9 | - | 53.8 | 49.1 | - | - | 49.1 | 60.2 |
| Light Goods Vehicles | 0 | 79 | - | 79 | 0 | 4 | - | 4 | 10 | 6 | 66 | - | 82 | 26 | 0 | - | 26 | 191 |
| \%Light Goods Vehicles | 0.0 | 27.6 | - | 27.5 | 0.0 | 50.0 | - | 17.4 | 21.3 | 23.1 | 30.4 | - | 28.3 | 47.3 | - | - | 47.3 | 29.2 |
| Buses | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Buses | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Single-Unit Trucks | 0 | 2 | - | 2 | 1 | 0 | - | 1 | 0 | 1 | 15 | - | 16 | 0 | 0 | - | 0 | 19 |
| \% Single-Unit Trucks | 0.0 | 0.7 | - | 0.7 | 6.7 | 0.0 | - | 4.3 | 0.0 | 3.8 | 6.9 | - | 5.5 | 0.0 | - | - | 0.0 | 2.9 |
| Articulated Trucks | 0 | 1 | - | 1 | 0 | 3 | - | 3 | 1 | 2 | 26 | - | 29 | 1 | 0 | - | 1 | 34 |
| \% Articulated Trucks | 0.0 | 0.3 | - | 0.3 | 0.0 | 37.5 | - | 13.0 | 2.1 | 7.7 | 12.0 | - | 10.0 | 1.8 | - | - | 1.8 | 5.2 |
| Bicycles on Road | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 |  |
| \% Bicycles on Road | 0.0 | 0.3 | - | 0.3 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.2 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $-$ | - | - |

Robert Peccia \& Associates

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-0
Start Date: 07/16/2014
Page No: 7


Turning Movement Peak Hour Data Plot (4:00 PM)

Robert Peccia \& Associates 825 Custer Ave

Helena, Montana, United States 59604
406-447-5000 scottr@rpa-hIn.com

Count Name: 04-I15SBOff_AirportRd_Frontage TMC
Site Code: TMC-04 Start Date: 07/16/2014 Page No: 8

Count Name: 05-14thStSW_I315EB TMC Site Code: TMC-05 /16/2014
Page No: 1

Turning Movement Data

| Start Time |  |  | 14th St SW <br> Southbound |  |  |  |  | 14th St SW <br> Northbound |  |  |  |  | I-315 EB <br> Westbound |  |  |  |  | Marketplace <br> Eastbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Int. Total |
| 7:00 AM | 15 | 18 | 26 | 0 | 59 | 52 | 15 | 2 | 0 | 69 | 1 | 4 | 3 | 0 | 8 | 0 | 6 | 4 | 0 | 10 | 146 |
| 7:15 AM | 15 | 15 | 31 | 0 | 61 | 66 | 15 | 1 | 0 | 82 | 2 | 5 | 9 | 1 | 16 | 0 | 15 | 6 | 0 | 21 | 180 |
| 7:30 AM | 21 | 25 | 41 | 0 | 87 | 75 | 21 | 4 | 0 | 100 | 0 | 4 | 2 | 1 | 6 | 1 | 22 | 12 | 0 | 35 | 228 |
| 7:45 AM | 14 | 27 | 46 | 0 | 87 | 90 | 21 | 0 | 0 | 111 | 2 | 9 | 5 | 0 | 16 | 1 | 17 | 16 | 0 | 34 | 248 |
| Hourly Total | 65 | 85 | 144 | 0 | 294 | 283 | 72 | 7 | 0 | 362 | 5 | 22 | 19 | 2 | 46 | 2 | 60 | 38 | 0 | 100 | 802 |
| 8:00 AM | 10 | 24 | 24 | 0 | 58 | 55 | 9 | 2 | 0 | 66 | 1 | 12 | 4 | 0 | 17 | 1 | 15 | 10 | 0 | 26 | 167 |
| 8:15 AM | 19 | 38 | 16 | 0 | 73 | 47 | 16 | 1 | 0 | 64 | 4 | 3 | 9 | 0 | 16 | 0 | 15 | 12 | 0 | 27 | 180 |
| 8:30 AM | 25 | 36 | 19 | 0 | 80 | 59 | 19 | 1 | 0 | 79 | 6 | 9 | 10 | 0 | 25 | 0 | 13 | 8 | 0 | 21 | 205 |
| 8:45 AM | 37 | 48 | 22 | 0 | 107 | 55 | 16 | 0 | 0 | 71 | 4 | 6 | 17 | 0 | 27 | 0 | 20 | 8 | 0 | 28 | 233 |
| Hourly Total | 91 | 146 | 81 | 0 | 318 | 216 | 60 | 4 | 0 | 280 | 15 | 30 | 40 | 0 | 85 | 1 | 63 | 38 | 0 | 102 | 785 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 51 | 80 | 11 | 0 | 142 | 79 | 17 | 2 | 1 | 98 | 3 | 22 | 23 | 0 | 48 | 3 | 46 | 26 | 0 | 75 | 363 |
| 4:15 PM | 67 | 97 | 16 | 0 | 180 | 48 | 16 | 0 | 0 | 64 | 4 | 11 | 23 | 0 | 38 | 4 | 48 | 29 | 1 | 81 | 363 |
| 4:30 PM | 69 | 92 | 26 | 0 | 187 | 75 | 24 | 5 | 1 | 104 | 7 | 17 | 27 | 0 | 51 | 2 | 37 | 22 | 0 | 61 | 403 |
| 4:45 PM | 77 | 97 | 24 | 0 | 198 | 70 | 28 | 2 | 0 | 100 | 6 | 10 | 21 | 0 | 37 | 4 | 51 | 30 | 0 | 85 | 420 |
| Hourly Total | 264 | 366 | 77 | 0 | 707 | 272 | 85 | 9 | 2 | 366 | 20 | 60 | 94 | 0 | 174 | 13 | 182 | 107 | 1 | 302 | 1549 |
| 5:00 PM | 58 | 90 | 26 | 0 | 174 | 46 | 11 | 3 | 0 | 60 | 12 | 7 | 36 | 0 | 55 | 2 | 47 | 26 | 0 | 75 | 364 |
| 5:15 PM | 58 | 117 | 19 | 0 | 194 | 69 | 19 | 3 | 0 | 91 | 6 | 16 | 18 | 0 | 40 | 2 | 33 | 29 | 0 | 64 | 389 |
| 5:30 PM | 56 | 104 | 26 | 0 | 186 | 72 | 15 | 1 | 0 | 88 | 3 | 18 | 21 | 0 | 42 | 2 | 42 | 32 | 0 | 76 | 392 |
| 5:45 PM | 70 | 98 | 19 | 0 | 187 | 72 | 22 | 5 | 0 | 99 | 8 | 14 | 15 | 0 | 37 | 3 | 32 | 22 | 0 | 57 | 380 |
| Hourly Total | 242 | 409 | 90 | 0 | 741 | 259 | 67 | 12 | 0 | 338 | 29 | 55 | 90 | 0 | 174 | 9 | 154 | 109 | 0 | 272 | 1525 |
| Grand Total | 662 | 1006 | 392 | 0 | 2060 | 1030 | 284 | 32 | 2 | 1346 | 69 | 167 | 243 | 2 | 479 | 25 | 459 | 292 | 1 | 776 | 4661 |
| Approach \% | 32.1 | 48.8 | 19.0 | - | - | 76.5 | 21.1 | 2.4 | - | - | 14.4 | 34.9 | 50.7 | - | - | 3.2 | 59.1 | 37.6 | - | - | - |
| Total \% | 14.2 | 21.6 | 8.4 | - | 44.2 | 22.1 | 6.1 | 0.7 | - | 28.9 | 1.5 | 3.6 | 5.2 | - | 10.3 | 0.5 | 9.8 | 6.3 | - | 16.6 | - |
| Motorcycles | 6 | 4 | 4 | - | 14 | 7 | 5 | 0 | - | 12 | 0 | 1 | 2 | - | 3 | 0 | 2 | 4 | - | 6 | 35 |
| \% Motorcycles | 0.9 | 0.4 | 1.0 | - | 0.7 | 0.7 | 1.8 | 0.0 | - | 0.9 | 0.0 | 0.6 | 0.8 | - | 0.6 | 0.0 | 0.4 | 1.4 | - | 0.8 | 0.8 |
| Cars | 489 | 746 | 301 | - | 1536 | 770 | 218 | 20 | - | 1008 | 38 | 131 | 159 | - | 328 | 23 | 362 | 220 | - | 605 | 3477 |
| \% Cars | 73.9 | 74.2 | 76.8 | - | 74.6 | 74.8 | 76.8 | 62.5 | - | 74.9 | 55.1 | 78.4 | 65.4 | - | 68.5 | 92.0 | 78.9 | 75.3 | - | 78.0 | 74.6 |
| Light Goods Vehicles | 161 | 238 | 72 | - | 471 | 236 | 49 | 7 | - | 292 | 22 | 29 | 73 | - | 124 | 2 | 88 | 64 | - | 154 | 1041 |
| \% Light Goods Vehicles | 24.3 | 23.7 | 18.4 | - | 22.9 | 22.9 | 17.3 | 21.9 | - | 21.7 | 31.9 | 17.4 | 30.0 | . | 25.9 | 8.0 | 19.2 | 21.9 | - | 19.8 | 22.3 |
| Buses | 0 | 2 | 1 | - | 3 | 1 | 0 | 3 | - | 4 | 0 | 1 | 1 | - | 2 | 0 | 0 | 0 | - | 0 | 9 |
| \% Buses | 0.0 | 0.2 | 0.3 | - | 0.1 | 0.1 | 0.0 | 9.4 | - | 0.3 | 0.0 | 0.6 | 0.4 | - | 0.4 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.2 |
| Single-Unit Trucks | 6 | 14 | 10 | - | 30 | 9 | 8 | 2 | - | 19 | 8 | 4 | 5 | - | 17 | 0 | 7 | 3 | - | 10 | 76 |
| \% Single-Unit Trucks | 0.9 | 1.4 | 2.6 | - | 1.5 | 0.9 | 2.8 | 6.3 | - | 1.4 | 11.6 | 2.4 | 2.1 | - | 3.5 | 0.0 | 1.5 | 1.0 | - | 1.3 | 1.6 |
| Articulated Trucks | 0 | 1 | 4 | - | 5 | 7 | 3 | 0 | - | 10 | 1 | 1 | 3 | - | 5 | 0 | 0 | 1 | - | 1 | 21 |
| \% Articulated Trucks | 0.0 | 0.1 | 1.0 | - | 0.2 | 0.7 | 1.1 | 0.0 | - | 0.7 | 1.4 | 0.6 | 1.2 | - | 1.0 | 0.0 | 0.0 | 0.3 | - | 0.1 | 0.5 |
| Bicycles on Road | 0 | 1 | 0 | - | 1 | 0 | 1 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 2 |


| \% Bicycles on Road | 0.0 | 0.1 | 0.0 | - | 0.0 | 0.0 | 0.4 | 0.0 | - | 0.1 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrians | - | - | - | 0 | - | - | - | - | 2 | - | - | - | - | 2 | - | - | - | - | 1 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - |



Turning Movement Data Plot

Turning Movement Peak Hour Data (7:15 AM)



Turning Movement Peak Hour Data Plot (7:15 AM)

Turning Movement Peak Hour Data (4:30 PM)



Turning Movement Peak Hour Data Plot (4:30 PM)

Turning Movement Data

| Start Time |  |  | 14th St SW <br> Southbound |  |  |  |  | 14th St SW <br> Northbound |  |  |  |  | I-315 WB <br> Westbound |  |  |  |  | 16th Ave SW Eastbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Int. Total |
| 7:00 AM | 0 | 29 | 6 | 0 | 35 | 15 | 4 | 1 | 0 | 20 | 9 | 0 | 25 | 0 | 34 | 2 | 0 | 0 | 0 | 2 | 91 |
| 7:15 AM | 0 | 31 | 7 | 0 | 38 | 19 | 5 | 1 | 0 | 25 | 12 | 1 | 28 | 1 | 41 | 3 | 0 | 0 | 0 | 3 | 107 |
| 7:30 AM | 0 | 49 | 5 | 0 | 54 | 24 | 5 | 0 | 0 | 29 | 9 | 2 | 37 | 1 | 48 | 3 | 2 | 0 | 0 | 5 | 136 |
| 7:45 AM | 0 | 45 | 13 | 0 | 58 | 28 | 5 | 7 | 0 | 40 | 13 | 5 | 38 | 0 | 56 | 5 | 2 | 0 | 0 | 7 | 161 |
| Hourly Total | 0 | 154 | 31 | 0 | 185 | 86 | 19 | 9 | 0 | 114 | 43 | 8 | 128 | 2 | 179 | 13 | 4 | 0 | 0 | 17 | 495 |
| 8:00 AM | 0 | 24 | 7 | 0 | 31 | 14 | 6 | 1 | 0 | 21 | 10 | 5 | 31 | 0 | 46 | 2 | 1 | 0 | 0 | 3 | 101 |
| 8:15 AM | 0 | 18 | 1 | 0 | 19 | 24 | 1 | 3 | 0 | 28 | 6 | 4 | 56 | 0 | 66 | 5 | 2 | 0 | 1 | 7 | 120 |
| 8:30 AM | 0 | 23 | 6 | 0 | 29 | 24 | 11 | 0 | 0 | 35 | 6 | 0 | 53 | 0 | 59 | 4 | 1 | 1 | 0 | 6 | 129 |
| 8:45 AM | 0 | 23 | 4 | 0 | 27 | 18 | 8 | 0 | 0 | 26 | 11 | 0 | 80 | 0 | 91 | 3 | 1 | 0 | 0 | 4 | 148 |
| Hourly Total | 0 | 88 | 18 | 0 | 106 | 80 | 26 | 4 | 0 | 110 | 33 | 9 | 220 | 0 | 262 | 14 | 5 | 1 | 1 | 20 | 498 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 0 | 18 | 4 | 0 | 22 | 33 | 10 | 2 | 0 | 45 | 20 | 3 | 121 | 0 | 144 | 1 | 1 | 0 | 0 | 2 | 213 |
| 4:15 PM | 0 | 30 | 2 | 0 | 32 | 33 | 14 | 0 | 0 | 47 | 25 | 6 | 145 | 0 | 176 | 2 | 1 | 0 | 0 | 3 | 258 |
| 4:30 PM | 0 | 37 | 5 | 0 | 42 | 29 | 21 | 2 | 0 | 52 | 24 | 3 | 156 | 0 | 183 | 2 | 0 | 1 | 0 | 3 | 280 |
| 4:45 PM | 1 | 41 | 5 | 0 | 47 | 38 | 22 | 2 | 0 | 62 | 32 | 9 | 148 | 0 | 189 | 2 | 3 | 1 | 1 | 6 | 304 |
| Hourly Total | 1 | 126 | 16 | 0 | 143 | 133 | 67 | 6 | 0 | 206 | 101 | 21 | 570 | 0 | 692 | 7 | 5 | 2 | 1 | 14 | 1055 |
| 5:00 PM | 0 | 28 | 3 | 0 | 31 | 37 | 20 | 2 | 0 | 59 | 41 | 1 | 161 | 0 | 203 | 6 | 1 | 0 | 0 | 7 | 300 |
| 5:15 PM | 1 | 27 | 8 | 0 | 36 | 32 | 21 | 1 | 0 | 54 | 40 | 0 | 159 | 0 | 199 | 4 | 0 | 2 | 0 | 6 | 295 |
| 5:30 PM | 0 | 35 | 6 | 0 | 41 | 39 | 13 | 0 | 0 | 52 | 29 | 2 | 170 | 0 | 201 | 7 | 1 | 0 | 0 | 8 | 302 |
| 5:45 PM | 1 | 28 | 5 | 1 | 34 | 34 | 16 | 0 | 0 | 50 | 29 | 3 | 158 | 0 | 190 | 2 | 0 | 0 | 1 | 2 | 276 |
| Hourly Total | 2 | 118 | 22 | 1 | 142 | 142 | 70 | 3 | 0 | 215 | 139 | 6 | 648 | 0 | 793 | 19 | 2 | 2 | 1 | 23 | 1173 |
| Grand Total | 3 | 486 | 87 | 1 | 576 | 441 | 182 | 22 | 0 | 645 | 316 | 44 | 1566 | 2 | 1926 | 53 | 16 | 5 | 3 | 74 | 3221 |
| Approach \% | 0.5 | 84.4 | 15.1 | - | - | 68.4 | 28.2 | 3.4 | - | - | 16.4 | 2.3 | 81.3 | - | - | 71.6 | 21.6 | 6.8 | - | - | - |
| Total \% | 0.1 | 15.1 | 2.7 | - | 17.9 | 13.7 | 5.7 | 0.7 | - | 20.0 | 9.8 | 1.4 | 48.6 | - | 59.8 | 1.6 | 0.5 | 0.2 | - | 2.3 | - |
| Motorcycles | 0 | 6 | 0 | - | 6 | 8 | 0 | 1 | - | 9 | 2 | 2 | 8 | - | 12 | 0 | 0 | 0 | - | 0 | 27 |
| \% Motorcycles | 0.0 | 1.2 | 0.0 | - | 1.0 | 1.8 | 0.0 | 4.5 | - | 1.4 | 0.6 | 4.5 | 0.5 | - | 0.6 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.8 |
| Cars | 2 | 329 | 54 | - | 385 | 315 | 129 | 15 | - | 459 | 232 | 31 | 1154 | - | 1417 | 38 | 10 | 1 | - | 49 | 2310 |
| \% Cars | 66.7 | 67.7 | 62.1 | - | 66.8 | 71.4 | 70.9 | 68.2 | - | 71.2 | 73.4 | 70.5 | 73.7 | - | 73.6 | 71.7 | 62.5 | 20.0 | - | 66.2 | 71.7 |
| Light Goods Vehicles | 1 | 133 | 22 | - | 156 | 107 | 40 | 3 | - | 150 | 68 | 9 | 378 | - | 455 | 12 | 4 | 3 | - | 19 | 780 |
| \% Light Goods Vehicles | 33.3 | 27.4 | 25.3 | - | 27.1 | 24.3 | 22.0 | 13.6 | - | 23.3 | 21.5 | 20.5 | 24.1 | - | 23.6 | 22.6 | 25.0 | 60.0 | - | 25.7 | 24.2 |
| Buses | 0 | 1 | 0 | - | 1 | 0 | 1 | 0 | - | 1 | 1 | 0 | 2 | - | 3 | 0 | 0 | 0 | - | 0 | 5 |
| \% Buses | 0.0 | 0.2 | 0.0 | - | 0.2 | 0.0 | 0.5 | 0.0 | - | 0.2 | 0.3 | 0.0 | 0.1 | - | 0.2 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.2 |
| Single-Unit Trucks | 0 | 10 | 8 | - | 18 | 8 | 9 | 3 | - | 20 | 11 | 2 | 22 | - | 35 | 2 | 2 | 1 | - | 5 | 78 |
| \% Single-Unit Trucks | 0.0 | 2.1 | 9.2 | - | 3.1 | 1.8 | 4.9 | 13.6 | - | 3.1 | 3.5 | 4.5 | 1.4 | - | 1.8 | 3.8 | 12.5 | 20.0 | - | 6.8 | 2.4 |
| Articulated Trucks | 0 | 5 | 1 | - | 6 | 3 | 2 | 0 | - | 5 | 2 | 0 | 2 | - | 4 | 1 | 0 | 0 | - | 1 | 16 |
| \% Articulated Trucks | 0.0 | 1.0 | 1.1 | - | 1.0 | 0.7 | 1.1 | 0.0 | - | 0.8 | 0.6 | 0.0 | 0.1 | - | 0.2 | 1.9 | 0.0 | 0.0 | - | 1.4 | 0.5 |
| Bicycles on Road | 0 | 2 | 2 | - | 4 | 0 | 1 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 5 |


| \% Bicycles on Road | 0.0 | 0.4 | 2.3 | - | 0.7 | 0.0 | 0.5 | 0.0 | - | 0.2 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrians | - | - | - | 1 | - | - | - | - | 0 | - | - | - | - | 2 | - | - | - | - | 3 | - | - |
| \% Pedestrians | - | - | - | 100.0 | - | - | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - |



Turning Movement Data Plot

Turning Movement Peak Hour Data (7:30 AM)

| Start Time | 14th St SW <br> Southbound |  |  |  |  | 14th St SW <br> Northbound |  |  |  |  | I-315 WB <br> Westbound |  |  |  |  | 16th Ave SW Eastbound |  |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total |  |
| 7:30 AM | 0 | 49 | 5 | 0 | 54 | 24 | 5 | 0 | 0 | 29 | 9 | 2 | 37 | 1 | 48 | 3 | 2 | 0 | 0 | 5 | 136 |
| 7:45 AM | 0 | 45 | 13 | 0 | 58 | 28 | 5 | 7 | 0 | 40 | 13 | 5 | 38 | 0 | 56 | 5 | 2 | 0 | 0 | 7 | 161 |
| 8:00 AM | 0 | 24 | 7 | 0 | 31 | 14 | 6 | 1 | 0 | 21 | 10 | 5 | 31 | 0 | 46 | 2 | 1 | 0 | 0 | 3 | 101 |
| 8:15 AM | 0 | 18 | 1 | 0 | 19 | 24 | 1 | 3 | 0 | 28 | 6 | 4 | 56 | 0 | 66 | 5 | 2 | 0 | 1 | 7 | 120 |
| Total | 0 | 136 | 26 | 0 | 162 | 90 | 17 | 11 | 0 | 118 | 38 | 16 | 162 | 1 | 216 | 15 | 7 | 0 | 1 | 22 | 518 |
| Approach \% | 0.0 | 84.0 | 16.0 | - | - | 76.3 | 14.4 | 9.3 | - | - | 17.6 | 7.4 | 75.0 | - | - | 68.2 | 31.8 | 0.0 | - | - | - |
| Total \% | 0.0 | 26.3 | 5.0 | - | 31.3 | 17.4 | 3.3 | 2.1 | - | 22.8 | 7.3 | 3.1 | 31.3 | - | 41.7 | 2.9 | 1.4 | 0.0 | - | 4.2 | - |
| PHF | 0.000 | 0.694 | 0.500 | - | 0.698 | 0.804 | 0.708 | 0.393 | - | 0.738 | 0.731 | 0.800 | 0.723 | - | 0.818 | 0.750 | 0.875 | 0.000 | - | 0.786 | 0.804 |
| Motorcycles | 0 | 0 | 0 | - | 0 | 3 | 0 | 0 | - | 3 | 0 | 1 | 2 | - | 3 | 0 | 0 | 0 | - | 0 | 6 |
| \% Motorcycles | - | 0.0 | 0.0 | - | 0.0 | 3.3 | 0.0 | 0.0 | - | 2.5 | 0.0 | 6.3 | 1.2 | - | 1.4 | 0.0 | 0.0 | - | - | 0.0 | 1.2 |
| Cars | 0 | 85 | 18 | - | 103 | 58 | 11 | 7 | - | 76 | 26 | 13 | 108 | - | 147 | 12 | 5 | 0 | - | 17 | 343 |
| \% Cars | - | 62.5 | 69.2 | - | 63.6 | 64.4 | 64.7 | 63.6 | - | 64.4 | 68.4 | 81.3 | 66.7 | - | 68.1 | 80.0 | 71.4 | - | - | 77.3 | 66.2 |
| Light Goods Vehicles | 0 | 49 | 4 | - | 53 | 25 | 6 | 3 | - | 34 | 12 | 2 | 47 | - | 61 | 3 | 2 | 0 | - | 5 | 153 |
| \% Light Goods Vehicles | . | 36.0 | 15.4 | - | 32.7 | 27.8 | 35.3 | 27.3 | - | 28.8 | 31.6 | 12.5 | 29.0 | - | 28.2 | 20.0 | 28.6 | . | - | 22.7 | 29.5 |
| Buses | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | 0 | - | 0 | 1 |
| \% Buses | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.6 | - | 0.5 | 0.0 | 0.0 | - | - | 0.0 | 0.2 |
| Single-Unit Trucks | 0 | 2 | 2 | - | 4 | 3 | 0 | 1 | - | 4 | 0 | 0 | 4 | - | 4 | 0 | 0 | 0 | - | 0 | 12 |
| \% Single-Unit Trucks | - | 1.5 | 7.7 | - | 2.5 | 3.3 | 0.0 | 9.1 | - | 3.4 | 0.0 | 0.0 | 2.5 | - | 1.9 | 0.0 | 0.0 | - | - | 0.0 | 2.3 |
| Articulated Trucks | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Articulated Trucks | - | 0.0 | 0.0 | - | 0.0 | 1.1 | 0.0 | 0.0 | - | 0.8 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | - | 0.0 | 0.2 |
| Bicycles on Road | 0 | 0 | 2 | - | 2 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 2 |
| \% Bicycles on Road | - | 0.0 | 7.7 | - | 1.2 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | - | 0.0 | 0.4 |
| Pedestrians | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 1 | - | - | - | - | 1 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Turning Movement Peak Hour Data (4:45 PM)

| Start Time |  |  | 14th St SW <br> Southbound |  |  |  |  | 14th St SW <br> Northbound |  |  |  |  | I-315 WB <br> Westbound |  |  |  |  | 6th Ave SW Eastbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Star Time | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Int. Total |
| 4:45 PM | 1 | 41 | 5 | 0 | 47 | 38 | 22 | 2 | 0 | 62 | 32 | 9 | 148 | 0 | 189 | 2 | 3 | 1 | 1 | 6 | 304 |
| 5:00 PM | 0 | 28 | 3 | 0 | 31 | 37 | 20 | 2 | 0 | 59 | 41 | 1 | 161 | 0 | 203 | 6 | 1 | 0 | 0 | 7 | 300 |
| 5:15 PM | 1 | 27 | 8 | 0 | 36 | 32 | 21 | 1 | 0 | 54 | 40 | 0 | 159 | 0 | 199 | 4 | 0 | 2 | 0 | 6 | 295 |
| 5:30 PM | 0 | 35 | 6 | 0 | 41 | 39 | 13 | 0 | 0 | 52 | 29 | 2 | 170 | , | 201 | 7 | 1 | 0 | 0 | 8 | 302 |
| Total | 2 | 131 | 22 | 0 | 155 | 146 | 76 | 5 | 0 | 227 | 142 | 12 | 638 | 0 | 792 | 19 | 5 | 3 | 1 | 27 | 1201 |
| Approach \% | 1.3 | 84.5 | 14.2 | - | - | 64.3 | 33.5 | 2.2 | - | - | 17.9 | 1.5 | 80.6 | - | - | 70.4 | 18.5 | 11.1 | - | - | - |
| Total \% | 0.2 | 10.9 | 1.8 | - | 12.9 | 12.2 | 6.3 | 0.4 | - | 18.9 | 11.8 | 1.0 | 53.1 | - | 65.9 | 1.6 | 0.4 | 0.2 | - | 2.2 | - |
| PHF | 0.500 | 0.799 | 0.688 | - | 0.824 | 0.936 | 0.864 | 0.625 | - | 0.915 | 0.866 | 0.333 | 0.938 | - | 0.975 | 0.679 | 0.417 | 0.375 | - | 0.844 | 0.988 |
| Motorcycles | 0 | 2 | 0 | - | 2 | 1 | 0 | 0 | - | 1 | 0 | 1 | 1 | - | 2 | 0 | 0 | 0 | - | 0 | 5 |
| \% Motorcycles | 0.0 | 1.5 | 0.0 | - | 1.3 | 0.7 | 0.0 | 0.0 | - | 0.4 | 0.0 | 8.3 | 0.2 | - | 0.3 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.4 |
| Cars | 1 | 104 | 17 | - | 122 | 119 | 59 | 3 | - | 181 | 113 | 8 | 496 | - | 617 | 12 | 4 | 1 | - | 17 | 937 |
| \% Cars | 50.0 | 79.4 | 77.3 | - | 78.7 | 81.5 | 77.6 | 60.0 | - | 79.7 | 79.6 | 66.7 | 77.7 | - | 77.9 | 63.2 | 80.0 | 33.3 | - | 63.0 | 78.0 |
| Light Goods Vehicles | 1 | 22 | 5 | - | 28 | 25 | 11 | 0 | - | 36 | 23 | 2 | 130 | - | 155 | 4 | 1 | 2 | - | 7 | 226 |
| \% Light Goods Vehicles | 50.0 | 16.8 | 22.7 | - | 18.1 | 17.1 | 14.5 | 0.0 | - | 15.9 | 16.2 | 16.7 | 20.4 | - | 19.6 | 21.1 | 20.0 | 66.7 | - | 25.9 | 18.8 |
| Buses | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 |
| \% Buses | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Single-Unit Trucks | 0 | 2 | 0 | - | 2 | 1 | 5 | 2 | - | 8 | 4 | 1 | 10 | - | 15 | 2 | 0 | 0 | - | 2 | 27 |
| \% Single-Unit Trucks | 0.0 | 1.5 | 0.0 | - | 1.3 | 0.7 | 6.6 | 40.0 | - | 3.5 | 2.8 | 8.3 | 1.6 | - | 1.9 | 10.5 | 0.0 | 0.0 | - | 7.4 | 2.2 |
| Articulated Trucks | 0 | 1 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 2 | 0 | 1 | - | 3 | 1 | 0 | 0 | - | 1 | 5 |
| \% Articulated Trucks | 0.0 | 0.8 | 0.0 | - | 0.6 | 0.0 | 0.0 | 0.0 | - | 0.0 | 1.4 | 0.0 | 0.2 | - | 0.4 | 5.3 | 0.0 | 0.0 | - | 3.7 | 0.4 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | 0 | 1 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Bicycles on Road | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 1.3 | 0.0 | - | 0.4 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.1 |
| Pedestrians | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 1 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100.0 | - | - |



Turning Movement Peak Hour Data Plot (4:45 PM)

Helena, Montana, United States 5960
406-447-5000 scottr@rpa-hIn.com

Count Name: 07-FoxFarm_I315 TMC Site Code: TMC-07

7/16/2014
Page No: 1

Turning Movement Data


| \% Bicycles on Road | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.2 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.4 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrians | - | - | - | 0 | - | - | - | - | 2 | - | - | - | - | 2 | - | - | - | - | 2 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - |



Turning Movement Data Plot

Turning Movement Peak Hour Data (7:30 AM)

| Start Tim |  |  | 6th St SW <br> Southbound |  |  |  |  | Fox Farm Rd Northbound |  |  |  |  | 10th Ave S Westbound |  |  |  |  | $\begin{gathered} \text { I-315 } \\ \text { Eastbound } \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Int. Total |
| 7:30 AM | 22 | 15 | 36 | 0 | 73 | 103 | 58 | 16 | 0 | 177 | 28 | 99 | 21 | 0 | 148 | 15 | 211 | 45 | 0 | 271 | 669 |
| 7:45 AM | 32 | 19 | 63 | 0 | 114 | 145 | 81 | 16 | 0 | 242 | 49 | 81 | 24 | 0 | 154 | 10 | 244 | 50 | 0 | 304 | 814 |
| 8:00 AM | 26 | 33 | 37 | 0 | 96 | 93 | 38 | 5 | 0 | 136 | 26 | 70 | 24 | 0 | 120 | 9 | 128 | 43 | 0 | 180 | 532 |
| 8:15 AM | 41 | 23 | 36 | 0 | 100 | 96 | 42 | 13 | 0 | 151 | 33 | 85 | 32 | 0 | 150 | 11 | 149 | 23 | 0 | 183 | 584 |
| Total | 121 | 90 | 172 | 0 | 383 | 437 | 219 | 50 | 0 | 706 | 136 | 335 | 101 | 0 | 572 | 45 | 732 | 161 | 0 | 938 | 2599 |
| Approach \% | 31.6 | 23.5 | 44.9 | - | - | 61.9 | 31.0 | 7.1 | - | - | 23.8 | 58.6 | 17.7 | - | - | 4.8 | 78.0 | 17.2 | - | - | - |
| Total \% | 4.7 | 3.5 | 6.6 | - | 14.7 | 16.8 | 8.4 | 1.9 | - | 27.2 | 5.2 | 12.9 | 3.9 | - | 22.0 | 1.7 | 28.2 | 6.2 | - | 36.1 | - |
| PHF | 0.738 | 0.682 | 0.683 | - | 0.840 | 0.753 | 0.676 | 0.781 | - | 0.729 | 0.694 | 0.846 | 0.789 | - | 0.929 | 0.750 | 0.750 | 0.805 | - | 0.771 | 0.798 |
| Motorcycles | 0 | 2 | 4 | - | 6 | 5 | 1 | 0 | - | 6 | 2 | 5 | 0 | - | 7 | 0 | 3 | 0 | - | 3 | 22 |
| \% Motorcycles | 0.0 | 2.2 | 2.3 | - | 1.6 | 1.1 | 0.5 | 0.0 | - | 0.8 | 1.5 | 1.5 | 0.0 | - | 1.2 | 0.0 | 0.4 | 0.0 | - | 0.3 | 0.8 |
| Cars | 79 | 62 | 114 | - | 255 | 391 | 185 | 30 | - | 606 | 76 | 238 | 66 | - | 380 | 32 | 493 | 120 | - | 645 | 1886 |
| \% Cars | 65.3 | 68.9 | 66.3 | - | 66.6 | 89.5 | 84.5 | 60.0 | - | 85.8 | 55.9 | 71.0 | 65.3 | - | 66.4 | 71.1 | 67.3 | 74.5 | $\checkmark$ | 68.8 | 72.6 |
| Light Goods Vehicles | 37 | 22 | 51 | - | 110 | 38 | 28 | 19 | - | 85 | 53 | 70 | 31 | - | 154 | 12 | 196 | 31 | $\checkmark$ | 239 | 588 |
| \% Light Goods Vehicles | 30.6 | 24.4 | 29.7 | - | 28.7 | 8.7 | 12.8 | 38.0 | - | 12.0 | 39.0 | 20.9 | 30.7 | - | 26.9 | 26.7 | 26.8 | 19.3 | - | 25.5 | 22.6 |
| Buses | 0 | 2 | 0 | - | 2 | 0 | 2 | 0 | - | 2 | 0 | 2 | 0 | - | 2 | 0 | 2 | 0 | - | 2 | 8 |
| \% Buses | 0.0 | 2.2 | 0.0 | - | 0.5 | 0.0 | 0.9 | 0.0 | - | 0.3 | 0.0 | 0.6 | 0.0 | - | 0.3 | 0.0 | 0.3 | 0.0 | - | 0.2 | 0.3 |
| Single-Unit Trucks | 5 | 1 | 2 | - | 8 | 3 | 2 | 0 | - | 5 | 5 | 12 | 4 | - | 21 | , | 24 | 8 | - | 33 | 67 |
| \% Single-Unit Trucks | 4.1 | 1.1 | 1.2 | - | 2.1 | 0.7 | 0.9 | 0.0 | - | 0.7 | 3.7 | 3.6 | 4.0 | - | 3.7 | 2.2 | 3.3 | 5.0 | - | 3.5 | 2.6 |
| Articulated Trucks | 0 | 1 | 1 | - | 2 | 0 | 0 | 1 | - | 1 | 0 | 8 | 0 | - | 8 | 0 | 14 | 2 | - | 16 | 27 |
| \% Articulated Trucks | 0.0 | 1.1 | 0.6 | - | 0.5 | 0.0 | 0.0 | 2.0 | - | 0.1 | 0.0 | 2.4 | 0.0 | - | 1.4 | 0.0 | 1.9 | 1.2 | - | 1.7 | 1.0 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | 0 | 1 | 0 | - | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 |
| \% Bicycles on Road | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.5 | 0.0 | - | 0.1 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | $-$ | - | - | - | - | - | - | - | $-$ | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 07-FoxFarm_I315 TMC Site Code: TMC-07
Page No: 6

Turning Movement Peak Hour Data (4:30 PM)

| Start Time | 6th St SW <br> Southbound |  |  |  |  | Fox Farm Rd Northbound |  |  |  |  | 10 th Ave S |  |  |  |  | I-315Eastbound |  |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Left | Peds | App. Total |  |
| 4:30 PM | 79 | 46 | 33 | 0 | 158 | 50 | 37 | 18 | 0 | 105 | 52 | 244 | 121 | 0 | 417 | 34 | 216 | 61 | 1 | 311 | 991 |
| 4:45 PM | 101 | 64 | 38 | 0 | 203 | 49 | 36 | 15 | 1 | 100 | 55 | 166 | 95 | 0 | 316 | 23 | 163 | 69 | 0 | 255 | 874 |
| 5:00 PM | 69 | 79 | 44 | 0 | 192 | 54 | 43 | 18 | 0 | 115 | 63 | 217 | 105 | 1 | 385 | 22 | 184 | 53 | 0 | 259 | 951 |
| 5:15 PM | 76 | 85 | 38 | 0 | 199 | 74 | 39 | 20 | 0 | 133 | 80 | 247 | 165 | 0 | 492 | 24 | 143 | 59 | 0 | 226 | 1050 |
| Total | 325 | 274 | 153 | 0 | 752 | 227 | 155 | 71 | 1 | 453 | 250 | 874 | 486 | 1 | 1610 | 103 | 706 | 242 | 1 | 1051 | 3866 |
| Approach \% | 43.2 | 36.4 | 20.3 | - | - | 50.1 | 34.2 | 15.7 | - | - | 15.5 | 54.3 | 30.2 | - | - | 9.8 | 67.2 | 23.0 | - | - | - |
| Total \% | 8.4 | 7.1 | 4.0 | - | 19.5 | 5.9 | 4.0 | 1.8 | - | 11.7 | 6.5 | 22.6 | 12.6 | - | 41.6 | 2.7 | 18.3 | 6.3 | - | 27.2 | - |
| PHF | 0.804 | 0.806 | 0.869 | - | 0.926 | 0.767 | 0.901 | 0.888 | - | 0.852 | 0.781 | 0.885 | 0.736 | - | 0.818 | 0.757 | 0.817 | 0.877 | - | 0.845 | 0.920 |
| Motorcycles | 1 | 3 | 3 | - | 7 | 1 | 2 | 1 | - | 4 | 4 | 11 | 9 | - | 24 | 2 | 13 | 6 | - | 21 | 56 |
| \% Motorcycles | 0.3 | 1.1 | 2.0 | - | 0.9 | 0.4 | 1.3 | 1.4 | - | 0.9 | 1.6 | 1.3 | 1.9 | $-$ | 1.5 | 1.9 | 1.8 | 2.5 | - | 2.0 | 1.4 |
| Cars | 279 | 186 | 98 | - | 563 | 202 | 113 | 53 | - | 368 | 178 | 612 | 344 | - | 1134 | 64 | 502 | 166 | - | 732 | 2797 |
| \% Cars | 85.8 | 67.9 | 64.1 | - | 74.9 | 89.0 | 72.9 | 74.6 | - | 81.2 | 71.2 | 70.0 | 70.8 | $\checkmark$ | 70.4 | 62.1 | 71.1 | 68.6 | - | 69.6 | 72.3 |
| Light Goods Vehicles | 38 | 82 | 50 | - | 170 | 23 | 36 | 15 | - | 74 | 64 | 217 | 130 | - | 411 | 33 | 164 | 64 | - | 261 | 916 |
| \% Light Goods Vehicles | 11.7 | 29.9 | 32.7 | - | 22.6 | 10.1 | 23.2 | 21.1 | - | 16.3 | 25.6 | 24.8 | 26.7 | - | 25.5 | 32.0 | 23.2 | 26.4 | - | 24.8 | 23.7 |
| Buses | 0 | 1 | 0 | - | 1 | 0 | 1 | 0 | - | 1 | 0 | 0 | 1 | - | 1 | 0 | 1 | 0 | - | 1 | 4 |
| \% Buses | 0.0 | 0.4 | 0.0 | - | 0.1 | 0.0 | 0.6 | 0.0 | - | 0.2 | 0.0 | 0.0 | 0.2 | - | 0.1 | 0.0 | 0.1 | 0.0 | - | 0.1 | 0.1 |
| Single-Unit Trucks | 4 | 2 | 0 | - | 6 | 1 | 3 | 2 | - | 6 | 3 | 19 | 2 | - | 24 | 3 | 13 | 4 | - | 20 | 56 |
| \% Single-Unit Trucks | 1.2 | 0.7 | 0.0 | - | 0.8 | 0.4 | 1.9 | 2.8 | - | 1.3 | 1.2 | 2.2 | 0.4 | - | 1.5 | 2.9 | 1.8 | 1.7 | - | 1.9 | 1.4 |
| Articulated Trucks | 3 | 0 | 2 | - | 5 | 0 | 0 | 0 | - | 0 | 1 | 15 | 0 | - | 16 | 0 | 13 | 2 | - | 15 | 36 |
| \% Articulated Trucks | 0.9 | 0.0 | 1.3 | - | 0.7 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.4 | 1.7 | 0.0 | - | 1.0 | 0.0 | 1.8 | 0.8 | - | 1.4 | 0.9 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | - | 1 | 1 |
| \% Bicycles on Road | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | $\checkmark$ | 0.0 | 1.0 | 0.0 | 0.0 | - | 0.1 | 0.0 |
| Pedestrians | - | - | - | 0 | - | - | - | - | 1 | - | - | - | - | 1 | - | - | - | - | 1 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - | - | - | 100.0 | - | - |



Turning Movement Peak Hour Data Plot (4:30 PM)

Turning Movement Data

| Start Time | I-15 SB Off Southbound |  |  |  |  | I-15 SB On <br> Northbound |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total |  |
| 7:00 AM | 3 | 0 | 31 | 0 | 34 | 0 | 0 | 9 | 30 | 0 | 39 | 9 | 35 | 0 | 44 | 117 |
| 7:15 AM | 1 | 0 | 37 | 0 | 38 | 0 | 0 | 19 | 28 | 0 | 47 | 13 | 33 | 0 | 46 | 131 |
| 7:30 AM | 2 | 0 | 38 | 0 | 40 | 0 | 0 | 27 | 24 | 0 | 51 | 8 | 69 | 0 | 77 | 168 |
| 7:45 AM | 1 | 0 | 35 | 0 | 36 | 0 | 0 | 22 | 40 | 0 | 62 | 12 | 47 | 0 | 59 | 157 |
| Hourly Total | 7 | 0 | 141 | 0 | 148 | 0 | 0 | 77 | 122 | 0 | 199 | 42 | 184 | 0 | 226 | 573 |
| 8:00 AM | 2 | 0 | 20 | 0 | 22 | 0 | 0 | 20 | 31 | 0 | 51 | 6 | 42 | 0 | 48 | 121 |
| 8:15 AM | 0 | 0 | 19 | 0 | 19 | 0 | 0 | 20 | 33 | 0 | 53 | 7 | 42 | 0 | 49 | 121 |
| 8:30 AM | 0 | 0 | 20 | 0 | 20 | 0 | 0 | 23 | 28 | 0 | 51 | 6 | 29 | 0 | 35 | 106 |
| 8:45 AM | 0 | 0 | 20 | 0 | 20 | 2 | 0 | 21 | 35 | 0 | 56 | 7 | 33 | 0 | 40 | 116 |
| Hourly Total | 2 | 0 | 79 | 0 | 81 | 2 | 0 | 84 | 127 | 0 | 211 | 26 | 146 | 0 | 172 | 464 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 1 | 1 | 26 | 0 | 28 | 0 | 0 | 59 | 46 | 0 | 105 | 10 | 44 | 0 | 54 | 187 |
| 4:15 PM | 2 | 0 | 13 | 0 | 15 | 0 | 0 | 73 | 44 | 0 | 117 | 5 | 37 | 0 | 42 | 174 |
| 4:30 PM | 0 | 0 | 23 | 0 | 23 | 0 | 0 | 68 | 53 | 0 | 121 | 7 | 49 | 0 | 56 | 200 |
| 4:45 PM | 0 | 0 | 14 | 3 | 14 | 0 | 0 | 61 | 65 | 0 | 126 | 2 | 40 | 0 | 42 | 182 |
| Hourly Total | 3 | 1 | 76 | 3 | 80 | 0 | 0 | 261 | 208 | 0 | 469 | 24 | 170 | 0 | 194 | 743 |
| 5:00 PM | 2 | 0 | 16 | 0 | 18 | 0 | 0 | 75 | 52 | 0 | 127 | 7 | 40 | 0 | 47 | 192 |
| 5:15 PM | 1 | 0 | 17 | 1 | 18 | 1 | 0 | 86 | 64 | 0 | 150 | 5 | 49 | 0 | 54 | 222 |
| 5:30 PM | 1 | 0 | 15 | 0 | 16 | 0 | 0 | 66 | 64 | 0 | 130 | 9 | 43 | 0 | 52 | 198 |
| 5:45 PM | 2 | 0 | 18 | 1 | 20 | 0 | 0 | 72 | 50 | 0 | 122 | 9 | 34 | 0 | 43 | 185 |
| Hourly Total | 6 | 0 | 66 | 2 | 72 | 1 | 0 | 299 | 230 | 0 | 529 | 30 | 166 | 0 | 196 | 797 |
| Grand Total | 18 | 1 | 362 | 5 | 381 | 3 | 0 | 721 | 687 | 0 | 1408 | 122 | 666 | 0 | 788 | 2577 |
| Approach \% | 4.7 | 0.3 | 95.0 | - | - | - | - | 51.2 | 48.8 | - | - | 15.5 | 84.5 | - | - | - |
| Total \% | 0.7 | 0.0 | 14.0 | - | 14.8 | - | 0.0 | 28.0 | 26.7 | - | 54.6 | 4.7 | 25.8 | - | 30.6 | - |
| Motorcycles | 0 | 0 | 3 | - | 3 | - | 0 | 18 | 9 | - | 27 | 1 | 17 | - | 18 | 48 |
| \% Motorcycles | 0.0 | 0.0 | 0.8 | - | 0.8 | - | - | 2.5 | 1.3 | - | 1.9 | 0.8 | 2.6 | - | 2.3 | 1.9 |
| Cars | 8 | 1 | 247 | - | 256 | - | 0 | 476 | 391 | - | 867 | 81 | 386 | - | 467 | 1590 |
| \% Cars | 44.4 | 100.0 | 68.2 | - | 67.2 | - | - | 66.0 | 56.9 | - | 61.6 | 66.4 | 58.0 | - | 59.3 | 61.7 |
| Light Goods Vehicles | 10 | 0 | 95 | - | 105 | - | 0 | 200 | 225 | - | 425 | 36 | 240 | - | 276 | 806 |
| \% Light Goods Vehicles | 55.6 | 0.0 | 26.2 | - | 27.6 | - | - | 27.7 | 32.8 | - | 30.2 | 29.5 | 36.0 | - | 35.0 | 31.3 |
| Buses | 0 | 0 | 0 | - | 0 | - | 0 | 1 | 1 | - | 2 | 0 | 1 | - | 1 | 3 |
| \% Buses | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | 0.1 | 0.1 | - | 0.1 | 0.0 | 0.2 | - | 0.1 | 0.1 |
| Single-Unit Trucks | 0 | 0 | 7 | - | 7 | - | 0 | 13 | 28 | - | 41 | 4 | 10 | - | 14 | 62 |
| \% Single-Unit Trucks | 0.0 | 0.0 | 1.9 | - | 1.8 | - | - | 1.8 | 4.1 | - | 2.9 | 3.3 | 1.5 | - | 1.8 | 2.4 |
| Articulated Trucks | 0 | 0 | 10 | - | 10 | - | 0 | 13 | 33 | - | 46 | 0 | 12 | - | 12 | 68 |
| \% Articulated Trucks | 0.0 | 0.0 | 2.8 | - | 2.6 | - | - | 1.8 | 4.8 | - | 3.3 | 0.0 | 1.8 | - | 1.5 | 2.6 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | $-$ | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |




Turning Movement Data Plot

Turning Movement Peak Hour Data (7:15 AM)

| Start Time | I-15 SB Off <br> Southbound |  |  |  |  | I-15 SB On <br> Northbound |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total |  |
| 7:15 AM | 1 | 0 | 37 | 0 | 38 | 0 | 0 | 19 | 28 | 0 | 47 | 13 | 33 | 0 | 46 | 131 |
| 7:30 AM | 2 | 0 | 38 | 0 | 40 | 0 | 0 | 27 | 24 | 0 | 51 | 8 | 69 | 0 | 77 | 168 |
| 7:45 AM | 1 | 0 | 35 | 0 | 36 | 0 | 0 | 22 | 40 | 0 | 62 | 12 | 47 | 0 | 59 | 157 |
| 8:00 AM | 2 | 0 | 20 | 0 | 22 | 0 | 0 | 20 | 31 | 0 | 51 | 6 | 42 | 0 | 48 | 121 |
| Total | 6 | 0 | 130 | 0 | 136 | 0 | 0 | 88 | 123 | 0 | 211 | 39 | 191 | 0 | 230 | 577 |
| Approach \% | 4.4 | 0.0 | 95.6 | - | - | - | - | 41.7 | 58.3 | - | - | 17.0 | 83.0 | - | - | - |
| Total \% | 1.0 | 0.0 | 22.5 | - | 23.6 | - | 0.0 | 15.3 | 21.3 | - | 36.6 | 6.8 | 33.1 | - | 39.9 | - |
| PHF | 0.750 | 0.000 | 0.855 | - | 0.850 | - | 0.000 | 0.815 | 0.769 | - | 0.851 | 0.750 | 0.692 | - | 0.747 | 0.859 |
| Motorcycles | 0 | 0 | 1 | - | 1 | - | 0 | 1 | 0 | - | 1 | 1 | 4 | - | 5 | 7 |
| \% Motorcycles | 0.0 | - | 0.8 | - | 0.7 | - | - | 1.1 | 0.0 | - | 0.5 | 2.6 | 2.1 | - | 2.2 | 1.2 |
| Cars | 3 | 0 | 96 | - | 99 | - | 0 | 47 | 63 | - | 110 | 26 | 109 | - | 135 | 344 |
| \% Cars | 50.0 | - | 73.8 | - | 72.8 | - | - | 53.4 | 51.2 | - | 52.1 | 66.7 | 57.1 | - | 58.7 | 59.6 |
| Light Goods Vehicles | 3 | 0 | 30 | - | 33 | - | 0 | 29 | 52 | - | 81 | 12 | 71 | - | 83 | 197 |
| \% Light Goods Vehicles | 50.0 | - | 23.1 | - | 24.3 | - | - | 33.0 | 42.3 | - | 38.4 | 30.8 | 37.2 | - | 36.1 | 34.1 |
| Buses | 0 | 0 | 0 | - | 0 | - | 0 | 1 | 0 | - | 1 | 0 | 1 | - | 1 | 2 |
| \% Buses | 0.0 | - | 0.0 | - | 0.0 | - | - | 1.1 | 0.0 | - | 0.5 | 0.0 | 0.5 | - | 0.4 | 0.3 |
| Single-Unit Trucks | 0 | 0 | 1 | - | 1 | - | 0 | 1 | 5 | - | 6 | 0 | 2 | - | 2 | 9 |
| \% Single-Unit Trucks | 0.0 | - | 0.8 | - | 0.7 | - | - | 1.1 | 4.1 | - | 2.8 | 0.0 | 1.0 | - | 0.9 | 1.6 |
| Articulated Trucks | 0 | 0 | 2 | - | 2 | - | 0 | 9 | 3 | - | 12 | 0 | 4 | - | 4 | 18 |
| \% Ariculated Trucks | 0.0 | - | 1.5 | - | 1.5 | - | - | 10.2 | 2.4 | - | 5.7 | 0.0 | 2.1 | - | 1.7 | 3.1 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | - | 0.0 | - | 0.0 | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | - | 0 | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:15 AM)

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 08-CentralAve_I15SB TMC Site Code: TMC-08

Date: 07/16/2014
Page No: 6

Turning Movement Peak Hour Data (5:00 PM)

| Start Time | I-15 SB Off <br> Southbound |  |  |  |  | I-15 SB On <br> Northbound |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Thru | Left | Peds | App. Total | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total |  |
| 5:00 PM | 2 | 0 | 16 | 0 | 18 | 0 | 0 | 75 | 52 | 0 | 127 | 7 | 40 | 0 | 47 | 192 |
| 5:15 PM | 1 | 0 | 17 | 1 | 18 | 1 | 0 | 86 | 64 | 0 | 150 | 5 | 49 | 0 | 54 | 222 |
| 5:30 PM | 1 | 0 | 15 | 0 | 16 | 0 | 0 | 66 | 64 | 0 | 130 | 9 | 43 | 0 | 52 | 198 |
| 5:45 PM | 2 | 0 | 18 | 1 | 20 | 0 | 0 | 72 | 50 | 0 | 122 | 9 | 34 | 0 | 43 | 185 |
| Total | 6 | 0 | 66 | 2 | 72 | 1 | 0 | 299 | 230 | 0 | 529 | 30 | 166 | 0 | 196 | 797 |
| Approach \% | 8.3 | 0.0 | 91.7 | - | - | - | - | 56.5 | 43.5 | - | - | 15.3 | 84.7 | - | - | - |
| Total \% | 0.8 | 0.0 | 8.3 | - | 9.0 | - | 0.0 | 37.5 | 28.9 | - | 66.4 | 3.8 | 20.8 | - | 24.6 | - |
| PHF | 0.750 | 0.000 | 0.917 | - | 0.900 | - | 0.000 | 0.869 | 0.898 | - | 0.882 | 0.833 | 0.847 | - | 0.907 | 0.898 |
| Motorcycles | 0 | 0 | 2 | - | 2 | - | 0 | 11 | 4 | - | 15 | 0 | 9 | - | 9 | 26 |
| \% Motorcycles | 0.0 | - | 3.0 | - | 2.8 | - | - | 3.7 | 1.7 | - | 2.8 | 0.0 | 5.4 | - | 4.6 | 3.3 |
| Cars | 2 | 0 | 38 | - | 40 | - | 0 | 230 | 132 | - | 362 | 20 | 98 | - | 118 | 520 |
| \% Cars | 33.3 | - | 57.6 | - | 55.6 | - | - | 76.9 | 57.4 | - | 68.4 | 66.7 | 59.0 | - | 60.2 | 65.2 |
| Light Goods Vehicles | 4 | 0 | 22 | - | 26 | - | 0 | 55 | 78 | - | 133 | 10 | 58 | - | 68 | 227 |
| \% Light Goods Vehicles | 66.7 | - | 33.3 | - | 36.1 | - | - | 18.4 | 33.9 | - | 25.1 | 33.3 | 34.9 | - | 34.7 | 28.5 |
| Buses | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 1 |
| \% Buses | 0.0 | - | 0.0 | - | 0.0 | - | - | 0.0 | 0.4 | - | 0.2 | 0.0 | 0.0 | - | 0.0 | 0.1 |
| Single-Unit Trucks | 0 | 0 | 1 | - | 1 | - | 0 | 3 | 9 | - | 12 | 0 | 1 | - | 1 | 14 |
| \% Single-Unit Trucks | 0.0 | - | 1.5 | - | 1.4 | - | - | 1.0 | 3.9 | - | 2.3 | 0.0 | 0.6 | - | 0.5 | 1.8 |
| Articulated Trucks | 0 | 0 | 3 | - | 3 | - | 0 | 0 | 6 | - | 6 | 0 | 0 | - | 0 | 9 |
| \% Ariculated Trucks | 0.0 | - | 4.5 | - | 4.2 | - | - | 0.0 | 2.6 | - | 1.1 | 0.0 | 0.0 | - | 0.0 | 1.1 |
| Bicycles on Road | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | - | 0.0 | - | 0.0 | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | - | 2 | - | 1 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | 100.0 | - | 100.0 | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (5:00 PM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 09-CentralAve_I15NB TMC Site Code: TMC-09
Page No: 1

Turning Movement Data

| Start Time | I-15 NB On <br> Southbound |  | I-15 NB Off Northbound |  |  |  |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 0 | 0 | 31 | 1 | 0 | 0 | 32 | 8 | 39 | 0 | 47 | 64 | 3 | 0 | 67 | 146 |
| 7:15 AM | 0 | 0 | 27 | 0 | 7 | 0 | 34 | 6 | 41 | 0 | 47 | 70 | 0 | 0 | 70 | 151 |
| 7:30 AM | 0 | 0 | 52 | 0 | 7 | 0 | 59 | 7 | 42 | 0 | 49 | 106 | 2 | 0 | 108 | 216 |
| 7:45 AM | 0 | 0 | 42 | 0 | 1 | 0 | 43 | 11 | 60 | 0 | 71 | 79 | 1 | 0 | 80 | 194 |
| Hourly Total | 0 | 0 | 152 | 1 | 15 | 0 | 168 | 32 | 182 | 0 | 214 | 319 | 6 | 0 | 325 | 707 |
| 8:00 AM | 0 | 0 | 39 | 0 | 3 | 0 | 42 | 11 | 52 | 0 | 63 | 61 | 1 | 0 | 62 | 167 |
| 8:15 AM | 0 | 0 | 44 | 0 | 4 | 0 | 48 | 15 | 48 | 0 | 63 | 59 | 2 | 0 | 61 | 172 |
| 8:30 AM | 0 | 0 | 32 | 0 | 3 | 0 | 35 | 11 | 45 | 0 | 56 | 54 | 0 | 0 | 54 | 145 |
| 8:45 AM | 0 | 0 | 34 | 0 | 9 | 0 | 43 | 4 | 49 | 0 | 53 | 50 | 0 | 0 | 50 | 146 |
| Hourly Total | 0 | 0 | 149 | 0 | 19 | 0 | 168 | 41 | 194 | 0 | 235 | 224 | 3 | 0 | 227 | 630 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 0 | 0 | 61 | 0 | 7 | 0 | 68 | 19 | 96 | 0 | 115 | 70 | 1 | 0 | 71 | 254 |
| 4:15 PM | 0 | 0 | 44 | 0 | 16 | 0 | 60 | 18 | 99 | 0 | 117 | 48 | 1 | 0 | 49 | 226 |
| 4:30 PM | 0 | 0 | 56 | 0 | 12 | 0 | 68 | 20 | 117 | 0 | 137 | 72 | 1 | 0 | 73 | 278 |
| 4:45 PM | 0 | 0 | 36 | 0 | 10 | 0 | 46 | 28 | 110 | 0 | 138 | 55 | 0 | 0 | 55 | 239 |
| Hourly Total | 0 | 0 | 197 | 0 | 45 | 0 | 242 | 85 | 422 | 0 | 507 | 245 | 3 | 0 | 248 | 997 |
| 5:00 PM | 0 | 0 | 35 | 0 | 15 | 0 | 50 | 34 | 118 | 0 | 152 | 58 | 1 | 0 | 59 | 261 |
| 5:15 PM | 1 | 0 | 43 | 0 | 20 | 0 | 63 | 31 | 126 | 0 | 157 | 64 | 3 | 0 | 67 | 287 |
| 5:30 PM | 0 | 0 | 47 | 0 | 8 | 0 | 55 | 30 | 124 | 0 | 154 | 60 | 1 | 0 | 61 | 270 |
| 5:45 PM | 1 | 0 | 34 | 0 | 10 | 0 | 44 | 26 | 110 | 0 | 136 | 48 | 6 | 0 | 54 | 234 |
| Hourly Total | 2 | 0 | 159 | 0 | 53 | 0 | 212 | 121 | 478 | 0 | 599 | 230 | 11 | 0 | 241 | 1052 |
| Grand Total | 2 | 0 | 657 | 1 | 132 | 0 | 790 | 279 | 1276 | 0 | 1555 | 1018 | 23 | 0 | 1041 | 3386 |
| Approach \% | - | - | 83.2 | 0.1 | 16.7 | - | - | 17.9 | 82.1 | - | - | 97.8 | 2.2 | - | - | - |
| Total \% | - | 0.0 | 19.4 | 0.0 | 3.9 | - | 23.3 | 8.2 | 37.7 | - | 45.9 | 30.1 | 0.7 | - | 30.7 | - |
| Motorcycles | - | 0 | 8 | 0 | 1 | - | 9 | 6 | 24 | - | 30 | 17 | 0 | - | 17 | 56 |
| \% Motorcycles | - | - | 1.2 | 0.0 | 0.8 | - | 1.1 | 2.2 | 1.9 | - | 1.9 | 1.7 | 0.0 | - | 1.6 | 1.7 |
| Cars | - | 0 | 382 | 1 | 92 | - | 475 | 201 | 822 | - | 1023 | 637 | 15 | - | 652 | 2150 |
| \% Cars | - | - | 58.1 | 100.0 | 69.7 | - | 60.1 | 72.0 | 64.4 | - | 65.8 | 62.6 | 65.2 | - | 62.6 | 63.5 |
| Light Goods Vehicles | - | 0 | 205 | 0 | 34 | - | 239 | 60 | 337 | - | 397 | 325 | 6 | - | 331 | 967 |
| \% Light Goods Vehicles | - | - | 31.2 | 0.0 | 25.8 | - | 30.3 | 21.5 | 26.4 | - | 25.5 | 31.9 | 26.1 | - | 31.8 | 28.6 |
| Buses | - | 0 | 1 | 0 | 0 | - | 1 | 0 | 2 | - | 2 | 1 | 0 | - | 1 | 4 |
| \% Buses | - | - | 0.2 | 0.0 | 0.0 | - | 0.1 | 0.0 | 0.2 | - | 0.1 | 0.1 | 0.0 | - | 0.1 | 0.1 |
| Single-Unit Trucks | - | 0 | 25 | 0 | 5 | - | 30 | 8 | 43 | - | 51 | 16 | 2 | - | 18 | 99 |
| \% Single-Unit Trucks | - | - | 3.8 | 0.0 | 3.8 | - | 3.8 | 2.9 | 3.4 | - | 3.3 | 1.6 | 8.7 | - | 1.7 | 2.9 |
| Articulated Trucks | - | 0 | 36 | 0 | 0 | - | 36 | 4 | 47 | - | 51 | 19 | 0 | - | 19 | 106 |
| \% Articulated Trucks | - | - | 5.5 | 0.0 | 0.0 | $-$ | 4.6 | 1.4 | 3.7 | - | 3.3 | 1.9 | 0.0 | - | 1.8 | 3.1 |
| Bicycles on Road | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 3 | 0 | - | 3 | 4 |
| \% Bicycles on Road |  |  | 0.0 | 0.0 | 0.0 |  | 0.0 | 0.0 | 0.1 | - | 0.1 | 0.3 | 0.0 | - | 0.3 | 0.1 |



Turning Movement Data Plot

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 09-CentralAve_I15NB TMC Site Code: TMC-09

Date: 07/16/2014
Page No: 4

| Start Time | Turning Movement Peak Hour Data (7:30 AM) |  |  |  |  |  |  |  |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I-15 NB On Southbound |  | Right | Thru | I-15 NB Off Northbound Left | Peds | App. Total | Central Ave W Westbound |  |  |  |  |  |  |  |  |
|  | Peds | App. Total |  |  |  |  |  | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:30 AM | 0 | 0 | 52 | 0 | 7 | 0 | 59 | 7 | 42 | 0 | 49 | 106 | 2 | 0 | 108 | 216 |
| 7:45 AM | 0 | 0 | 42 | 0 | 1 | 0 | 43 | 11 | 60 | , | 71 | 79 |  | 0 | 80 | 194 |
| 8:00 AM | 0 | 0 | 39 | 0 | 3 | 0 | 42 | 11 | 52 | 0 | 63 | 61 | 1 | 0 | 62 | 167 |
| 8:15 AM | 0 | 0 | 44 | 0 | 4 | 0 | 48 | 15 | 48 | 0 | 63 | 59 | 2 | 0 | 61 | 172 |
| Total | 0 | 0 | 177 | 0 | 15 | 0 | 192 | 44 | 202 | 0 | 246 | 305 | 6 | 0 | 311 | 749 |
| Approach \% | - | - | 92.2 | 0.0 | 7.8 | - | - | 17.9 | 82.1 | - | - | 98.1 | 1.9 | - | - | - |
| Total \% | - | 0.0 | 23.6 | 0.0 | 2.0 | - | 25.6 | 5.9 | 27.0 | - | 32.8 | 40.7 | 0.8 | - | 41.5 | - |
| PHF | - | 0.000 | 0.851 | 0.000 | 0.536 | - | 0.814 | 0.733 | 0.842 | - | 0.866 | 0.719 | 0.750 | - | 0.720 | 0.867 |
| Motorcycles | - | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | - | 1 | 2 | 0 | - | 2 | 3 |
| \% Motorcycles | - | - | 0.0 | - | 0.0 | - | 0.0 | 2.3 | 0.0 | - | 0.4 | 0.7 | 0.0 | - | 0.6 | 0.4 |
| Cars | - | 0 | 89 | 0 | 11 | - | 100 | 23 | 120 | - | 143 | 185 | 3 | - | 188 | 431 |
| \% Cars | - | - | 50.3 | - | 73.3 | - | 52.1 | 52.3 | 59.4 | - | 58.1 | 60.7 | 50.0 | - | 60.5 | 57.5 |
| Light Goods Vehicles | - | 0 | 69 | 0 | 4 | - | 73 | 14 | 57 | - | 71 | 108 | 2 | - | 110 | 254 |
| \% Light Goods Vehicles | - | - | 39.0 | - | 26.7 | - | 38.0 | 31.8 | 28.2 | - | 28.9 | 35.4 | 33.3 | - | 35.4 | 33.9 |
| Buses | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 1 | 0 | - | 1 | 2 |
| \% Buses | - | - | 0.0 | - | 0.0 | $-$ | 0.0 | 0.0 | 0.5 | - | 0.4 | 0.3 | 0.0 | - | 0.3 | 0.3 |
| Single-Unit Trucks | - | 0 | 7 | 0 | 0 | - | 7 | 3 | 10 | - | 13 | 2 | 1 | - | 3 | 23 |
| \% Single-Unit Trucks | - | - | 4.0 | - | 0.0 | - | 3.6 | 6.8 | 5.0 | - | 5.3 | 0.7 | 16.7 | $\checkmark$ | 1.0 | 3.1 |
| Articulated Trucks | - | 0 | 12 | 0 | 0 | - | 12 | 3 | 13 | - | 16 | 4 | 0 | - | 4 | 32 |
| \% Articulated Trucks | - | - | 6.8 | - | 0.0 | - | 6.3 | 6.8 | 6.4 | - | 6.5 | 1.3 | 0.0 | - | 1.3 | 4.3 |
| Bicycles on Road | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 3 | 0 | - | 3 | 4 |
| \% Bicycles on Road | - | - | 0.0 | - | 0.0 | $\checkmark$ | 0.0 | 0.0 | 0.5 | - | 0.4 | 1.0 | 0.0 | - | 1.0 | 0.5 |
| Pedestrians | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 09-CentralAve_I15NB TMC Site Code: TMC-09

Date: 07/16/2014
Page No: 6

| Start Time | Turning Movement Peak Hour Data (4:30 PM) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I-15 NB On Southbound |  | I-15 NB Off <br> Northbound |  |  |  |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
|  | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 4:30 PM | 0 | 0 | 56 | 0 | 12 | 0 | 68 | 20 | 117 | 0 | 137 | 72 | 1 | 0 | 73 | 278 |
| 4:45 PM | 0 | 0 | 36 | 0 | 10 | 0 | 46 | 28 | 110 | 0 | 138 | 55 | 0 | 0 | 55 | 239 |
| 5:00 PM | 0 | 0 | 35 | 0 | 15 | 0 | 50 | 34 | 118 | 0 | 152 | 58 | 1 | 0 | 59 | 261 |
| 5:15 PM | 1 | 0 | 43 | 0 | 20 | 0 | 63 | 31 | 126 | 0 | 157 | 64 | 3 | 0 | 67 | 287 |
| Total | 1 | 0 | 170 | 0 | 57 | 0 | 227 | 113 | 471 | 0 | 584 | 249 | 5 | 0 | 254 | 1065 |
| Approach \% | - | - | 74.9 | 0.0 | 25.1 | - | - | 19.3 | 80.7 | - | - | 98.0 | 2.0 | - | - | - |
| Total \% | - | 0.0 | 16.0 | 0.0 | 5.4 | - | 21.3 | 10.6 | 44.2 | - | 54.8 | 23.4 | 0.5 | - | 23.8 | - |
| PHF | - | 0.000 | 0.759 | 0.000 | 0.713 | - | 0.835 | 0.831 | 0.935 | - | 0.930 | 0.865 | 0.417 | - | 0.870 | 0.928 |
| Motorcycles | - | 0 | 3 | 0 | 0 | - | 3 | 3 | 15 | - | 18 | 6 | 0 | - | 6 | 27 |
| \% Motorcycles | - | - | 1.8 | - | 0.0 | - | 1.3 | 2.7 | 3.2 | - | 3.1 | 2.4 | 0.0 | - | 2.4 | 2.5 |
| Cars | - | 0 | 106 | 0 | 43 | - | 149 | 92 | 315 | - | 407 | 156 | 4 | - | 160 | 716 |
| \% Cars | - | - | 62.4 | - | 75.4 | - | 65.6 | 81.4 | 66.9 | - | 69.7 | 62.7 | 80.0 | - | 63.0 | 67.2 |
| Light Goods Vehicles | - | 0 | 49 | 0 | 13 | - | 62 | 17 | 119 | - | 136 | 82 | 1 | - | 83 | 281 |
| \% Light Goods Vehicles | - | - | 28.8 | - | 22.8 | - | 27.3 | 15.0 | 25.3 | - | 23.3 | 32.9 | 20.0 | - | 32.7 | 26.4 |
| Buses | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Buses | - | - | 0.0 | - | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Single-Unit Trucks | - | 0 | 6 | 0 | 1 | - | 7 | 1 | 12 | - | 13 | 3 | 0 | - | 3 | 23 |
| \% Single-Unit Trucks | - | - | 3.5 | - | 1.8 | - | 3.1 | 0.9 | 2.5 | - | 2.2 | 1.2 | 0.0 | - | 1.2 | 2.2 |
| Articulated Trucks | - | 0 | 6 | 0 | 0 | - | 6 | 0 | 10 | - | 10 | 2 | 0 | - | 2 | 18 |
| \% Articulated Trucks | - | - | 3.5 | - | 0.0 | - | 2.6 | 0.0 | 2.1 | - | 1.7 | 0.8 | 0.0 | - | 0.8 | 1.7 |
| Bicycles on Road | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | - | - | 0.0 | - | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | 1 | - | - | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | 100.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:30 PM)

Robert Peccia \& Associates 825 Custer Ave

Count Name: 09-CentralAve_I15NB TMC
Helena, Montana, United States 59604
406-447-5000 scottr@rpa-hln.com

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Turning Movement Data

| Start Time | Vaughn Rd <br> Southbound |  |  |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 10 | 17 | 0 | 27 | 9 | 39 | 0 | 48 | 73 | 13 | 0 | 86 | 161 |
| 7:15 AM | 13 | 13 | 0 | 26 | 10 | 33 | 0 | 43 | 95 | 12 | 0 | 107 | 176 |
| 7:30 AM | 14 | 19 | 0 | 33 | 17 | 35 | 0 | 52 | 128 | 20 | 0 | 148 | 233 |
| 7:45 AM | 16 | 25 | 0 | 41 | 21 | 54 | 0 | 75 | 110 | 21 | 0 | 131 | 247 |
| Hourly Total | 53 | 74 | 0 | 127 | 57 | 161 | 0 | 218 | 406 | 66 | 0 | 472 | 817 |
| 8:00 AM | 19 | 21 | 0 | 40 | 14 | 44 | 0 | 58 | 85 | 12 | 0 | 97 | 195 |
| 8:15 AM | 11 | 12 | 0 | 23 | 13 | 51 | 0 | 64 | 87 | 18 | 0 | 105 | 192 |
| 8:30 AM | 15 | 8 | 0 | 23 | 16 | 43 | 0 | 59 | 71 | 12 | 0 | 83 | 165 |
| 8:45 AM | 10 | 13 | 0 | 23 | 18 | 41 | 0 | 59 | 70 | 15 | 0 | 85 | 167 |
| Hourly Total | 55 | 54 | 0 | 109 | 61 | 179 | 0 | 240 | 313 | 57 | 0 | 370 | 719 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 27 | 19 | 0 | 46 | 19 | 90 | 0 | 109 | 99 | 30 | 0 | 129 | 284 |
| 4:15 PM | 24 | 18 | 0 | 42 | 25 | 96 | 0 | 121 | 77 | 15 | 0 | 92 | 255 |
| 4:30 PM | 32 | 26 | 0 | 58 | 12 | 104 | 0 | 116 | 111 | 17 | 0 | 128 | 302 |
| 4:45 PM | 30 | 13 | 1 | 43 | 17 | 106 | 0 | 123 | 74 | 22 | 0 | 96 | 262 |
| Hourly Total | 113 | 76 | 1 | 189 | 73 | 396 | 0 | 469 | 361 | 84 | 0 | 445 | 1103 |
| 5:00 PM | 31 | 18 | 0 | 49 | 26 | 119 | 0 | 145 | 71 | 16 | 0 | 87 | 281 |
| 5:15 PM | 28 | 11 | 0 | 39 | 21 | 133 | 0 | 154 | 95 | 11 | 0 | 106 | 299 |
| 5:30 PM | 34 | 20 | 1 | 54 | 18 | 116 | 0 | 134 | 87 | 19 | 0 | 106 | 294 |
| 5:45 PM | 33 | 11 | 0 | 44 | 15 | 101 | 0 | 116 | 62 | 14 | 0 | 76 | 236 |
| Hourly Total | 126 | 60 | 1 | 186 | 80 | 469 | 0 | 549 | 315 | 60 | 0 | 375 | 1110 |
| Grand Total | 347 | 264 | 2 | 611 | 271 | 1205 | 0 | 1476 | 1395 | 267 | 0 | 1662 | 3749 |
| Approach \% | 56.8 | 43.2 | - | - | 18.4 | 81.6 | - | - | 83.9 | 16.1 | - | - | - |
| Total \% | 9.3 | 7.0 | - | 16.3 | 7.2 | 32.1 | - | 39.4 | 37.2 | 7.1 | - | 44.3 | - |
| Motorcycles | 2 | 2 | - | 4 | 2 | 24 | - | 26 | 22 | 2 | - | 24 | 54 |
| \% Motorcycles | 0.6 | 0.8 | - | 0.7 | 0.7 | 2.0 | - | 1.8 | 1.6 | 0.7 | - | 1.4 | 1.4 |
| Cars | 190 | 179 | - | 369 | 169 | 765 | - | 934 | 890 | 146 | - | 1036 | 2339 |
| \% Cars | 54.8 | 67.8 | - | 60.4 | 62.4 | 63.5 | - | 63.3 | 63.8 | 54.7 | - | 62.3 | 62.4 |
| Light Goods Vehicles | 139 | 70 | - | 209 | 82 | 338 | - | 420 | 402 | 99 | - | 501 | 1130 |
| \% Light Goods Vehicles | 40.1 | 26.5 | - | 34.2 | 30.3 | 28.0 | - | 28.5 | 28.8 | 37.1 | - | 30.1 | 30.1 |
| Buses | 0 | 1 | - | 1 | 2 | 3 | - | 5 | 2 | 0 | - | 2 | 8 |
| \% Buses | 0.0 | 0.4 | - | 0.2 | 0.7 | 0.2 | - | 0.3 | 0.1 | 0.0 | - | 0.1 | 0.2 |
| Single-Unit Trucks | 10 | 11 | - | 21 | 10 | 26 | - | 36 | 40 | 10 | - | 50 | 107 |
| \% Single-Unit Trucks | 2.9 | 4.2 | - | 3.4 | 3.7 | 2.2 | - | 2.4 | 2.9 | 3.7 | - | 3.0 | 2.9 |
| Articulated Trucks | 6 | 1 | - | 7 | 6 | 48 | - | 54 | 37 | 10 | - | 47 | 108 |
| \% Articulated Trucks | 1.7 | 0.4 | - | 1.1 | 2.2 | 4.0 | - | 3.7 | 2.7 | 3.7 | - | 2.8 | 2.9 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 2 | 0 | - | 2 | 3 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.1 | - | 0.1 | 0.1 | 0.0 | - | 0.1 | 0.1 |



Turning Movement Data Plot

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 10-CentralAve_VaughnRd TMC Site Code: TMC-10 Start Date:
Page No: 4

Turning Movement Peak Hour Data (7:30 AM)

| Start Time | Turning Movement Peak Hour Data (7:30 AV) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vaughn Rd <br> Southbound |  |  |  | Central Ave W Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
|  | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:30 AM | 14 | 19 | 0 | 33 | 17 | 35 | 0 | 52 | 128 | 20 | 0 | 148 | 233 |
| 7:45 AM | 16 | 25 | 0 | 41 | 21 | 54 | 0 | 75 | 110 | 21 | 0 | 131 | 247 |
| 8:00 AM | 19 | 21 | 0 | 40 | 14 | 44 | 0 | 58 | 85 | 12 | 0 | 97 | 195 |
| 8:15 AM | 11 | 12 | 0 | 23 | 13 | 51 | 0 | 64 | 87 | 18 | 0 | 105 | 192 |
| Total | 60 | 77 | 0 | 137 | 65 | 184 | 0 | 249 | 410 | 71 | 0 | 481 | 867 |
| Approach \% | 43.8 | 56.2 | - | - | 26.1 | 73.9 | - | - | 85.2 | 14.8 | - | - | - |
| Total \% | 6.9 | 8.9 | - | 15.8 | 7.5 | 21.2 | - | 28.7 | 47.3 | 8.2 | - | 55.5 | - |
| PHF | 0.789 | 0.770 | - | 0.835 | 0.774 | 0.852 | - | 0.830 | 0.801 | 0.845 | - | 0.813 | 0.878 |
| Motorcycles | 0 | 0 | - | 0 | 1 | 1 | - | 2 | 3 | 0 | - | 3 | 5 |
| \% Motorcycles | 0.0 | 0.0 | - | 0.0 | 1.5 | 0.5 | - | 0.8 | 0.7 | 0.0 | - | 0.6 | 0.6 |
| Cars | 29 | 49 | - | 78 | 36 | 92 | - | 128 | 255 | 35 | - | 290 | 496 |
| \% Cars | 48.3 | 63.6 | - | 56.9 | 55.4 | 50.0 | - | 51.4 | 62.2 | 49.3 | - | 60.3 | 57.2 |
| Light Goods Vehicles | 27 | 21 | - | 48 | 23 | 67 | - | 90 | 129 | 31 | - | 160 | 298 |
| \% Light Goods Vehicles | 45.0 | 27.3 | - | 35.0 | 35.4 | 36.4 | - | 36.1 | 31.5 | 43.7 | - | 33.3 | 34.4 |
| Buses | 0 | 0 | - | 0 | 1 | 2 | - | 3 | 1 | 0 | - | 1 | 4 |
| \% Buses | 0.0 | 0.0 | - | 0.0 | 1.5 | 1.1 | - | 1.2 | 0.2 | 0.0 | - | 0.2 | 0.5 |
| Single-Unit Trucks | 3 | 6 | - | 9 | 2 | 3 | - | 5 | 10 | 2 | - | 12 | 26 |
| \% Single-Unit Trucks | 5.0 | 7.8 | - | 6.6 | 3.1 | 1.6 | - | 2.0 | 2.4 | 2.8 | - | 2.5 | 3.0 |
| Articulated Trucks | 1 | 1 | - | 2 | 2 | 18 | - | 20 | 11 | 3 | - | 14 | 36 |
| \% Ariculated Trucks | 1.7 | 1.3 | - | 1.5 | 3.1 | 9.8 | - | 8.0 | 2.7 | 4.2 | - | 2.9 | 4.2 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 1 | - | 1 | 1 | 0 | - | 1 | 2 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.5 | - | 0.4 | 0.2 | 0.0 | - | 0.2 | 0.2 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:30 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 10-CentralAve_VaughnRd TMC Site Code: TMC-10 Start Date: 07/16/2014
Page No: 6

Turning Movement Peak Hour Data (4:30 PM)

| Start Time | Vaughn Rd Southbound |  |  |  | Central Ave W <br> Westbound |  |  |  | Central Ave W Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 4:30 PM | 32 | 26 | 0 | 58 | 12 | 104 | 0 | 116 | 111 | 17 | 0 | 128 | 302 |
| 4:45 PM | 30 | 13 | 1 | 43 | 17 | 106 | 0 | 123 | 74 | 22 | 0 | 96 | 262 |
| 5:00 PM | 31 | 18 | 0 | 49 | 26 | 119 | 0 | 145 | 71 | 16 | 0 | 87 | 281 |
| 5:15 PM | 28 | 11 | 0 | 39 | 21 | 133 | 0 | 154 | 95 | 11 | 0 | 106 | 299 |
| Total | 121 | 68 | 1 | 189 | 76 | 462 | 0 | 538 | 351 | 66 | 0 | 417 | 1144 |
| Approach \% | 64.0 | 36.0 | - | - | 14.1 | 85.9 | - | - | 84.2 | 15.8 | - | - | - |
| Total \% | 10.6 | 5.9 | - | 16.5 | 6.6 | 40.4 | - | 47.0 | 30.7 | 5.8 | - | 36.5 | $\cdot$ |
| PHF | 0.945 | 0.654 | - | 0.815 | 0.731 | 0.868 | - | 0.873 | 0.791 | 0.750 | - | 0.814 | 0.947 |
| Motorcycles | 1 | 1 | - | 2 | 1 | 13 | - | 14 | 11 | 2 | - | 13 | 29 |
| \% Motorcycles | 0.8 | 1.5 | - | 1.1 | 1.3 | 2.8 | - | 2.6 | 3.1 | 3.0 | - | 3.1 | 2.5 |
| Cars | 68 | 50 | - | 118 | 54 | 319 | - | 373 | 239 | 40 | - | 279 | 770 |
| \% Cars | 56.2 | 73.5 | - | 62.4 | 71.1 | 69.0 | - | 69.3 | 68.1 | 60.6 | - | 66.9 | 67.3 |
| Light Goods Vehicles | 50 | 15 | - | 65 | 19 | 114 | - | 133 | 86 | 23 | - | 109 | 307 |
| \% Light Goods Vehicles | 41.3 | 22.1 | - | 34.4 | 25.0 | 24.7 | - | 24.7 | 24.5 | 34.8 | - | 26.1 | 26.8 |
| Buses | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 | 0 | - | 1 | 1 |
| \% Buses | 0.0 | 0.0 | $-$ | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.3 | 0.0 | - | 0.2 | 0.1 |
| Single-Unit Trucks | 1 | 2 | - | 3 | 1 | 7 | - | 8 | 7 | 1 | - | 8 | 19 |
| \% Single-Unit Trucks | 0.8 | 2.9 | - | 1.6 | 1.3 | 1.5 | - | 1.5 | 2.0 | 1.5 | - | 1.9 | 1.7 |
| Articulated Trucks | 1 | 0 | - | 1 | 1 | 9 | - | 10 | 7 | 0 | - | 7 | 18 |
| \% Articulated Trucks | 0.8 | 0.0 | - | 0.5 | 1.3 | 1.9 | - | 1.9 | 2.0 | 0.0 | - | 1.7 | 1.6 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |
| Pedestrians | - | - | 1 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | 100.0 | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:30 PM)

Helena, Montana, United States 5960 406-447-5000 scottr@rpa-hIn.com

Count Name: 11-VaughnRd_I15SB TMC Site Code: TMC-1
Start Date:
Page No: 1

Turning Movement Data

| Start Time | I-15 SB Off <br> Southbound |  |  |  | Vaughn Rd <br> Westbound |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 0 | 50 | 0 | 50 | 1 | 0 | 0 | , | 8 | 0 | 0 | 8 | 59 |
| 7:15 AM | 0 | 50 | 0 | 50 | 4 | 0 | 0 | 4 | 6 | 0 | 0 | 6 | 60 |
| 7:30 AM | 0 | 62 | 0 | 62 | 3 | 1 | 0 | 4 | 5 | 0 | 0 | 5 | 71 |
| 7:45 AM | 1 | 57 | 0 | 58 | 4 | 0 | 0 | 4 | 8 | 0 | 0 | 8 | 70 |
| Hourly Total | 1 | 219 | 0 | 220 | 12 | 1 | 0 | 13 | 27 | 0 | 0 | 27 | 260 |
| 8:00 AM | 0 | 37 | 0 | 37 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | 7 | 51 |
| 8:15 AM | 0 | 38 | 0 | 38 | 8 | 0 | 0 | 8 | 6 | 0 | 0 | 6 | 52 |
| 8:30 AM | 0 | 37 | 0 | 37 | 13 | 0 | 0 | 13 | 7 | 0 | 0 | 7 | 57 |
| 8:45 AM | 1 | 35 | 0 | 36 | 4 | 0 | 0 | 4 | 9 | 0 | 0 | 9 | 49 |
| Hourly Total | 1 | 147 | 0 | 148 | 32 | 0 | 0 | 32 | 29 | 0 | 0 | 29 | 209 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 0 | 32 | 0 | 32 | 9 | 1 | 0 | 10 | 12 | 0 | 0 | 12 | 54 |
| 4:15 PM | 0 | 38 | 0 | 38 | 14 | 0 | 0 | 14 | 12 | 0 | 0 | 12 | 64 |
| 4:30 PM | 0 | 35 | 0 | 35 | 13 | 0 | 0 | 13 | 12 | 0 | 0 | 12 | 60 |
| 4:45 PM | 1 | 38 | 0 | 39 | 14 | 0 | 0 | 14 | 17 | 0 | 0 | 17 | 70 |
| Hourly Total | 1 | 143 | 0 | 144 | 50 | 1 | 0 | 51 | 53 | 0 | 0 | 53 | 248 |
| 5:00 PM | 0 | 23 | 0 | 23 | 14 | 0 | 0 | 14 | 8 | 1 | 0 | 9 | 46 |
| 5:15 PM | 0 | 29 | 0 | 29 | 16 | 0 | 0 | 16 | 7 | 0 | 0 | 7 | 52 |
| 5:30 PM | 0 | 35 | 0 | 35 | 11 | 0 | 0 | 11 | 6 | 0 | 0 | 6 | 52 |
| 5:45 PM | 0 | 33 | 0 | 33 | 12 | 0 | 0 | 12 | 12 | 0 | 0 | 12 | 57 |
| Hourly Total | 0 | 120 | 0 | 120 | 53 | 0 | 0 | 53 | 33 | 1 | 0 | 34 | 207 |
| Grand Total | 3 | 629 | 0 | 632 | 147 | 2 | 0 | 149 | 142 | 1 | 0 | 143 | 924 |
| Approach \% | 0.5 | 99.5 | - | - | 98.7 | 1.3 | - | - | 99.3 | 0.7 | - | - | - |
| Total \% | 0.3 | 68.1 | - | 68.4 | 15.9 | 0.2 | - | 16.1 | 15.4 | 0.1 | - | 15.5 | - |
| Motorcycles | 0 | 4 | - | 4 | 3 | 0 | - | 3 |  | 0 | - | 1 | 8 |
| \% Motorcycles | 0.0 | 0.6 | - | 0.6 | 2.0 | 0.0 | - | 2.0 | 0.7 | 0.0 | - | 0.7 | 0.9 |
| Cars | 2 | 324 | - | 326 | 70 | 1 | - | 71 | 65 | 0 | - | 65 | 462 |
| \% Cars | 66.7 | 51.5 | - | 51.6 | 47.6 | 50.0 | - | 47.7 | 45.8 | 0.0 | $-$ | 45.5 | 50.0 |
| Light Goods Vehicles | 1 | 257 | - | 258 | 66 | 1 | - | 67 | 65 | 1 | - | 66 | 391 |
| \% Light Goods Vehicles | 33.3 | 40.9 | - | 40.8 | 44.9 | 50.0 | - | 45.0 | 45.8 | 100.0 | - | 46.2 | 42.3 |
| Buses | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 |
| \% Buses | 0.0 | 0.2 | - | 0.2 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.1 |
| Single-Unit Trucks | 0 | 27 | - | 27 | 6 | 0 | - | 6 | 7 | 0 | - | 7 | 40 |
| \% Single-Unit Trucks | 0.0 | 4.3 | - | 4.3 | 4.1 | 0.0 | - | 4.0 | 4.9 | 0.0 | - | 4.9 | 4.3 |
| Articulated Trucks | 0 | 16 | - | 16 | 2 | 0 | - | 2 | 4 | 0 | - | 4 | 22 |
| \% Ariculated Trucks | 0.0 | 2.5 | - | 2.5 | 1.4 | 0.0 | - | 1.3 | 2.8 | 0.0 | - | 2.8 | 2.4 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |



Turning Movement Data Plot

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 11-VaughnRd_I15SB TMC Site Code: TMC-11 Start Date:
Page No: 4

Turning Movement Peak Hour Data (7:00 AM)

| Start Time | I-15 SB Off Southbound |  |  |  | Vaughn Rd Westbound |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 0 | 50 | 0 | 50 | 1 | 0 | 0 | 1 | 8 | 0 | 0 | 8 | 59 |
| 7:15 AM | 0 | 50 | 0 | 50 | 4 | 0 | 0 | 4 | 6 | 0 | 0 | 6 | 60 |
| 7:30 AM | 0 | 62 | 0 | 62 | 3 | 1 | 0 | 4 | 5 | 0 | 0 | 5 | 71 |
| 7:45 AM | 1 | 57 | 0 | 58 | 4 | 0 | 0 | 4 | 8 | 0 | 0 | 8 | 70 |
| Total | 1 | 219 | 0 | 220 | 12 | 1 | 0 | 13 | 27 | 0 | 0 | 27 | 260 |
| Approach \% | 0.5 | 99.5 | - | - | 92.3 | 7.7 | - | - | 100.0 | 0.0 | - | - | - |
| Total \% | 0.4 | 84.2 | - | 84.6 | 4.6 | 0.4 | $\checkmark$ | 5.0 | 10.4 | 0.0 | - | 10.4 | - |
| PHF | 0.250 | 0.883 | - | 0.887 | 0.750 | 0.250 | - | 0.813 | 0.844 | 0.000 | - | 0.844 | 0.915 |
| Motorcycles | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 |
| \% Motorcycles | 0.0 | 0.5 | - | 0.5 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.4 |
| Cars | 1 | 128 | - | 129 | 6 | 0 | - | 6 | 14 | 0 | - | 14 | 149 |
| \% Cars | 100.0 | 58.4 | - | 58.6 | 50.0 | 0.0 | - | 46.2 | 51.9 | - | - | 51.9 | 57.3 |
| Light Goods Vehicles | 0 | 79 | - | 79 | 5 | 1 | - | 6 | 10 | 0 | $\checkmark$ | 10 | 95 |
| \% Light Goods Vehicles | 0.0 | 36.1 | - | 35.9 | 41.7 | 100.0 | - | 46.2 | 37.0 | - | - | 37.0 | 36.5 |
| Buses | 0 | 1 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 1 |
| \% Buses | 0.0 | 0.5 | - | 0.5 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.4 |
| Single-Unit Trucks | 0 | 5 | - | 5 | 1 | 0 | - | 1 | 2 | 0 | - | 2 | 8 |
| \% Single-Unit Trucks | 0.0 | 2.3 | - | 2.3 | 8.3 | 0.0 | - | 7.7 | 7.4 | - | - | 7.4 | 3.1 |
| Articulated Trucks | 0 | 5 | - | 5 | 0 | 0 | - | 0 | 1 | 0 | - | 1 | 6 |
| \% Articulated Trucks | 0.0 | 2.3 | - | 2.3 | 0.0 | 0.0 | - | 0.0 | 3.7 | - | - | 3.7 | 2.3 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (7:00 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 11-VaughnRd_I15SB TMC Site Code: TMC-11 Start Date:
Page No: 6

Turning Movement Peak Hour Data (4:00 PM)

| Start Time | I-15 SB Off <br> Southbound |  |  |  | Vaughn Rd <br> Westbound |  |  |  | Frontage Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Peds | App. Total | Thru | Left | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 4:00 PM | 0 | 32 | 0 | 32 | 9 | 1 | 0 | 10 | 12 | 0 | 0 | 12 | 54 |
| 4:15 PM | 0 | 38 | 0 | 38 | 14 | 0 | 0 | 14 | 12 | 0 | 0 | 12 | 64 |
| 4:30 PM | 0 | 35 | 0 | 35 | 13 | 0 | 0 | 13 | 12 | 0 | 0 | 12 | 60 |
| 4:45 PM | 1 | 38 | 0 | 39 | 14 | 0 | 0 | 14 | 17 | 0 | 0 | 17 | 70 |
| Total | 1 | 143 | 0 | 144 | 50 | 1 | 0 | 51 | 53 | 0 | 0 | 53 | 248 |
| Approach \% | 0.7 | 99.3 | - | - | 98.0 | 2.0 | - | - | 100.0 | 0.0 | - | - | - |
| Total \% | 0.4 | 57.7 | - | 58.1 | 20.2 | 0.4 | - | 20.6 | 21.4 | 0.0 | - | 21.4 | - |
| PHF | 0.250 | 0.941 | - | 0.923 | 0.893 | 0.250 | - | 0.911 | 0.779 | 0.000 | - | 0.779 | 0.886 |
| Motorcycles | 0 | 1 | - | 1 | 1 | 0 | - | 1 | 1 | 0 | - | 1 | 3 |
| \% Motorcycles | 0.0 | 0.7 | - | 0.7 | 2.0 | 0.0 | - | 2.0 | 1.9 | - | - | 1.9 | 1.2 |
| Cars | 1 | 68 | - | 69 | 27 | 1 | - | 28 | 23 | 0 | - | 23 | 120 |
| \% Cars | 100.0 | 47.6 | - | 47.9 | 54.0 | 100.0 | - | 54.9 | 43.4 | - | - | 43.4 | 48.4 |
| Light Goods Vehicles | 0 | 64 | - | 64 | 20 | 0 | - | 20 | 25 | 0 | - | 25 | 109 |
| \% Light Goods Vehicles | 0.0 | 44.8 | - | 44.4 | 40.0 | 0.0 | - | 39.2 | 47.2 | - | - | 47.2 | 44.0 |
| Buses | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Buses | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Single-Unit Trucks | 0 | 7 | - | 7 | 2 | 0 | - | 2 | 3 | 0 | - | 3 | 12 |
| \% Single-Unit Trucks | 0.0 | 4.9 | - | 4.9 | 4.0 | 0.0 | - | 3.9 | 5.7 | - | - | 5.7 | 4.8 |
| Articulated Trucks | 0 | 3 | $\checkmark$ | 3 | 0 | 0 | - | 0 | 1 | 0 | - | 1 | 4 |
| \% Articulated Trucks | 0.0 | 2.1 | - | 2.1 | 0.0 | 0.0 | - | 0.0 | 1.9 | - | - | 1.9 | 1.6 |
| Bicycles on Road | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Pedestrians | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:00 PM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 12 -VaughnRd_I15NB TMC
Site Code: TMC-12 Site Code: TMC-12
Start Date:
Page No: 1

Turning Movement Data
Vaughn R

| Start Time | I-15 NB On Southbound |  | Turning Movement DVaughn RdWestbound |  |  |  | Vaughn Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:00 AM | 1 | 0 | 16 | 1 | 0 | 17 | 53 | 0 | 0 | 53 | 70 |
| 7:15 AM | 0 | 0 | 23 | 4 | 0 | 27 | 58 | 0 | 0 | 58 | 85 |
| 7:30 AM | 0 | 0 | 14 | 4 | 0 | 18 | 67 | 0 | 0 | 67 | 85 |
| 7:45 AM | 0 | 0 | 18 | 3 | 0 | 21 | 69 | 0 | 0 | 69 | 90 |
| Hourly Total | 1 | 0 | 71 | 12 | 0 | 83 | 247 | 0 | 0 | 247 | 330 |
| 8:00 AM | 0 | 0 | 21 | 8 | 0 | 29 | 43 | 0 | 0 | 43 | 72 |
| 8:15 AM | 0 | 0 | 19 | 8 | 0 | 27 | 43 | 0 | 0 | 43 | 70 |
| 8:30 AM | 0 | 0 | 23 | 12 | 0 | 35 | 40 | 1 | 0 | 41 | 76 |
| 8:45 AM | 0 | 0 | 31 | 5 | 0 | 36 | 47 | 0 | 0 | 47 | 83 |
| Hourly Total | 0 | 0 | 94 | 33 | 0 | 127 | 173 | 1 | 0 | 174 | 301 |
| *** BREAK *** | - | - | - | - | - | - | - | - | - | - | - |
| 4:00 PM | 0 | 0 | 61 | 10 | 0 | 71 | 47 | 0 | 0 | 47 | 118 |
| 4:15 PM | 0 | 0 | 51 | 14 | 0 | 65 | 47 | 0 | 0 | 47 | 112 |
| 4:30 PM | 0 | 0 | 72 | 14 | 0 | 86 | 48 | 0 | 0 | 48 | 134 |
| 4:45 PM | 0 | 0 | 73 | 14 | 0 | 87 | 55 | 0 | 0 | 55 | 142 |
| Hourly Total | 0 | 0 | 257 | 52 | 0 | 309 | 197 | 0 | 0 | 197 | 506 |
| 5:00 PM | 0 | 0 | 84 | 13 | 0 | 97 | 35 | 0 | 0 | 35 | 132 |
| 5:15 PM | 0 | 0 | 91 | 17 | 0 | 108 | 34 | 0 | 0 | 34 | 142 |
| 5:30 PM | 0 | 0 | 86 | 11 | 0 | 97 | 41 | 0 | 0 | 41 | 138 |
| 5:45 PM | 0 | 0 | 81 | 11 | 0 | 92 | 41 | 0 | 0 | 41 | 133 |
| Hourly Total | 0 | 0 | 342 | 52 | 0 | 394 | 151 | 0 | 0 | 151 | 545 |
| Grand Total | 1 | 0 | 764 | 149 | 0 | 913 | 768 | 1 | 0 | 769 | 1682 |
| Approach \% | - | - | 83.7 | 16.3 | - | - | 99.9 | 0.1 | - | - | - |
| Total \% | - | 0.0 | 45.4 | 8.9 | - | 54.3 | 45.7 | 0.1 | - | 45.7 | - |
| Motorcycles | $-$ | 0 | 5 | 2 | - | 7 | 4 | 0 | - | 4 | 11 |
| \% Motorcycles | - | - | 0.7 | 1.3 | - | 0.8 | 0.5 | 0.0 | - | 0.5 | 0.7 |
| Cars | - | 0 | 473 | 72 | - | 545 | 428 | 0 | - | 428 | 973 |
| \% Cars | - | - | 61.9 | 48.3 | - | 59.7 | 55.7 | 0.0 | - | 55.7 | 57.8 |
| Light Goods Vehicles | - | 0 | 237 | 68 | - | 305 | 282 | 0 | - | 282 | 587 |
| \% Light Goods Vehicles | - | - | 31.0 | 45.6 | - | 33.4 | 36.7 | 0.0 | - | 36.7 | 34.9 |
| Buses | - | 0 | 2 | 0 | - | 2 | 3 | 0 | - | 3 | 5 |
| \% Buses | - | - | 0.3 | 0.0 | - | 0.2 | 0.4 | 0.0 | - | 0.4 | 0.3 |
| Single-Unit Trucks | - | 0 | 17 | 5 | - | 22 | 31 | 1 | - | 32 | 54 |
| \% Single-Unit Trucks | - | - | 2.2 | 3.4 | - | 2.4 | 4.0 | 100.0 | - | 4.2 | 3.2 |
| Articulated Trucks | - | 0 | 30 | 2 | - | 32 | 20 | 0 | - | 20 | 52 |
| \% Articulated Trucks | $\checkmark$ | - | 3.9 | 1.3 | - | 3.5 | 2.6 | 0.0 | - | 2.6 | 3.1 |
| Bicycles on Road | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 |



Turning Movement Data Plot

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 12-VaughnRd_I15NB TMC Site Code: TMC-12 Start Date: 07/16/2014
Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

| Start Time | l-15 NB On Southbound |  | Vaughn Rd Westbound |  |  |  | Vaughn Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 7:15 AM | 0 | 0 | 23 | 4 | 0 | 27 | 58 | 0 | 0 | 58 | 85 |
| 7:30 AM | 0 | 0 | 14 | 4 | 0 | 18 | 67 | 0 | 0 | 67 | 85 |
| 7:45 AM | 0 | 0 | 18 | 3 | 0 | 21 | 69 | 0 | 0 | 69 | 90 |
| 8:00 AM | 0 | 0 | 21 | 8 | 0 | 29 | 43 | 0 | 0 | 43 | 72 |
| Total | 0 | 0 | 76 | 19 | 0 | 95 | 237 | 0 | 0 | 237 | 332 |
| Approach \% | - | - | 80.0 | 20.0 | - | - | 100.0 | 0.0 | - | - | - |
| Total \% | - | 0.0 | 22.9 | 5.7 | - | 28.6 | 71.4 | 0.0 | - | 71.4 | - |
| PHF | - | 0.000 | 0.826 | 0.594 | - | 0.819 | 0.859 | 0.000 | - | 0.859 | 0.922 |
| Motorcycles | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Motorcycles | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Cars | - | 0 | 40 | 7 | - | 47 | 139 | 0 | - | 139 | 186 |
| \% Cars | - | - | 52.6 | 36.8 | - | 49.5 | 58.6 | - | - | 58.6 | 56.0 |
| Light Goods Vehicles | - | 0 | 25 | 11 | - | 36 | 85 | 0 | - | 85 | 121 |
| \% Light Goods Vehicles | - | - | 32.9 | 57.9 | - | 37.9 | 35.9 | - | - | 35.9 | 36.4 |
| Buses | - | 0 | 0 | 0 | - | 0 | 1 | 0 | - | 1 | 1 |
| \% Buses | - | - | 0.0 | 0.0 | - | 0.0 | 0.4 | - | - | 0.4 | 0.3 |
| Single-Unit Trucks | - | 0 | 5 | 1 | - | 6 | 6 | 0 | - | 6 | 12 |
| \% Single-Unit Trucks | - | - | 6.6 | 5.3 | - | 6.3 | 2.5 | - | - | 2.5 | 3.6 |
| Articulated Trucks | - | 0 | 6 | 0 | - | 6 | 6 | 0 | - | 6 | 12 |
| \% Articulated Trucks | - | - | 7.9 | 0.0 | - | 6.3 | 2.5 | - | - | 2.5 | 3.6 |
| Bicycles on Road | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Pedestrians | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | $\cdot$ |



Turning Movement Peak Hour Data Plot (7:15 AM)

Helena, Montana, United States 59604 406-447-5000 scottr@rpa-hIn.com

Count Name: 12-VaughnRd_I15NB TMC Site Code: TMC-12 Start Date: 07/16/2014
Page No: 6

Turning Movement Peak Hour Data (4:45 PM)

| Start Time | I-15 NB On Southbound |  | Vaughn Rd Westbound |  |  |  | Vaughn Rd Eastbound |  |  |  | Int. Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Peds | App. Total | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total |  |
| 4:45 PM | 0 | 0 | 73 | 14 | 0 | 87 | 55 | 0 | 0 | 55 | 142 |
| 5:00 PM | 0 | 0 | 84 | 13 | 0 | 97 | 35 | 0 | 0 | 35 | 132 |
| 5:15 PM | 0 | 0 | 91 | 17 | 0 | 108 | 34 | 0 | 0 | 34 | 142 |
| 5:30 PM | 0 | 0 | 86 | 11 | 0 | 97 | 41 | 0 | 0 | 41 | 138 |
| Total | 0 | 0 | 334 | 55 | 0 | 389 | 165 | 0 | 0 | 165 | 554 |
| Approach \% | - | - | 85.9 | 14.1 | - | - | 100.0 | 0.0 | - | - | - |
| Total \% | - | 0.0 | 60.3 | 9.9 | - | 70.2 | 29.8 | 0.0 | - | 29.8 | - |
| PHF | - | 0.000 | 0.918 | 0.809 | - | 0.900 | 0.750 | 0.000 | - | 0.750 | 0.975 |
| Motorcycles | - | 0 | 1 | 1 | - | 2 | 2 | 0 | - | 2 | 4 |
| \% Motorcycles | - | - | 0.3 | 1.8 | - | 0.5 | 1.2 | - | - | 1.2 | 0.7 |
| Cars |  | 0 | 219 | 31 |  | 250 | 90 | 0 | - | 90 | 340 |
| \% Cars | - | - | 65.6 | 56.4 | - | 64.3 | 54.5 | - | - | 54.5 | 61.4 |
| Light Goods Vehicles | - | 0 | 96 | 22 | - | 118 | 62 | 0 | - | 62 | 180 |
| \% Light Goods Vehicles | - | - | 28.7 | 40.0 | - | 30.3 | 37.6 | - | - | 37.6 | 32.5 |
| Buses | - | 0 | 2 | 0 | - | 2 | 1 | 0 | - | 1 | 3 |
| \% Buses | - | - | 0.6 | 0.0 | - | 0.5 | 0.6 | - | - | 0.6 | 0.5 |
| Single-Unit Trucks | - | 0 | 5 | 1 | - | 6 | 9 | 0 | - | 9 | 15 |
| \% Single-Unit Trucks | - | - | 1.5 | 1.8 | - | 1.5 | 5.5 | - | - | 5.5 | 2.7 |
| Articulated Trucks | - | 0 | 11 | 0 | - | 11 | 1 | 0 | - | 1 | 12 |
| \% Ariculated Trucks | - | - | 3.3 | 0.0 | - | 2.8 | 0.6 | $\cdot$ | - | 0.6 | 2.2 |
| Bicycles on Road | - | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 |
| \% Bicycles on Road | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 |
| Pedestrians | 0 | - | - | - | 0 | - | - | - | 0 | - | - |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - |



Turning Movement Peak Hour Data Plot (4:45 PM)


## APPENDIX C

Existing Conditions Traffic Data Analysis































| RAMPS AND RAMP JUNCTIONS WORKSHEET |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  | Site Information |  |  |  |  |  |  |  |
| Analyst  <br> Agency or Company Shane Forsythe |  |  |  |  |  | 10th Ave SB Off-ramp |  |  |  |  |  |
|  |  |  |  | Junction |  | $\mathrm{l}-15$ and l-315 |  |  |  |  |  |
| Date Performed 9 |  | 9/15/2014 |  | Jurisdiction |  | 2014 |  |  |  |  |  |
| Analysis Time Period AM Peak |  |  |  | Analysis Year |  |  |  |  |  |  |  |
| Project Description |  |  |  |  |  |  |  |  |  |  |  |
| Inputs |  |  |  |  |  |  |  |  |  |  |  |
| Upstream Adj Ramp |  | Freeway Number of Lanes, N |  | 2 |  |  |  |  |  |  |  |
|  |  | Ramp Number of Lanes, N |  | 1 |  |  |  |  |  | Ramp |  |
| $\square \mathrm{Yes} \quad \square \mathrm{On}$ |  | Acceleration Lane Length, $L_{A}$ |  | 463 |  |  |  |  |  | $\square \mathrm{Yes} \quad \square \mathrm{On}$ |  |
| VNo | off | Deceleration Lane Length $L_{D}$ |  |  |  |  |  |  |  | $\square$ No $\square$ Off |  |
|  |  |  |  | 352 |  |  |  |  |  |  |  |
| $\mathrm{L}_{\text {up }}=\quad \mathrm{ft}$ |  | Ramp Volume, $\mathrm{V}_{\mathrm{R}}$ |  | 192 |  |  |  |  |  | $L_{\text {down }}=$ | ft |
| $\mathrm{V}_{\mathrm{u}}=$ | h/h | Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$ |  | 65.0 |  |  |  |  |  |  | veh/h |
|  |  |  |  | 55.0 |  |  |  |  |  |  |  |
| Conversion to pc/h Under Base Conditions |  |  |  |  |  |  |  |  |  |  |  |
| (pc/h) | $\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$ | PHF | Terrain | \%Truck | \%Rv | $\mathrm{f}_{\mathrm{HV}}$ |  |  | $\mathrm{f}_{\mathrm{p}}$ | $\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$ |  |
| Freeway | 352 | 0.94 | Level | 8 | 0 |  |  |  | 1.00 | 39 |  |
| Ramp | 192 | 0.83 | Level | 3 | 0 |  |  |  | 1.00 | 23 |  |
| UpStream |  |  |  |  |  |  |  |  |  |  |  |
| DownStream |  |  |  |  |  |  |  |  |  |  |  |
| Merge Areas |  |  |  |  | Diverge Areas |  |  |  |  |  |  |
| Estimation of $\mathrm{v}_{12}$ |  |  |  |  | Estimation of $\mathrm{v}_{12}$ |  |  |  |  |  |  |
|  |  |  |  |  | $\left.\begin{array}{ll} & V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D} \\ \text { (Equation 13-12 or 13-13) }\end{array}\right)$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Capacity Checks |  | Capacity |  |  | Capacity Checks |  |  |  |  |  |  |
|  | Actual |  |  | LOS F? |  | Actual |  |  | Capacity |  | LOS F? |
| $\mathrm{V}_{\mathrm{FO}}$ |  | Exhibit 13-8 |  |  | $\mathrm{V}_{\mathrm{F}}$ |  | 391 |  | Exhibit 13-8 | 4700 | No |
|  |  |  |  |  | $\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$ |  | 155 |  | Exhibit 13-8 | 4700 | No |
|  |  |  |  |  | $\mathrm{V}_{\mathrm{R}}$ |  | 236 |  | Exhibit 13-10 | 2200 | No |
| Flow Entering Merge Influence Area |  |  |  |  | Flow Entering Diverge Influence Area |  |  |  |  |  |  |
|  | Actual | Max Desirable |  | Violation? |  |  | ctual | Max Desirable |  |  | Violation? |
| $\mathrm{V}_{\text {R12 }}$ |  | Exhibit 13-8\| |  |  | $\mathrm{V}_{12}$ |  | 91 |  |  | 4400:All | No |
| Level of Service Determination (if not F) |  |  |  |  | Level of Service Determination (if not F) |  |  |  |  |  |  |
| $\begin{array}{ll} \hline \mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ \mathrm{D}_{\mathrm{R}}= & \text { (pc/mi/ln) } \\ \mathrm{LOS}= & \text { (Exhibit 13-2) } \\ \hline \end{array}$ |  |  |  |  | $\begin{array}{ll}  & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & 3.4 \text { (pc/mi/l/n) } \\ \text { LOS }= & A \text { (Exhibit 13-2) } \end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Speed Determination |  |  |  |  | Speed Determination |  |  |  |  |  |  |
| $\begin{array}{ll} M_{\mathrm{S}}= & \text { (Exibit 13-11) } \\ S_{\mathrm{R}}= & \text { mph (Exhibit 13-11) } \\ S_{0}= & \text { mph (Exhibit 13-11) } \\ s_{=}= & \text {mph (Exhibit 13-13) } \end{array}$ |  |  |  |  | d ${ }_{\text {d }}=$$\mathrm{S}_{\mathrm{s}}=$$\mathrm{S}_{0}=$$\mathrm{S}=$S | 0.189 (Exhibit 13-12) |  |  |  |  |  |
|  |  | 60.6 mph (Exhibit 13-12) |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | N/A mph (Exhibit 13-12) |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



































Vistro File: F:I...II-15 Corridor.vistropdb

Intersection Analysis Summary

| ID | Intersection Name | Control Type | Method | Worst Mvmt | V/C | Delay (s/veh) | LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tri Hill and Frontage Airport <br> Rd | Two-way stop | HCM2010 | NEBL | 0.202 | 13.5 | B |
| 2 | I-15 NB and Airport Rd | Two-way stop | HCM2010 | NEBT | 0.000 | 16.9 | C |
| 3 | I-15 SB On and Airport RD | Two-way stop | HCM2010 | NWBL | 0.046 | 8.6 | A |
| 4 | I-15 SB Off and Airport RD <br> Frontage | Two-way stop | HCM2010 | SWBL | 0.272 | 12.7 | B |
| 5 | 14th St SW and I-315 EB | Signalized | HCM2010 | SBL | 0.175 | 14.4 | B |
| 6 | 14th St SW and I-315 WB | Signalized | HCM2010 | EBR | 0.254 | 23.0 | C |
| 7 | Fox Farm and I-315 | Signalized | HCM2010 | NEBL | 0.687 | 45.3 | D |
| 8 | Central Ave and I15 SB | Two-way stop | HCM2010 | SBL | 0.499 | 28.0 | D |
| 9 | Central Ave and I-15 NB | Two-way stop | HCM2010 | NBL | 0.080 | 19.9 | C |
| 10 | Central Ave and Vaughn Rd | Two-way stop | HCM2010 | SBL | 0.377 | 27.1 | D |
| 11 | Vaughn Rd and I-15 SB | Two-way stop | HCM2010 | SBL | 0.260 | 10.1 | B |
| 12 | Vaughn Rd and I-15 NB | Two-way stop | HCM2010 | EBL | 0.000 | 7.3 | A |

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value; for all other control types, they are taken for the whole intersection.

## Intersection Level Of Service Report <br> \#1: Tri Hill and Frontage Airport Rd

$$
\begin{array}{cc}
\text { Delay (sec / veh): } & 13.5 \\
\text { Level Of Service: } & \text { B } \\
\text { Volume to Capacity (v/c): } & 0.202
\end{array}
$$

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 83 | 19 | 9 | 189 | 97 | 88 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 21.70 | 31.10 | 22.20 | 28.60 | 25.70 | 5.70 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 83 | 19 | 9 | 189 | 97 | 88 |
| Peak Hour Factor | 0.7410 | 0.4750 | 0.5630 | 0.8750 | 0.9330 | 0.7590 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 28 | 10 | 4 | 54 | 26 | 29 |
| Total Analysis Volume [veh/h] | 112 | 40 | 16 | 216 | 104 | 116 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.20 | 0.05 | 0.01 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 13.48 | 11.42 | 7.94 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | B | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 0.99 | 0.99 | 0.04 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 24.73 | 24.73 | 0.98 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 12.93 |  | 0.55 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 3.47 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#2: I-15 NB and Airport Rd

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 16.9 |
| :---: | :---: |
| Level Of Service: | C |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northeastbound |  |  | Southwestbound |  |  | Northwestbound |  |  | Southeastbound |  |  |
| Lane Configuration | $\uparrow$ |  |  |  |  |  |  | $\stackrel{F}{F}$ |  |  | $\dagger$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 14.89 | 16.91 | 10.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.38 | 0.00 | 0.00 |
| Movement LOS | B | C | B |  |  |  |  | A | A | A | A |  |
| 95th-Percentile Queue Length [veh] | 0.13 | 0.13 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 |
| 95th-Percentile Queue Length [ft] | 3.34 | 3.34 | 3.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 25.85 | 25.85 | 0.00 |
| d_A, Approach Delay [s/veh] | 11.69 |  |  | 0.00 |  |  | 0.00 |  |  | 3.09 |  |  |
| Approach LOS | B |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 1.87 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#3: I-15 SB On and Airport RD

 Analysis Method: Analysis Period:

| Delay (sec / veh): | 8.6 |
| :---: | :---: |
| Level Of Service: | A |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.046 |

0.046

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 32 | 23 | 251 | 6 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.00 | 2.00 | 43.80 | 21.70 | 14.00 | 16.70 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 32 | 23 | 251 | 6 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.6670 | 0.6390 | 0.8720 | 0.3750 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 12 | 9 | 72 | 4 |
| Total Analysis Volume [veh/h] | 0 | 0 | 48 | 36 | 288 | 16 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 0.00 | 0.00 | 8.58 | 0.00 | 0.00 | 0.00 |
| Movement LOS |  |  | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.26 | 0.26 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 6.49 | 6.49 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 4.90 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 1.06 |  |  |  |  |  |
| Intersection LOS | A |  |  |  |  |  |

## Intersection Level Of Service Report \#4: I-15 SB Off and Airport RD Frontage



Analysis Method: Analysis Period:

Delay (sec / veh):
Level Of Service:
Volume to Capacity (v/c):
12.7

B
0.272

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | theastbo |  |  | thwestbo |  |  | hwestbo |  |  | theastbo |  |
| Lane Configuration |  | $T$ |  |  | $\dagger$ |  |  | $\dagger$ |  |  | $F$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 5 | 0 | 44 | 159 | 54 | 96 | 8 | 12 | 0 | 0 | 40 | 4 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 2.00 | 11.30 | 10.10 | 7.40 | 3.10 | 12.50 | 8.30 | 2.00 | 2.00 | 2.50 | 0.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 5 | 0 | 44 | 159 | 54 | 96 | 8 | 12 | 0 | 0 | 40 | 4 |
| Peak Hour Factor | 0.4170 | 1.0000 | 0.5240 | 0.8110 | 0.9000 | 0.7060 | 0.4000 | 0.7500 | 1.0000 | 1.0000 | 0.7690 | 0.5000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 3 | 0 | 21 | 49 | 15 | 34 | 5 | 4 | 0 | 0 | 13 | 2 |
| Total Analysis Volume [veh/h] | 12 | 0 | 84 | 196 | 60 | 136 | 20 | 16 | 0 | 0 | 52 | 8 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no | no |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.02 | 0.00 | 0.09 | 0.27 | 0.08 | 0.13 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 10.78 | 0.00 | 9.10 | 12.67 | 12.44 | 8.90 | 7.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B |  | A | B | B | A | A | A |  |  | A | A |
| 95th-Percentile Queue Length [veh] | 0.34 | 0.00 | 0.34 | 1.59 | 1.59 | 0.44 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 8.59 | 0.00 | 8.59 | 39.68 | 39.68 | 11.00 | 1.87 | 1.87 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] |  | 9.31 |  |  | 11.33 |  |  | 4.15 |  |  | 0.00 |  |
| Approach LOS |  | A |  |  | B |  |  | A |  |  | A |  |
| d_l, Intersection Delay [s/veh] | 9.39 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report <br> \#5: 14th St SW and I-315 EB

Control Type:
Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 14.4 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.175 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | estbound |  |
| Lane Configuration |  | $71 \Gamma$ |  |  | $71 \Gamma$ |  |  | $71 \Gamma$ |  |  | $11 \Gamma$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 2 | 3 | 0 | 6 | 7 | 7 | 4 | 0 | 3 | 8 | 0 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 15 | 0 | 5 | 15 | 15 | 5 | 0 | 15 | 15 | 0 |
| Maximum Green [s] | 0 | 50 | 20 | 0 | 50 | 20 | 20 | 60 | 0 | 20 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 22 | 18 | 0 | 22 | 18 | 18 | 20 | 0 | 18 | 20 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 5 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 10 | 0 | 10 | 0 | 0 | 10 | 0 | 10 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | L | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 5.00 | 4.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 0.00 | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 15 | 15 | 34 | 15 | 15 | 33 | 28 | 12 | 12 | 28 | 10 | 10 |
| g / C, Green / Cycle | 0.24 | 0.24 | 0.57 | 0.24 | 0.24 | 0.54 | 0.47 | 0.20 | 0.20 | 0.47 | 0.17 | 0.17 |
| (v/s)_i Volume / Saturation Flow Rate | 0.01 | 0.04 | 0.22 | 0.13 | 0.06 | 0.05 | 0.03 | 0.05 | 0.00 | 0.02 | 0.02 | 0.00 |
| s, saturation flow rate [veh/h] | 1140 | 1872 | 1588 | 1294 | 1820 | 1538 | 1631 | 1822 | 1615 | 1432 | 1839 | 1615 |
| c, Capacity [veh/h] | 299 | 452 | 912 | 342 | 439 | 836 | 920 | 360 | 319 | 797 | 307 | 270 |
| d1, Uniform Delay [s] | 21.49 | 18.04 | 6.95 | 23.72 | 18.38 | 6.55 | 8.80 | 20.24 | 19.36 | 8.71 | 21.23 | 20.89 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.04 | 0.19 | 0.26 | 1.13 | 0.30 | 0.04 | 0.03 | 0.32 | 0.02 | 0.02 | 0.17 | 0.03 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.03 | 0.18 | 0.38 | 0.50 | 0.25 | 0.09 | 0.06 | 0.23 | 0.01 | 0.03 | 0.12 | 0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 21.52 | 18.22 | 7.21 | 24.85 | 18.67 | 6.60 | 8.83 | 20.56 | 19.38 | 8.72 | 21.39 | 20.92 |
| Lane Group LOS | C | B | A | C | B | A | A | C | B | A | C | C |
| Critical Lane Group | no | no | yes | no | yes | no |
| 50th-Percentile Queue Length [veh] | 0.09 | 0.84 | 1.92 | 2.26 | 1.18 | 0.37 | 0.33 | 0.94 | 0.04 | 0.15 | 0.42 | 0.07 |
| 50th-Percentile Queue Length [ft] | 2.32 | 20.94 | 47.91 | 56.41 | 29.43 | 9.15 | 8.37 | 23.62 | 1.09 | 3.74 | 10.46 | 1.72 |
| 95th-Percentile Queue Length [veh] | 0.17 | 1.51 | 3.45 | 4.06 | 2.12 | 0.66 | 0.60 | 1.70 | 0.08 | 0.27 | 0.75 | 0.12 |
| 95th-Percentile Queue Length [ft] | 4.18 | 37.70 | 86.24 | 101.54 | 52.97 | 16.46 | 15.06 | 42.51 | 1.95 | 6.74 | 18.82 | 3.09 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 21.52 | 18.22 | 7.21 | 24.85 | 18.67 | 6.60 | 8.83 | 20.56 | 19.38 | 8.72 | 21.39 | 20.92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | B | A | C | B | A | A | C | B | A | C | C |
| d_A, Approach Delay [s/veh] | 9.51 |  |  | 19.20 |  |  | 16.09 |  |  | 16.74 |  |  |
| Approach LOS | A |  |  | B |  |  | B |  |  | B |  |  |
| d_I, Intersection Delay [s/veh] | 14.37 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.175 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 2 | 7 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | 6 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report <br> \#6: 14th St SW and I-315 WB

Control Type:
Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 23.0 |
| :---: | :---: |
| Level Of Service: | C |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.254 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | Vestbound |  |
| Lane Configuration |  | $7 \mid$ |  |  | $7 F$ |  |  | $\stackrel{H}{t}$ |  |  | H\| |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 |
| Lead / Lag | - | - | - | - | - | - | - | - | - | - | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Maximum Green [s] | 0 | 35 | 40 | 0 | 35 | 0 | 0 | 25 | 0 | 0 | 40 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 25 | 19 | 0 | 25 | 0 | 0 | 16 | 0 | 0 | 19 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 9 | 7 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| Pedestrian Clearance [s] | 0 | 11 | 7 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| I2, Clearance Lost Time [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Maximum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Pedestrian Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10
Lane Group Calculations

| Lane Group | L | C | R | L | C | C | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| 11_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 11 | 11 | 27 | 11 | 11 | 2 | 11 | 11 |
| $\mathrm{g} / \mathrm{C}$, Green / Cycle | 0.19 | 0.19 | 0.45 | 0.19 | 0.19 | 0.03 | 0.18 | 0.18 |
| (v / s)_i Volume / Saturation Flow Rate | 0.01 | 0.01 | 0.08 | 0.03 | 0.10 | 0.02 | 0.14 | 0.03 |
| s , saturation flow rate [veh/h] | 1019 | 1710 | 1392 | 1181 | 1685 | 1527 | 1636 | 1454 |
| c, Capacity [veh/h] | 178 | 321 | 624 | 283 | 316 | 48 | 290 | 257 |
| d1, Uniform Delay [s] | 27.05 | 20.04 | 9.94 | 22.89 | 22.00 | 28.67 | 23.49 | 20.99 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.19 | 0.08 | 0.14 | 0.17 | 1.40 | 10.79 | 4.15 | 0.34 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp , platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.08 | 0.07 | 0.18 | 0.11 | 0.53 | 0.58 | 0.76 | 0.18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 27.24 | 20.13 | 10.07 | 23.06 | 23.41 | 39.47 | 27.64 | 21.33 |
| Lane Group LOS | C | C | B | C | C | D | C | C |
| Critical Lane Group | no | no | no | no | yes | yes | yes | no |
| 50th-Percentile Queue Length [veh] | 0.19 | 0.23 | 0.79 | 0.39 | 2.12 | 0.52 | 3.10 | 0.55 |
| 50th-Percentile Queue Length [ft] | 4.78 | 5.84 | 19.74 | 9.76 | 53.01 | 13.05 | 77.54 | 13.75 |
| 95th-Percentile Queue Length [veh] | 0.34 | 0.42 | 1.42 | 0.70 | 3.82 | 0.94 | 5.58 | 0.99 |
| 95th-Percentile Queue Length [ft] | 8.60 | 10.51 | 35.54 | 17.57 | 95.41 | 23.49 | 139.58 | 24.76 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 27.24 | 20.13 | 10.07 | 23.06 | 23.41 | 23.41 | 39.47 | 39.47 | 39.47 | 27.64 | 27.64 | 21.33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | C | B | C | C | C | D | D | D | C | C | C |
| d_A, Approach Delay [s/veh] | 13.14 |  |  | 23.35 |  |  | 39.47 |  |  | 26.53 |  |  |
| Approach LOS | B |  |  | C |  |  | D |  |  | C |  |  |
| d_I, Intersection Delay [s/veh] | 23.05 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.254 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report \#7: Fox Farm and I-315

Control Type:
Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 45.3 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.687 |

0.687

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | heastbo |  |  | thwestbo |  |
| Lane Configuration |  | $111$ |  |  | $1 \\|$ |  |  | IIr |  |  | \11 |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 8 | 0 | 3 | 6 | 6 | 4 | 0 | 8 | 2 | 5 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 5 | 5 | 5 | 0 | 5 | 5 | 0 |
| Maximum Green [s] | 0 | 60 | 60 | 0 | 60 | 60 | 60 | 60 | 0 | 60 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 21 | 47 | 0 | 28 | 76 | 76 | 54 | 0 | 47 | 25 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | C | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 1.00 | 3.00 | 3.00 | 1.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 31 | 31 | 99 | 27 | 27 | 53 | 20 | 44 | 44 | 31 | 54 | 54 |
| g / C, Green / Cycle | 0.21 | 0.21 | 0.66 | 0.18 | 0.18 | 0.35 | 0.14 | 0.29 | 0.29 | 0.20 | 0.36 | 0.36 |
| (v/s)_i Volume / Saturation Flow Rate | 0.04 | 0.16 | 0.34 | 0.15 | 0.03 | 0.10 | 0.12 | 0.27 | 0.04 | 0.04 | 0.12 | 0.11 |
| s, saturation flow rate [veh/h] | 1793 | 1714 | 1604 | 1414 | 3540 | 1551 | 1704 | 3439 | 1580 | 3379 | 3413 | 1557 |
| c, Capacity [veh/h] | 370 | 353 | 1058 | 290 | 649 | 547 | 231 | 997 | 458 | 688 | 1222 | 557 |
| d1, Uniform Delay [s] | 48.99 | 56.26 | 13.19 | 60.81 | 51.67 | 34.87 | 63.55 | 51.55 | 39.19 | 49.42 | 35.26 | 34.71 |
| k, delay calibration | 0.11 | 0.11 | 0.35 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.22 | 3.68 | 1.29 | 3.78 | 0.13 | 0.27 | 9.88 | 4.00 | 0.12 | 0.13 | 0.17 | 0.31 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.17 | 0.78 | 0.52 | 0.74 | 0.17 | 0.28 | 0.87 | 0.92 | 0.12 | 0.18 | 0.34 | 0.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 49.21 | 59.94 | 14.48 | 64.59 | 51.80 | 35.14 | 73.43 | 55.55 | 39.31 | 49.55 | 35.42 | 35.01 |
| Lane Group LOS | D | E | B | E | D | D | E | E | D | D | D | D |
| Critical Lane Group | no | no | yes | yes | no | no | no | yes | no | no | no | no |
| 50th-Percentile Queue Length [veh] | 1.99 | 10.20 | 9.77 | 8.38 | 1.83 | 4.11 | 8.23 | 17.25 | 1.56 | 2.01 | 5.74 | 4.60 |
| 50th-Percentile Queue Length [ft] | 49.82 | 255.07 | 244.37 | 209.46 | 45.76 | 102.67 | 205.68 | 431.14 | 39.12 | 50.27 | 143.52 | 114.99 |
| 95th-Percentile Queue Length [veh] | 3.59 | 15.44 | 14.90 | 13.13 | 3.29 | 7.39 | 12.93 | 24.06 | 2.82 | 3.62 | 9.67 | 8.12 |
| 95th-Percentile Queue Length [ft] | 89.67 | 386.04 | 372.56 | 328.14 | 82.36 | 184.80 | 323.28 | 601.41 | 70.42 | 90.48 | 241.76 | 202.92 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 49.21 | 59.94 | 14.48 | 64.59 | 51.80 | 35.14 | 73.43 | 55.55 | 39.31 | 49.55 | 35.42 | 35.01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | D | E | B | E | D | D | E | E | D | D | D | D |
| d_A, Approach Delay [s/veh] | 31.02 |  |  | 52.28 |  |  | 57.85 |  |  | 37.83 |  |  |
| Approach LOS | C |  |  | D |  |  | E |  |  | D |  |  |
| d_I, Intersection Delay [s/veh] | 45.33 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.687 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 3 | 8 | 4 | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | 6 | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



\section*{Intersection Level Of Service Report \#8: Central Ave and I15 SB <br> 0.499 <br> | Delay (sec / veh): | 28.0 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.499 |}

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | outhbound |  |  | astbound |  |  | estbound |  |  | hwestbo |  |
| Lane Configuration |  | $\dagger \Gamma$ |  |  | I/ |  |  | 111 |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.50 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 28.03 | 27.54 | 8.82 | 0.00 | 0.00 | 0.00 | 8.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | D | D | A |  | A | A | A | A |  |  |  |  |
| 95th-Percentile Queue Length [veh] | 2.63 | 2.63 | 0.03 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 65.65 | 65.65 | 0.64 | 0.00 | 0.00 | 0.00 | 10.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 27.07 |  |  | 0.00 |  |  | 4.94 |  |  | 0.00 |  |  |
| Approach LOS | D |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 7.48 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#9: Central Ave and I-15 NB



Analysis Method: Analysis Period:

| Delay (sec / veh): | 19.9 |
| :---: | :---: |
| Level Of Service: | C |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.080 |C

0.080

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northbound |  |  | Eastbound |  |  | Westbound |  |  | Southeastbound |  |  |
| Lane Configuration | $T$ |  |  | $11$ |  |  | $\$ 11$ |  |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 15 | 0 | 177 | 6 | 305 | 0 | 0 | 202 | 44 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 0.00 | 10.80 | 16.70 | 2.00 | 2.00 | 2.00 | 11.40 | 13.60 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 15 | 0 | 177 | 6 | 305 | 0 | 0 | 202 | 44 | 0 | 0 | 0 |
| Peak Hour Factor | 0.5360 | 1.0000 | 0.8510 | 0.7500 | 0.7190 | 1.0000 | 1.0000 | 0.8420 | 0.7330 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 7 | 0 | 52 | 2 | 106 | 0 | 0 | 60 | 15 | 0 | 0 | 0 |
| Total Analysis Volume [veh/h] | 28 | 0 | 208 | 8 | 424 | 0 | 0 | 240 | 60 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.08 | 0.00 | 0.34 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 19.87 | 19.21 | 15.45 | 7.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | C | C | C | A | A |  |  | A | A |  |  |  |
| 95th-Percentile Queue Length [veh] | 2.07 | 2.07 | 2.07 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 51.73 | 51.73 | 51.73 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 15.98 |  |  | 0.15 |  |  | 0.00 |  |  | 0.00 |  |  |
| Approach LOS | C |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 3.96 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |  |  |  |  |  |  |

Intersection Level Of Service Report \#10: Central Ave and Vaughn Rd

| Delay (sec / veh): | 27.1 |
| :---: | :---: |
| Level Of Service: | $D$ |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.377 |

0.377

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 77 | 60 | 71 | 410 | 184 | 65 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 9.10 | 6.70 | 7.00 | 5.10 | 11.40 | 6.20 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 77 | 60 | 71 | 410 | 184 | 65 |
| Peak Hour Factor | 0.7700 | 0.7890 | 0.8450 | 0.8010 | 0.8520 | 0.7740 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 25 | 19 | 21 | 128 | 54 | 21 |
| Total Analysis Volume [veh/h] | 100 | 76 | 84 | 512 | 216 | 84 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.38 | 0.10 | 0.07 | 0.01 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 27.07 | 18.19 | 8.13 | 0.00 | 0.00 | 0.00 |
| Movement LOS | D | C | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 2.47 | 2.47 | 0.22 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 61.70 | 61.70 | 5.47 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 23.23 |  | 1.15 |  | 0.00 |  |
| Approach LOS | C |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 4.45 |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |

## Intersection Level Of Service Report \#11: Vaughn Rd and l-15 SB

 Analysis Method: Analysis Period:

| Delay $(\mathrm{sec} / \mathrm{veh}):$ | 10.1 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.260 |

0.260

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 219 | 1 | 0 | 27 | 12 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 4.60 | 0.00 | 2.00 | 11.10 | 8.30 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 219 | 1 | 0 | 27 | 12 | 0 |
| Peak Hour Factor | 0.8830 | 0.2500 | 1.0000 | 0.8440 | 0.7500 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 62 | 1 | 0 | 8 | 4 | 0 |
| Total Analysis Volume [veh/h] | 248 | 4 | 0 | 32 | 16 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 10.11 | 9.71 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | A |  | A | A |  |
| 95th-Percentile Queue Length [veh] | 1.06 | 1.06 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 26.50 | 26.50 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 10.10 |  | 0.00 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 8.49 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#12: Vaughn Rd and I-15 NB

Control Type:
Analysis Method:
Analysis Period:
Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 7.3 |
| :---: | :---: |
| Level Of Service: | A |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Thru | Thru | Right | Left | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 237 | 19 | 76 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 5.00 | 5.30 | 14.50 | 2.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 237 | 19 | 76 | 0 | 0 |
| Peak Hour Factor | 1.0000 | 0.8590 | 0.5940 | 0.8260 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 69 | 8 | 23 | 0 | 0 |
| Total Analysis Volume [veh/h] | 0 | 276 | 32 | 92 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Prority Scheme | Free | Free | Stop |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 7.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | A | A | A | A |  |  |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 0.00 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 0.00 |  |  |  |  |  |
| Intersection LOS | A |  |  |  |  |  |

Version 2.00-10
Traffic Volume - Base Volume


Version 2.00-10
Traffic Volume - Base Volume


Version 2.00-10
Traffic Conditions


Version 2.00-10
Traffic Conditions


Vistro File: F:I...II-15 Corridor.vistropdb

Scenario 2: PM Scenario 9/15/2014

Intersection Analysis Summary

| ID | Intersection Name | Control Type | Method | Worst Mvmt | V/C | Delay (s/veh) | LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tri Hill and Frontage Airport <br> Rd | Two-way stop | HCM2010 | NEBL | 0.256 | 14.5 | B |
| 2 | I-15 NB and Airport Rd | Two-way stop | HCM2010 | NEBT | 0.053 | 55.4 | F |
| 3 | I-15 SB On and Airport RD | Two-way stop | HCM2010 | NWBL | 0.063 | 11.0 | B |
| 4 | I-15 SB Off and Airport RD <br> Frontage | Two-way stop | HCM2010 | SWBL | 0.660 | 35.3 | E |
| 5 | 14th St SW and I-315 EB | Signalized | HCM2010 | NBL | 0.368 | 13.0 | B |
| 6 | 14th St SW and I-315 WB | Signalized | HCM2010 | EBR | 0.536 | 19.4 | B |
| 7 | Fox Farm and I-315 | Signalized | HCM2010 | NBT | 0.795 | 38.5 | D |
| 8 | Central Ave and I15 SB | Two-way stop | HCM2010 | SBL | 0.432 | 42.0 | E |
| 9 | Central Ave and I-15 NB | Two-way stop | HCM2010 | NBL | 0.303 | 29.1 | D |
| 10 | Central Ave and Vaughn Rd | Two-way stop | HCM2010 | SBL | 0.576 | 65.0 | F |
| 11 | Vaughn Rd and I-15 SB | Two-way stop | HCM2010 | SBL | 0.177 | 10.1 | B |
| 12 | Vaughn Rd and I-15 NB | Two-way stop | HCM2010 | EBL | 0.000 | 7.3 | A |

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value; for all other control types, they are taken for the whole intersection.

## Intersection Level Of Service Report <br> \#1: Tri Hill and Frontage Airport Rd

$$
\begin{array}{cc}
\text { Delay (sec / veh): } & 14.5 \\
\text { Level Of Service: } & \text { B } \\
\text { Volume to Capacity }(\mathrm{v} / \mathrm{c}): & 0.256
\end{array}
$$

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 75 | 7 | 9 | 160 | 207 | 70 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.70 | 0.00 | 22.20 | 33.80 | 18.90 | 15.80 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 75 | 7 | 9 | 160 | 207 | 70 |
| Peak Hour Factor | 0.5680 | 0.4380 | 0.7500 | 0.8000 | 0.8480 | 0.8330 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 33 | 4 | 3 | 50 | 61 | 21 |
| Total Analysis Volume [veh/h] | 132 | 16 | 12 | 200 | 244 | 84 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.26 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 14.52 | 12.30 | 8.23 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | B | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 1.12 | 1.12 | 0.03 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 28.04 | 28.04 | 0.81 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 14.28 |  | 0.47 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 3.22 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#2: I-15 NB and Airport Rd

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 55.4 |
| :---: | :---: |
| Level Of Service: | F |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.053 |

Intersection Setup


## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 2 | 2 | 31 | 0 | 0 | 0 | 0 | 47 | 197 | 307 | 236 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 0.00 | 47.40 | 2.00 | 2.00 | 2.00 | 2.00 | 40.40 | 20.80 | 0.70 | 17.40 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 2 | 2 | 31 | 0 | 0 | 0 | 0 | 47 | 197 | 307 | 236 | 0 |
| Peak Hour Factor | 0.5000 | 0.5000 | 0.7750 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6910 | 0.8210 | 0.6910 | 0.8680 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 1 | 1 | 10 | 0 | 0 | 0 | 0 | 17 | 60 | 111 | 68 | 0 |
| Total Analysis Volume [veh/h] | 4 | 4 | 40 | 0 | 0 | 0 | 0 | 68 | 240 | 444 | 272 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.05 | 0.05 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 48.66 | 55.37 | 12.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.40 | 0.00 | 0.00 |
| Movement LOS | E | F | B |  |  |  |  | A | A | A | A |  |
| 95th-Percentile Queue Length [veh] | 0.56 | 0.56 | 0.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.74 | 3.74 | 0.00 |
| 95th-Percentile Queue Length [ft] | 13.96 | 13.96 | 13.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 93.56 | 93.56 | 0.00 |
| d_A, Approach Delay [s/veh] | 19.19 |  |  | 0.00 |  |  | 0.00 |  |  | 5.83 |  |  |
| Approach LOS | C |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 4.75 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#3: l-15 SB On and Airport RD



Analysis Method: Analysis Period:

| Delay (sec / veh): | 11.0 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.063 |

0.063

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 25 | 21 | 542 | 14 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.00 | 2.00 | 64.00 | 19.10 | 7.30 | 0.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 25 | 21 | 542 | 14 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.6250 | 0.7500 | 0.7450 | 0.7000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 10 | 7 | 182 | 5 |
| Total Analysis Volume [veh/h] | 0 | 0 | 40 | 28 | 728 | 20 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 0.00 | 0.00 | 11.03 | 0.00 | 0.00 | 0.00 |
| Movement LOS |  |  | B | A | A | A |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.36 | 0.36 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 8.91 | 8.91 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 6.49 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 0.54 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#4: I-15 SB Off and Airport RD Frontage

 Analysis Method: Analysis Period:

Delay (sec / veh):
Level Of Service:
Volume to Capacity (v/c):
0.660

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northeastbound |  |  | Southwestbound |  |  | Northwestbound |  |  | Southeastbound |  |  |
| Lane Configuration | $T$ |  |  | $\dagger \Gamma$ |  |  | $4$ |  |  | $\stackrel{F}{2}$ |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 55 | 217 | 26 | 47 | 8 | 15 | 0 | 0 | 286 | 1 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 2.00 | 1.80 | 18.90 | 11.50 | 2.10 | 37.50 | 6.70 | 2.00 | 2.00 | 1.00 | 0.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [v | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 55 | 217 | 26 | 47 | 8 | 15 | 0 | 0 | 286 | 1 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.7240 | 0.8350 | 0.7220 | 0.6910 | 0.6670 | 0.7500 | 1.0000 | 1.0000 | 0.6810 | 0.2500 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 19 | 65 | 9 | 17 | 3 | 5 | 0 | 0 | 105 | 1 |
| Total Analysis Volume [veh/h] | 0 | 0 | 76 | 260 | 36 | 68 | 12 | 20 | 0 | 0 | 420 | 4 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.12 | 0.66 | 0.08 | 0.06 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 14.08 | 0.00 | 11.47 | 35.33 | 33.80 | 8.64 | 8.76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B |  | B | E | D | A | A | A |  |  | A | A |
| 95th-Percentile Queue Length [veh] | 0.41 | 0.00 | 0.41 | 5.82 | 5.82 | 0.21 | 0.10 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 10.19 | 0.00 | 10.19 | 145.42 | 145.42 | 5.15 | 2.56 | 2.56 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 11.47 |  |  | 30.19 |  |  | 3.29 |  |  | 0.00 |  |  |
| Approach LOS | B |  |  | D |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 13.35 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | E |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report <br> \#5: 14th St SW and I-315 EB

## Control Type: <br> Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay $(\mathrm{sec} / \mathrm{veh}):$ | 13.0 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.368 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | estbound |  |
| Lane Configuration |  | $71 \Gamma$ |  |  | 1\| |  |  | 71F |  |  | 1 1 F |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  | 95 | 396 | 262 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 13 | 82 | 260 |  |  |  | 107 | 168 | 10 | 102 | 50 | 31 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 2.40 | 1.20 | 4.30 | 1.30 | 0.40 | 0.90 | 0.00 | 0.00 | 1.00 | 0.00 | 12.90 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 13 | 82 | 260 | 95 | 396 | 262 | 107 | 168 | 10 | 102 | 50 | 31 |
| Peak Hour Factor | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 3 | 22 | 69 | 25 | 106 | 70 | 29 | 45 | 3 | 27 | 13 | 8 |
| Total Analysis Volume [veh/h] | 14 | 87 | 277 | 101 | 422 | 279 | 114 | 179 | 11 | 109 | 53 | 33 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate $/$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 2 | 3 | 0 | 6 | 7 | 7 | 4 | 0 | 3 | 8 | 0 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 15 | 0 | 5 | 15 | 15 | 5 | 0 | 15 | 15 | 0 |
| Maximum Green [s] | 0 | 50 | 20 | 0 | 50 | 20 | 20 | 45 | 0 | 20 | 45 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 22 | 18 | 0 | 22 | 18 | 18 | 20 | 0 | 18 | 20 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 5 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 10 | 0 | 10 | 0 | 0 | 10 | 0 | 10 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| I2, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | L | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 4.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 0.00 | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 18 | 18 | 38 | 18 | 18 | 38 | 32 | 14 | 14 | 32 | 14 | 14 |
| g / C, Green / Cycle | 0.31 | 0.31 | 0.64 | 0.31 | 0.31 | 0.64 | 0.54 | 0.24 | 0.24 | 0.54 | 0.24 | 0.24 |
| (v/s)_i Volume / Saturation Flow Rate | 0.01 | 0.05 | 0.17 | 0.08 | 0.22 | 0.17 | 0.07 | 0.09 | 0.01 | 0.07 | 0.03 | 0.02 |
| s, saturation flow rate [veh/h] | 980 | 1855 | 1596 | 1276 | 1876 | 1609 | 1573 | 1900 | 1615 | 1497 | 1900 | 1430 |
| c, Capacity [veh/h] | 181 | 566 | 1018 | 416 | 572 | 1027 | 1004 | 459 | 390 | 897 | 459 | 345 |
| d1, Uniform Delay [s] | 26.77 | 15.19 | 4.75 | 19.22 | 18.69 | 4.75 | 6.76 | 19.06 | 17.38 | 6.92 | 17.75 | 17.67 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.18 | 0.12 | 0.14 | 0.30 | 1.88 | 0.14 | 0.05 | 0.54 | 0.03 | 0.06 | 0.11 | 0.12 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.08 | 0.15 | 0.27 | 0.24 | 0.74 | 0.27 | 0.11 | 0.39 | 0.03 | 0.12 | 0.12 | 0.10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 26.95 | 15.32 | 4.89 | 19.52 | 20.56 | 4.89 | 6.81 | 19.60 | 17.41 | 6.98 | 17.86 | 17.79 |
| Lane Group LOS | C | B | A | B | C | A | A | B | B | A | B | B |
| Critical Lane Group | no | no | no | no | yes | yes | no | yes | no | no | no | no |
| 50th-Percentile Queue Length [veh] | 0.19 | 0.81 | 1.09 | 1.12 | 5.03 | 1.10 | 0.59 | 2.00 | 0.11 | 0.57 | 0.55 | 0.34 |
| 50th-Percentile Queue Length [ft] | 4.75 | 20.31 | 27.29 | 28.03 | 125.69 | 27.47 | 14.87 | 49.98 | 2.78 | 14.22 | 13.67 | 8.53 |
| 95th-Percentile Queue Length [veh] | 0.34 | 1.46 | 1.96 | 2.02 | 8.70 | 1.98 | 1.07 | 3.60 | 0.20 | 1.02 | 0.98 | 0.61 |
| 95th-Percentile Queue Length [ft] | 8.55 | 36.56 | 49.12 | 50.46 | 217.62 | 49.44 | 26.77 | 89.97 | 5.01 | 25.60 | 24.60 | 15.36 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 26.95 | 15.32 | 4.89 | 19.52 | 20.56 | 4.89 | 6.81 | 19.60 | 17.41 | 6.98 | 17.86 | 17.79 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | B | A | B | C | A | A | B | B | A | B | B |
| d_A, Approach Delay [s/veh] | 8.11 |  |  | 14.98 |  |  | 14.72 |  |  | 11.77 |  |  |
| Approach LOS | A |  |  | B |  |  | B |  |  | B |  |  |
| d_I, Intersection Delay [s/veh] | 13.01 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.368 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 2 | 7 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | 6 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report <br> \#6: 14th St SW and I-315 WB

Control Type: Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 19.4 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.536 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | Vestbound |  |
| Lane Configuration |  | $71 \Gamma$ |  |  | $71$ |  |  | $\stackrel{H}{t}$ |  |  | $\dagger$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  | 22 | 131 | 2 | 3 | 5 | 19 | 638 | 12 | 142 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 5 | 76 | 146 |  |  |  |  |  |  |  |  |  |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 40.00 | 6.60 | 0.70 | 0.00 | 2.30 | 0.00 | 0.00 | 0.00 | 15.80 | 1.80 | 8.30 | 4.20 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 5 | 76 | 146 | 22 | 131 | 2 | 3 | 5 | 19 | 638 | 12 | 142 |
| Peak Hour Factor | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 1 | 19 | 37 | 6 | 33 | 1 | 1 | 1 | 5 | 161 | 3 | 36 |
| Total Analysis Volume [veh/h] | 5 | 77 | 148 | 22 | 133 | 2 | 3 | 5 | 19 | 646 | 12 | 144 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate $/$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 |
| Lead / Lag | - | - | - | - | - | - | - | - | - | - | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Maximum Green [s] | 0 | 35 | 40 | 0 | 35 | 0 | 0 | 25 | 0 | 0 | 40 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 25 | 19 | 0 | 25 | 0 | 0 | 16 | 0 | 0 | 19 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 9 | 7 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| Pedestrian Clearance [s] | 0 | 11 | 7 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Maximum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Pedestrian Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10
Lane Group Calculations

| Lane Group | L | C | R | L | C | C | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| 11_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 10 | 10 | 44 | 10 | 10 | 2 | 29 | 29 |
| $\mathrm{g} / \mathrm{C}$, Green / Cycle | 0.17 | 0.17 | 0.73 | 0.17 | 0.17 | 0.03 | 0.48 | 0.48 |
| (v / s)_i Volume / Saturation Flow Rate | 0.01 | 0.05 | 0.10 | 0.02 | 0.08 | 0.02 | 0.44 | 0.10 |
| s , saturation flow rate [veh/h] | 819 | 1604 | 1443 | 1209 | 1667 | 1514 | 1505 | 1395 |
| c, Capacity [veh/h] | 164 | 265 | 1050 | 223 | 275 | 46 | 721 | 668 |
| d1, Uniform Delay [s] | 27.03 | 21.97 | 2.49 | 25.56 | 22.75 | 28.72 | 14.48 | 9.09 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.19 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.07 | 0.60 | 0.06 | 0.19 | 1.35 | 11.38 | 8.39 | 0.16 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp , platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.03 | 0.29 | 0.14 | 0.10 | 0.49 | 0.59 | 0.91 | 0.22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 27.10 | 22.57 | 2.55 | 25.75 | 24.11 | 40.09 | 22.87 | 9.25 |
| Lane Group LOS | C | C | A | C | C | D | C | A |
| Critical Lane Group | no | no | no | no | yes | yes | yes | no |
| 50th-Percentile Queue Length [veh] | 0.07 | 0.94 | 0.29 | 0.29 | 1.72 | 0.51 | 8.46 | 0.96 |
| 50th-Percentile Queue Length [ft] | 1.71 | 23.40 | 7.27 | 7.21 | 43.07 | 12.75 | 211.56 | 24.03 |
| 95th-Percentile Queue Length [veh] | 0.12 | 1.68 | 0.52 | 0.52 | 3.10 | 0.92 | 13.23 | 1.73 |
| 95th-Percentile Queue Length [ft] | 3.07 | 42.12 | 13.09 | 12.99 | 77.53 | 22.96 | 330.84 | 43.26 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 27.10 | 22.57 | 2.55 | 25.75 | 24.11 | 24.11 | 40.09 | 40.09 | 40.09 | 22.87 | 22.87 | 9.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | C | A | C | C | C | D | D | D | C | C | A |
| d_A, Approach Delay [s/veh] | 9.78 |  |  | 24.34 |  |  | 40.09 |  |  | 20.42 |  |  |
| Approach LOS | A |  |  | C |  |  | D |  |  | C |  |  |
| d_I, Intersection Delay [s/veh] | 19.35 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.536 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report \#7: Fox Farm and I-315

## Control Type: <br> Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 38.5 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.795 |

0.795

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | heastbo |  |  | hwestbo |  |
| Lane Configuration |  | 111 |  |  | 1\1 |  |  | \\| \| |  |  | \11 |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  | 153 | 274 | 325 | 242 | 706 | 103 | 486 | 874 | 250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 71 | 155 | 227 |  |  |  |  |  |  |  |  |  |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.80 | 1.90 | 0.40 | 1.30 | 0.70 | 2.10 | 2.50 | 3.60 | 2.90 | 0.40 | 3.90 | 1.60 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 71 | 155 | 227 | 153 | 274 | 325 | 242 | 706 | 103 | 486 | 874 | 250 |
| Peak Hour Factor | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 19 | 42 | 62 | 42 | 74 | 88 | 66 | 192 | 28 | 132 | 238 | 68 |
| Total Analysis Volume [veh/h] | 77 | 168 | 247 | 166 | 298 | 353 | 263 | 767 | 112 | 528 | 950 | 272 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate $/$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 8 | 0 | 3 | 6 | 6 | 4 | 0 | 8 | 2 | 5 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 5 | 5 | 5 | 0 | 5 | 5 | 0 |
| Maximum Green [s] | 0 | 60 | 60 | 0 | 60 | 60 | 60 | 60 | 0 | 60 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 31 | 28 | 0 | 20 | 25 | 25 | 41 | 0 | 28 | 44 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| I2, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | C | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 1.00 | 3.00 | 3.00 | 1.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 16 | 16 | 75 | 25 | 25 | 55 | 25 | 42 | 42 | 24 | 40 | 40 |
| g / C, Green / Cycle | 0.13 | 0.13 | 0.62 | 0.21 | 0.21 | 0.46 | 0.21 | 0.35 | 0.35 | 0.20 | 0.34 | 0.34 |
| (v/s)_i Volume / Saturation Flow Rate | 0.05 | 0.11 | 0.17 | 0.13 | 0.09 | 0.25 | 0.17 | 0.24 | 0.08 | 0.17 | 0.30 | 0.19 |
| s, saturation flow rate [veh/h] | 1604 | 1527 | 1448 | 1279 | 3233 | 1424 | 1589 | 3143 | 1413 | 3150 | 3134 | 1431 |
| c, Capacity [veh/h] | 211 | 201 | 903 | 303 | 682 | 657 | 332 | 1093 | 491 | 624 | 1055 | 482 |
| d1, Uniform Delay [s] | 47.76 | 50.63 | 10.25 | 45.27 | 41.14 | 23.11 | 44.98 | 33.77 | 27.73 | 46.37 | 37.89 | 32.60 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 1.21 | 7.40 | 0.16 | 1.55 | 0.44 | 0.68 | 4.26 | 0.83 | 0.23 | 3.29 | 3.12 | 1.04 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.40 | 0.81 | 0.27 | 0.55 | 0.44 | 0.54 | 0.79 | 0.70 | 0.23 | 0.85 | 0.90 | 0.56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 48.97 | 58.03 | 10.41 | 46.82 | 41.59 | 23.80 | 49.23 | 34.60 | 27.96 | 49.65 | 41.02 | 33.65 |
| Lane Group LOS | D | E | B | D | D | C | D | C | C | D | D | C |
| Critical Lane Group | no | no | yes | no | no | yes | yes | no | no | no | yes | no |
| 50th-Percentile Queue Length [veh] | 2.37 | 5.13 | 2.92 | 4.73 | 3.88 | 7.19 | 7.80 | 9.70 | 2.33 | 7.85 | 13.56 | 6.60 |
| 50th-Percentile Queue Length [ft] | 59.22 | 128.16 | 73.04 | 118.23 | 97.06 | 179.81 | 194.94 | 242.50 | 58.19 | 196.24 | 339.12 | 164.94 |
| 95th-Percentile Queue Length [veh] | 4.26 | 8.84 | 5.26 | 8.30 | 6.99 | 11.59 | 12.38 | 14.81 | 4.19 | 12.44 | 19.60 | 10.81 |
| 95th-Percentile Queue Length [ft] | 106.59 | 220.99 | 131.48 | 207.39 | 174.71 | 289.77 | 309.43 | 370.20 | 104.74 | 311.11 | 490.12 | 270.25 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 48.97 | 57.68 | 10.41 | 46.82 | 41.59 | 23.80 | 49.23 | 34.60 | 27.96 | 49.65 | 41.02 | 33.65 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | D | E | B | D | D | C | D | C | C | D | D | C |
| d_A, Approach Delay [s/veh] | 32.58 |  |  | 34.96 |  |  | 37.32 |  |  | 42.48 |  |  |
| Approach LOS | C |  |  | C |  |  | D |  |  | D |  |  |
| d_I, Intersection Delay [s/veh] | 38.46 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.795 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 3 | 8 | 4 | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | 6 | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



\section*{Intersection Level Of Service Report \#8: Central Ave and I15 SB <br> | Delay (sec / veh): | 42.0 |
| :---: | :---: |
| Level Of Service: | E |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.432 |}

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | outhbound |  |  | astbound |  |  | estbound |  |  | hwestbo |  |
| Lane Configuration |  | $\dagger \Gamma$ |  |  | I/ |  |  | 111 |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 66 | 0 | 6 | 0 | 166 | 30 | 230 | 299 | 0 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 6.00 | 0.00 | 0.00 | 2.00 | 0.60 | 0.00 | 6.50 | 1.00 | 2.00 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 66 | 0 | 6 | 0 | 166 | 30 | 230 | 299 | 0 | 0 | 0 | 0 |
| Peak Hour Factor | 0.9170 | 1.0000 | 0.7500 | 1.0000 | 0.8470 | 0.8330 | 0.8980 | 0.8690 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 18 | 0 | 2 | 0 | 49 | 9 | 64 | 86 | , | 0 | 0 | 0 |
| Total Analysis Volume [veh/h] | 72 | 0 | 8 | 0 | 196 | 36 | 256 | 344 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.43 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 42.03 | 39.90 | 10.18 | 0.00 | 0.00 | 0.00 | 8.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | E | E | B |  | A | A | A | A |  |  |  |  |
| 95th-Percentile Queue Length [veh] | 1.96 | 1.96 | 0.03 | 0.00 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 48.88 | 48.88 | 0.86 | 0.00 | 0.00 | 0.00 | 17.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 38.84 |  |  | 0.00 |  |  | 3.54 |  |  | 0.00 |  |  |
| Approach LOS | E |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 5.73 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | E |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#9: Central Ave and I-15 NB



Analysis Method: Analysis Period:

| Delay (sec / veh): | 29.1 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.303 |

0.303

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northbound |  |  | Eastbound |  |  | Westbound |  |  | Southeastbound |  |  |
| Lane Configuration | $T$ |  |  | $11$ |  |  | $\$ 1$ |  |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 57 | 0 | 170 | 5 | 249 | 0 | 0 | 471 | 113 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 1.80 | 0.00 | 7.00 | 0.00 | 2.00 | 2.00 | 2.00 | 4.60 | 0.90 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 57 | 0 | 170 | 5 | 249 | 0 | 0 | 471 | 113 | 0 | 0 | 0 |
| Peak Hour Factor | 0.7130 | 1.0000 | 0.7590 | 0.4170 | 0.8650 | 1.0000 | 1.0000 | 0.9350 | 0.8310 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 20 | 0 | 56 | 3 | 72 | 0 | 0 | 126 | 34 | 0 | 0 | 0 |
| Total Analysis Volume [veh/h] | 80 | 0 | 224 | 12 | 288 | 0 | 0 | 504 | 136 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.30 | 0.00 | 0.30 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 29.07 | 27.04 | 20.30 | 8.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | D | D | C | A | A |  |  | A | A |  |  |  |
| 95th-Percentile Queue Length [veh] | 3.98 | 3.98 | 3.98 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 99.39 | 99.39 | 99.39 | 0.85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 22.61 |  |  | 0.34 |  |  | 0.00 |  |  | 0.00 |  |  |
| Approach LOS | C |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 5.61 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |

Intersection Level Of Service Report \#10: Central Ave and Vaughn Rd

| Delay (sec / veh): | 65.0 |
| :---: | :---: |
| Level Of Service: | F |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.576 |

F
0.576

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 68 | 121 | 66 | 361 | 462 | 76 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.90 | 1.60 | 1.50 | 4.00 | 3.40 | 2.60 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 68 | 121 | 66 | 361 | 462 | 76 |
| Peak Hour Factor | 0.6540 | 0.9450 | 0.7500 | 0.7910 | 0.8680 | 0.7310 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 26 | 32 | 22 | 114 | 133 | 26 |
| Total Analysis Volume [veh/h] | 104 | 128 | 88 | 456 | 532 | 104 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.58 | 0.25 | 0.09 | 0.00 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 65.02 | 52.12 | 9.18 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 6.75 | 6.75 | 0.31 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 168.80 | 168.80 | 7.64 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 57.91 |  | 1.48 |  | 0.00 |  |
| Approach LOS | F |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 10.09 |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |

## Intersection Level Of Service Report \#11: Vaughn Rd and I-15 SB

 Analysis Method: Analysis Period:

| Delay (sec / veh): | 10.1 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.177 |

10.1
0.177

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 143 | 1 | 0 | 53 | 50 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 7.00 | 0.00 | 2.00 | 7.60 | 4.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 143 | 1 | 0 | 53 | 50 | 0 |
| Peak Hour Factor | 0.9410 | 0.2500 | 1.0000 | 0.7790 | 0.8930 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 38 | 1 | 0 | 17 | 14 | 0 |
| Total Analysis Volume [veh/h] | 152 | 4 | 0 | 68 | 56 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 10.11 | 9.46 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | A |  | A | A |  |
| 95th-Percentile Queue Length [veh] | 0.66 | 0.66 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 16.44 | 16.44 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 10.09 |  | 0.00 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 5.62 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#12: Vaughn Rd and l-15 NB

Control Type:
Analysis Method:
Analysis Period:
Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 7.3 |
| :---: | :---: |
| Level Of Service: | A |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Thru | Thru | Right | Left | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 165 | 55 | 334 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 6.10 | 1.80 | 4.80 | 2.00 | 2.00 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 165 | 55 | 334 | 0 | 0 |
| Peak Hour Factor | 1.0000 | 0.7500 | 0.8090 | 0.9180 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 55 | 17 | 91 | 0 | 0 |
| Total Analysis Volume [veh/h] | 0 | 220 | 68 | 364 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Prority Scheme | Free | Free | Stop |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 7.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | A | A | A | A |  |  |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 0.00 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 0.00 |  |  |  |  |  |
| Intersection LOS | A |  |  |  |  |  |

Version 2.00-10
Traffic Volume - Base Volume


Version 2.00-10
Traffic Volume - Base Volume


Version 2.00-10
Traffic Conditions


Version 2.00-10
Traffic Conditions



## APPENDIX D

Projected Conditions Traffic Data Analysis




| BASIC FREEWAY SEGMENTS WORKSHEET |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst <br> Agency or Company <br> Date Performed <br> Analysis Time Period | Shane Forsythe | Highway/Direction of Travel I-315  <br> From/To I-15 to <br> Jurisdiction  <br> Analysis Year 2035 | estbound 4th Ave |
| Project Description l-15 Corridor Study |  |  |  |
| $\square$ Oper.(LOS) $\square$ |  | Des.(N) $\quad \square$ | $\square$ Planning Data |
| Flow Inputs |  |  |  |
| ```Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT \(\times \mathrm{K} \times \mathrm{D}\)``` | $728 \quad$veh/h <br> veh/day <br> veh/h | \%RVs, $P_{\mathrm{R}}$ 0 <br> General Terrain: Level <br> Grade \% Length <br>  Up/Down \% |  |
| Calculate Flow Adjustments |  |  |  |
| $\begin{array}{\|l} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$ | 1.5 | $\begin{aligned} & E_{R} \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.976 \end{aligned}$ |  |
| Speed Inputs |  | Calc Speed Adj and FFS |  |
| Lane Width  ft <br> Rt-Side Lat. Clearance  ft <br> Number of Lanes, N 2  <br> Total Ramp Density, TRD  $\mathrm{ramps} / \mathrm{mi}$ <br> FFS (measured) 55.0 mph <br> Base free-flow Speed,  mph <br> BFFS     |  | $\mathrm{f}_{\mathrm{Lw}}$ mph  <br> $\mathrm{f}_{\mathrm{LC}}$ mph  <br> TRD Adjustment  mph <br> FFS 55.0 mph |  |
| LOS and Performance Measures |  | Design (N) |  |
|  | $\mathrm{NXf}_{\mathrm{HV}} \mathbf{4 0 1}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ <br>   <br> 55.0 mph <br> 7.3 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ <br> A  | Design (N) <br> Design LOS $\begin{aligned} & v_{p}=(V \text { or } D D H V) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.x f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ <br> Required Number of Lanes, N | mph <br> $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Glossary |  | Factor Location |  |
| N - Number of lanes <br> V - Hourly volume <br> $v_{p}$ - Flow rate <br> LOS - Level of service <br> speed <br> DDHV - Directional design | S - Speed <br> D - Density <br> FFS - Free-flow speed BFFS - Base free-flow <br> hour volume | $E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 <br> $E_{T}$ - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 <br> $f_{p}$ - Page 11-18 TRD - Page 11-11 <br> LOS, S, FFS, $v_{p}$ - Exhibits 11-2,  <br> $11-3$  |  |
















| BASIC FREEWAY SEGMENTS WORKSHEET |  |  |
| :---: | :---: | :---: |
| General Information | Site Information |  |
| Analyst Shane Forsythe <br> Agency or Company  <br> Date Performed $9 / 8 / 2014$ <br> Analysis Time Period PM Peak | Highway/Direction of Travel I-15 N  <br> From/To North <br> Jurisdiction 2035 <br> Analysis Year  | Gore Hill |
| Project Description l-15 Corridor Study |  |  |
| $\square$ Oper.(LOS) $\square$ | Des.(N) $\square \mathrm{P}$ | ning Data |
| Flow Inputs |  |  |
| Volume, V 1122 veh/h <br> AADT  veh/day | Peak-Hour Factor, PHF 0.80 <br> \%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$ 10 |  |
| Peak-Hr Prop. of AADT, K |  |  |
| Peak-Hr Direction Prop, D | \%RVs, $P_{R}$ 0 <br> General Terrain: Gr <br> Grade $-5.00 \%$ | Grade |
|  |  | 0.69 mi |
|  | Up/Down \% $\quad-5.00$ |  |
| Calculate Flow Adjustments |  |  |
| 1.00 | $\mathrm{E}_{\mathrm{R}} \quad 1.2$ |  |
| $\mathrm{E}_{\text {T }}$ | $\mathrm{f}_{\mathrm{HV}}=1 /\left[1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right] 0.952$ |  |
| Speed Inputs | Calc Speed Adj and FFS |  |
| Lane Width ft |  |  |
| Rt-Side Lat. Clearance | $\mathrm{f}_{\text {LW }}$ | mph |
| 2 | $\mathrm{f}_{\mathrm{LC}}$ | mph |
| Total Ramp Density, TRD ramps/mi | TRD Adjustment | mph |
| FFS (measured) 65.0 mph | FFS 65.0 | mph |
| Base free-flow Speed, BFFS <br> mph |  |  |
| LOS and Performance Measures | Design (N) |  |
| Operational (LOS) | Design (N) |  |
|  | Design LOS |  |
| $\begin{aligned} & \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\text { PHF } \times N \times \mathrm{f}_{\mathrm{HV}} 736 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}\right.\right. \\ & \left.\mathrm{xf}_{\mathrm{n}}\right) \end{aligned}$ | $\begin{aligned} & v_{p}=(\mathrm{V} \text { or DDHV }) /\left(\text { PHF } \times N \times f_{\mathrm{HV}}\right. \\ & \left.\times f_{p}\right) \\ & s \end{aligned}$ | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
|  |  |  |
| $D=v_{p} / S$ <br> $11.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |  | mph <br> $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| B | Required Number of Lanes, N |  |
| Glossary | Factor Location |  |
| N - Number of lanes S - Speed <br> $V-$ Hourly volume D - Density <br> $v_{p}-$ Flow rate FFS - Free-flow speed <br> LOS - Level of service BFFS - Base free-flow <br> speed  <br> DDHV - Directional design hour volume  | $E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 <br> $E_{T}$ - Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 <br> $f_{p}$ - Page 11-18 TRD - Page 11-11 <br> LOS, S, FFS, $v_{p}$ - Exhibits 11-2,  <br> $11-3$  |  |















































## Intersection Analysis Summary

| ID | Intersection Name | Control Type | Method | Worst Mvmt | V/C | Delay (s/veh) | LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tri Hill and Frontage Airport <br> Rd | Two-way stop | HCM2010 | NEBL | 0.514 | 27.3 | D |
| 2 | I-15 NB and Airport Rd | Two-way stop | HCM2010 | NEBT | 0.000 | 44.2 | E |
| 3 | I-15 SB On and Airport RD | Two-way stop | HCM2010 | NWBL | 0.133 | 10.4 | B |
| 4 | I-15 SB Off and Airport RD <br> Frontage | Two-way stop | HCM2010 | SWBL | 0.947 | 121.8 | F |
| 5 | 14th St SW and I-315 EB | Signalized | HCM2010 | SBL | 0.218 | 13.3 | B |
| 6 | 14th St SW and I-315 WB | Signalized | HCM2010 | EBR | 0.295 | 22.2 | C |
| 7 | Fox Farm and I-315 | Signalized | HCM2010 | NEBL | 0.760 | 39.0 | D |
| 8 | Central Ave and I15 SB | Two-way stop | HCM2010 | SBL | 1.188 | 178.9 | F |
| 9 | Central Ave and I-15 NB | Two-way stop | HCM2010 | NBL | 0.274 | 113.1 | F |
| 10 | Central Ave and Vaughn Rd | Two-way stop | HCM2010 | SBL | 1.518 | 406.0 | F |
| 11 | Vaughn Rd and I-15 SB | Two-way stop | HCM2010 | SBL | 0.361 | 11.0 | B |
| 12 | Vaughn Rd and I-15 NB | Two-way stop | HCM2010 | EBL | 0.000 | 7.3 | A |

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value; for all other control types, they are taken for the whole intersection.

## Intersection Level Of Service Report

\#1: Tri Hill and Frontage Airport Rd

| Delay (sec / veh): | 27.3 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.514 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 83 | 19 | 9 | 189 | 97 | 88 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 21.70 | 31.10 | 22.20 | 28.60 | 25.70 | 5.70 |
| Growth Rate | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 141 | 32 | 15 | 321 | 165 | 150 |
| Peak Hour Factor | 0.7410 | 0.4750 | 0.5630 | 0.8750 | 0.9330 | 0.7590 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 48 | 17 | 7 | 92 | 44 | 49 |
| Total Analysis Volume [veh/h] | 190 | 67 | 27 | 367 | 177 | 198 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.51 | 0.10 | 0.02 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 27.25 | 22.66 | 8.42 | 0.00 | 0.00 | 0.00 |
| Movement LOS | D | C | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 3.94 | 3.94 | 0.08 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 98.56 | 98.56 | 1.92 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 26.06 |  | 0.58 |  | 0.00 |  |
| Approach LOS | D |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 6.75 |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |

## Intersection Level Of Service Report

 \#2: I-15 NB and Airport RdControl Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 44.2 |
| :---: | :---: |
| Level Of Service: | E |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | heastbo |  |  | hwestbo |  |  | hwestbo |  |  | theastbo |  |
| Lane Configuration |  | $\uparrow$ |  |  |  |  |  | $\stackrel{F}{1}$ |  |  | 4 |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 4 | 0 | 13 | 0 | 0 | 0 | 0 | 49 | 222 | 79 | 173 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 0.00 | 46.20 | 2.00 | 2.00 | 2.00 | 2.00 | 38.80 | 26.60 | 12.70 | 10.90 | 2.00 |
| Growth Rate | 1.90 | 1.90 | 1.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.90 | 1.90 | 1.90 | 1.90 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 8 | 0 | 25 | 0 | 0 | 0 | 0 | 93 | 422 | 150 | 329 | 0 |
| Peak Hour Factor | 0.5000 | 1.0000 | 0.8130 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.7210 | 0.8670 | 0.7050 | 0.9010 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 4 | 0 | 8 | 0 | 0 | 0 | 0 | 32 | 122 | 53 | 91 | 0 |
| Total Analysis Volume [veh/h] | 16 | 0 | 31 | 0 | 0 | 0 | 0 | 129 | 487 | 213 | 365 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Stop | Stop | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.12 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 34.72 | 44.22 | 13.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.13 | 0.00 | 0.00 |
| Movement LOS | D | E | B |  |  |  |  | A | A | B | A |  |
| 95th-Percentile Queue Length [veh] | 0.61 | 0.61 | 0.61 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.65 | 4.65 | 0.00 |
| 95th-Percentile Queue Length [ft] | 15.29 | 15.29 | 15.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 116.18 | 116.18 | 0.00 |
| d_A, Approach Delay [s/veh] | 20.93 |  |  | 0.00 |  |  | 0.00 |  |  | 3.73 |  |  |
| Approach LOS | C |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 2.53 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | E |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report

 \#3: I-15 SB On and Airport RD

Analysis Method: Analysis Period:

| Delay (sec / veh): | 10.4 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.133 |

10.4
0.133

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 32 | 23 | 251 | 6 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.00 | 2.00 | 43.80 | 21.70 | 14.00 | 16.70 |
| Growth Rate | 1.00 | 1.00 | 2.12 | 2.12 | 2.12 | 2.12 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 68 | 49 | 532 | 13 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.6670 | 0.6390 | 0.8720 | 0.3750 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 25 | 19 | 153 | 9 |
| Total Analysis Volume [veh/h] | 0 | 0 | 102 | 77 | 610 | 35 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.13 | 0.00 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 0.00 | 0.00 | 10.39 | 0.00 | 0.00 | 0.00 |
| Movement LOS |  |  | B | A | A | A |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.90 | 0.90 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 22.46 | 22.46 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 5.92 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 1.29 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Shane Forsythe

# Intersection Level Of Service Report 

 \#4: l-15 SB Off and Airport RD FrontageControl Type:
Analysis Method:
Analysis Period:

Two-way stop
HCM2010
15 minutes Delay (sec / veh):
Level Of Service:
Volume to Capacity ( $\mathrm{v} / \mathrm{c}$ ):
121.8
0.947

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northeastbound |  |  | Southwestbound |  |  | Northwestbound |  |  | Southeastbound |  |  |
| Lane Configuration | $T$ |  |  | $\dagger \Gamma$ |  |  | $4$ |  |  | $\stackrel{F}{2}$ |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Stop | Stop | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.07 | 0.00 | 0.21 | 0.95 | 0.22 | 0.29 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 16.59 | 0.00 | 10.80 | 121.78 | 119.80 | 9.92 | 7.68 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | C |  | B | F | F | A | A | A |  |  | A | A |
| 95th-Percentile Queue Length [veh] | 1.14 | 0.00 | 1.14 | 20.41 | 20.41 | 1.22 | 0.19 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 28.44 | 0.00 | 28.44 | 510.19 | 510.19 | 30.56 | 4.64 | 4.64 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] |  | 11.50 |  |  | 82.65 |  |  | 4.27 |  |  | 0.00 |  |
| Approach LOS |  | B |  |  | F |  |  | A |  |  | A |  |
| d_I, Intersection Delay [s/veh] | 57.55 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Shane Forsythe

## Intersection Level Of Service Report

\#5: 14th St SW and I-315 EB

Control Type:
Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 13.3 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.218 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | estboun |  |
| Lane Configuration |  | $71 \Gamma$ |  |  | 1\|「 |  |  | 1\|「 |  |  | $115$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 2 | 3 | 0 | 6 | 7 | 7 | 4 | 0 | 3 | 8 | 0 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 15 | 0 | 5 | 15 | 15 | 5 | 0 | 15 | 15 | 0 |
| Maximum Green [s] | 0 | 50 | 20 | 0 | 50 | 20 | 20 | 60 | 0 | 20 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 22 | 18 | 0 | 22 | 18 | 18 | 20 | 0 | 18 | 20 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 5 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 10 | 0 | 10 | 0 | 0 | 10 | 0 | 10 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

## Shane Forsythe

Lane Group Calculations

| Lane Group | L | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 5.00 | 4.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 0.00 | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 17 | 17 | 37 | 17 | 17 | 36 | 29 | 12 | 12 | 29 | 11 | 11 |
| g / C, Green / Cycle | 0.28 | 0.28 | 0.62 | 0.28 | 0.28 | 0.60 | 0.49 | 0.21 | 0.21 | 0.49 | 0.19 | 0.19 |
| (v/s)_i Volume / Saturation Flow Rate | 0.01 | 0.05 | 0.27 | 0.17 | 0.07 | 0.06 | 0.04 | 0.06 | 0.00 | 0.02 | 0.02 | 0.00 |
| s, saturation flow rate [veh/h] | 1114 | 1872 | 1588 | 1272 | 1820 | 1538 | 1616 | 1822 | 1615 | 1422 | 1839 | 1615 |
| c, Capacity [veh/h] | 334 | 530 | 979 | 387 | 515 | 920 | 948 | 376 | 333 | 816 | 346 | 304 |
| d1, Uniform Delay [s] | 19.78 | 16.28 | 6.04 | 22.47 | 16.66 | 5.14 | 8.16 | 20.04 | 18.95 | 8.07 | 20.26 | 19.85 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.04 | 0.17 | 0.31 | 1.21 | 0.27 | 0.05 | 0.03 | 0.39 | 0.02 | 0.02 | 0.17 | 0.03 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.03 | 0.19 | 0.44 | 0.55 | 0.26 | 0.10 | 0.07 | 0.28 | 0.01 | 0.04 | 0.13 | 0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 19.82 | 16.44 | 6.35 | 23.68 | 16.93 | 5.19 | 8.20 | 20.43 | 18.97 | 8.08 | 20.43 | 19.88 |
| Lane Group LOS | B | B | A | C | B | A | A | C | B | A | C | B |
| Critical Lane Group | no | no | yes | no | yes | no |
| 50th-Percentile Queue Length [veh] | 0.12 | 0.97 | 2.14 | 2.75 | 1.37 | 0.37 | 0.40 | 1.18 | 0.05 | 0.18 | 0.51 | 0.08 |
| 50th-Percentile Queue Length [ft] | 3.03 | 24.30 | 53.51 | 68.66 | 34.27 | 9.31 | 9.90 | 29.58 | 1.34 | 4.43 | 12.70 | 1.94 |
| 95th-Percentile Queue Length [veh] | 0.22 | 1.75 | 3.85 | 4.94 | 2.47 | 0.67 | 0.71 | 2.13 | 0.10 | 0.32 | 0.91 | 0.14 |
| 95th-Percentile Queue Length [ft] | 5.46 | 43.75 | 96.31 | 123.59 | 61.69 | 16.75 | 17.82 | 53.25 | 2.41 | 7.97 | 22.86 | 3.49 |

## Shane Forsythe

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 19.82 | 16.44 | 6.35 | 23.68 | 16.93 | 5.19 | 8.20 | 20.43 | 18.97 | 8.08 | 20.43 | 19.88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | B | B | A | C | B | A | A | C | B | A | C | B |
| d_A, Approach Delay [s/veh] | 8.48 |  |  | 17.81 |  |  | 15.78 |  |  | 15.87 |  |  |
| Approach LOS | A |  |  | B |  |  | B |  |  | B |  |  |
| d_l, Intersection Delay [s/veh] | 13.32 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.218 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 2 | 7 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | 6 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report

 \#6: 14th St SW and I-315 WBSignalized
HCM2010
15 minutes

| Delay (sec / veh): | 22.2 |
| :---: | :---: |
| Level Of Service: | C |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.295 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | Vestbound |  |
| Lane Configuration |  | $7 \mid$ |  |  | $7 F$ |  |  | $\stackrel{H}{t}$ |  |  | H\| |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 |
| Lead / Lag | - | - | - | - | - | - | - | - | - | - | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Maximum Green [s] | 0 | 35 | 40 | 0 | 35 | 0 | 0 | 25 | 0 | 0 | 40 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 25 | 19 | 0 | 25 | 0 | 0 | 16 | 0 | 0 | 19 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 9 | 7 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| Pedestrian Clearance [s] | 0 | 11 | 7 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Maximum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Pedestrian Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Lane Group Calculations

| Lane Group | L | C | R | L | C | C | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 12, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 13 | 13 | 30 | 13 | 13 | 2 | 12 | 12 |
| $\mathrm{g} / \mathrm{C}$, Green / Cycle | 0.21 | 0.21 | 0.49 | 0.21 | 0.21 | 0.03 | 0.20 | 0.20 |
| (v/s)_i Volume / Saturation Flow Rate | 0.02 | 0.01 | 0.09 | 0.03 | 0.12 | 0.02 | 0.16 | 0.04 |
| s , saturation flow rate [veh/h] | 994 | 1710 | 1392 | 1176 | 1685 | 1527 | 1636 | 1454 |
| c, Capacity [veh/h] | 183 | 356 | 686 | 305 | 350 | 52 | 329 | 292 |
| d1, Uniform Delay [s] | 26.76 | 19.09 | 8.52 | 21.98 | 21.31 | 28.58 | 22.73 | 19.90 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.20 | 0.08 | 0.13 | 0.18 | 1.41 | 10.57 | 4.12 | 0.31 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp , platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.09 | 0.07 | 0.19 | 0.12 | 0.56 | 0.60 | 0.78 | 0.19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 26.96 | 19.18 | 8.65 | 22.16 | 22.72 | 39.15 | 26.86 | 20.21 |
| Lane Group LOS | C | B | A | C | C | D | C | C |
| Critical Lane Group | no | no | no | no | yes | yes | yes | no |
| 50th-Percentile Queue Length [veh] | 0.22 | 0.27 | 0.82 | 0.44 | 2.44 | 0.57 | 3.57 | 0.62 |
| 50th-Percentile Queue Length [ft] | 5.43 | 6.74 | 20.40 | 11.02 | 60.90 | 14.26 | 89.30 | 15.53 |
| 95th-Percentile Queue Length [veh] | 0.39 | 0.49 | 1.47 | 0.79 | 4.38 | 1.03 | 6.43 | 1.12 |
| 95th-Percentile Queue Length [ft] | 9.77 | 12.13 | 36.71 | 19.83 | 109.62 | 25.67 | 160.74 | 27.96 |

## Shane Forsythe

Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 26.96 | 19.18 | 8.65 | 22.16 | 22.72 | 22.72 | 39.15 | 39.15 | 39.15 | 26.86 | 26.86 | 20.21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | B | A | C | C | C | D | D | D | C | C | C |
| d_A, Approach Delay [s/veh] | 11.92 |  |  | 22.63 |  |  | 39.15 |  |  | 25.69 |  |  |
| Approach LOS | B |  |  | C |  |  | D |  |  | C |  |  |
| d_I, Intersection Delay [s/veh] | 22.16 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.295 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report

\#7: Fox Farm and I-315


Analysis Method: Analysis Period:

| Delay (sec / veh): | 39.0 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.760 |

0.760

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Northbound |  |  | Southbound |  |  | Northeastbound |  |  | Southwestbound |  |  |
| Lane Configuration | $111$ |  |  | $1 \\|$ |  |  | $\\|!$ |  |  | 11Ir |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 8 | 0 | 3 | 6 | 6 | 4 | 0 | 8 | 2 | 5 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 5 | 5 | 5 | 0 | 5 | 5 | 0 |
| Maximum Green [s] | 0 | 60 | 60 | 0 | 60 | 60 | 60 | 60 | 0 | 60 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 20 | 41 | 0 | 33 | 67 | 67 | 46 | 0 | 41 | 20 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

## Shane Forsythe

Lane Group Calculations

| Lane Group | C | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 1.00 | 3.00 | 3.00 | 1.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 31 | 31 | 97 | 25 | 25 | 52 | 22 | 47 | 47 | 31 | 56 | 56 |
| g / C, Green / Cycle | 0.22 | 0.22 | 0.69 | 0.18 | 0.18 | 0.37 | 0.16 | 0.34 | 0.34 | 0.22 | 0.40 | 0.40 |
| (v/s)_i Volume / Saturation Flow Rate | 0.04 | 0.19 | 0.40 | 0.14 | 0.04 | 0.11 | 0.14 | 0.31 | 0.04 | 0.04 | 0.14 | 0.13 |
| s, saturation flow rate [veh/h] | 1793 | 1714 | 1604 | 1778 | 3540 | 1551 | 1704 | 3439 | 1580 | 3379 | 3413 | 1557 |
| c, Capacity [veh/h] | 405 | 387 | 1160 | 365 | 727 | 618 | 268 | 1167 | 536 | 750 | 1378 | 629 |
| d1, Uniform Delay [s] | 43.76 | 51.63 | 8.93 | 51.50 | 45.91 | 28.61 | 57.70 | 44.43 | 31.90 | 44.32 | 29.06 | 28.52 |
| k, delay calibration | 0.11 | 0.11 | 0.41 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.21 | 4.62 | 1.56 | 2.33 | 0.12 | 0.25 | 9.13 | 3.49 | 0.10 | 0.13 | 0.16 | 0.29 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.18 | 0.83 | 0.55 | 0.69 | 0.18 | 0.29 | 0.88 | 0.92 | 0.12 | 0.20 | 0.36 | 0.32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 43.98 | 56.25 | 10.49 | 53.83 | 46.03 | 28.87 | 66.82 | 47.91 | 32.00 | 44.45 | 29.22 | 28.81 |
| Lane Group LOS | D | E | B | D | D | C | E | D | C | D | C | C |
| Critical Lane Group | no | no | yes | yes | no | no | no | yes | no | no | no | no |
| 50th-Percentile Queue Length [veh] | 2.13 | 11.29 | 10.10 | 9.13 | 2.00 | 4.36 | 8.87 | 18.35 | 1.59 | 2.14 | 5.88 | 4.71 |
| 50th-Percentile Queue Length [ft] | 53.34 | 282.26 | 252.44 | 228.16 | 49.99 | 109.09 | 221.67 | 458.87 | 39.66 | 53.49 | 147.02 | 117.63 |
| 95th-Percentile Queue Length [veh] | 3.84 | 16.80 | 15.31 | 14.08 | 3.60 | 7.79 | 13.75 | 25.38 | 2.86 | 3.85 | 9.86 | 8.26 |
| 95th-Percentile Queue Length [ft] | 96.01 | 420.02 | 382.72 | 352.03 | 89.98 | 194.73 | 343.76 | 634.52 | 71.39 | 96.29 | 246.44 | 206.56 |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 43.98 | 56.25 | 10.49 | 53.83 | 46.03 | 28.87 | 66.82 | 47.91 | 32.00 | 44.45 | 29.22 | 28.81 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | D | E | B | D | D | C | E | D | C | D | C | C |
| d_A, Approach Delay [s/veh] | 27.07 |  |  | 44.09 |  |  | 50.39 |  |  | 31.81 |  |  |
| Approach LOS | C |  |  | D |  |  | D |  |  | C |  |  |
| d_l, Intersection Delay [s/veh] | 39.04 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.760 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 3 | 8 | 4 | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | 6 | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report

\#8: Central Ave and I15 SB


Analysis Method: Analysis Period:

| Delay (sec / veh): | 178.9 |
| :---: | :---: |
| Level Of Service: | $F$ |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 1.188 | 1.188

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Southbound |  |  | Eastbound |  |  | Westbound |  |  | Northwestbound |  |  |
| Lane Configuration | $7 \Gamma$ |  |  | $11$ |  |  | $1 \\|$ |  |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 130 | 0 | 6 | 0 | 191 | 39 | 123 | 88 | 0 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.30 | 0.00 | 0.00 | 2.00 | 3.10 | 0.00 | 6.50 | 11.30 | 2.00 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.41 | 1.41 | 1.41 | 1.00 | 1.41 | 1.41 | 1.41 | 1.41 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 183 | 0 | 8 | 0 | 269 | 55 | 173 | 124 | 0 | 0 | 0 | 0 |
| Peak Hour Factor | 0.8550 | 1.0000 | 0.7500 | 1.0000 | 0.6920 | 0.7500 | 0.7690 | 0.8150 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 54 | 0 | 3 | 0 | 97 | 18 | 56 | 38 | 0 | 0 | 0 | 0 |
| Total Analysis Volume [veh/h] | 214 | 0 | 11 | 0 | 389 | 73 | 225 | 152 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 1.19 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 178.88 | 176.96 | 9.05 | 0.00 | 0.00 | 0.00 | 8.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | A |  | A | A | A | A |  |  |  |  |
| 95th-Percentile Queue Length [veh] | 11.32 | 11.32 | 0.04 | 0.00 | 0.00 | 0.00 | 0.73 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 282.97 | 282.97 | 0.93 | 0.00 | 0.00 | 0.00 | 18.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 170.57 |  |  | 0.00 |  |  | 5.32 |  |  | 0.00 |  |  |
| Approach LOS | F |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 37.95 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report

\#9: Central Ave and I-15 NB
Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 113.1 |
| :---: | :---: |
| Level Of Service: | F |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.274 |

0.274

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | astbound |  |  | Vestboun |  |  | theastbo |  |
| Lane Configuration |  | $T$ |  |  | $11$ |  |  | \$1/ |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes



## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.27 | 0.00 | 0.80 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 113.09 | 109.47 | 100.54 | 8.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | F | A | A |  |  | A | A |  |  |  |
| 95th-Percentile Queue Length [veh] | 13.79 | 13.79 | 13.79 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 344.63 | 344.63 | 344.63 | 0.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 102.06 |  |  | 0.15 |  |  | 0.00 |  |  | 0.00 |  |  |
| Approach LOS | F |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 25.02 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |



Analysis Method: Analysis Period:

| Delay (sec / veh): | 406.0 |
| :---: | :---: |
| Level Of Service: | F |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 1.518 |

406.0
1.518

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 77 | 60 | 71 | 410 | 184 | 65 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 9.10 | 6.70 | 7.00 | 5.10 | 11.40 | 6.20 |
| Growth Rate | 1.63 | 1.63 | 1.63 | 1.63 | 1.63 | 1.63 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 126 | 98 | 116 | 668 | 300 | 106 |
| Peak Hour Factor | 0.7700 | 0.7890 | 0.8450 | 0.8010 | 0.8520 | 0.7740 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 41 | 31 | 34 | 208 | 88 | 34 |
| Total Analysis Volume [veh/h] | 164 | 124 | 137 | 834 | 352 | 137 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 1.52 | 0.20 | 0.13 | 0.01 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 405.95 | 378.42 | 8.95 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 20.34 | 20.34 | 0.45 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 508.50 | 508.50 | 11.23 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 394.10 |  | 1.26 |  | 0.00 |  |
| Approach LOS | F |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 65.63 |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  | \#11: Vaughn Rd and I-15 SB


| Control Type: | Two-way stop |
| :---: | :---: |
| Analysis Method: | HCM2010 |
| Analysis Period: | 15 minutes |


| Delay (sec / veh): | 11.0 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.361 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 219 | 1 | 0 | 27 | 12 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 4.60 | 0.00 | 2.00 | 11.10 | 8.30 | 2.00 |
| Growth Rate | 1.36 | 1.36 | 1.00 | 1.36 | 1.36 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 298 | 1 | 0 | 37 | 16 | 0 |
| Peak Hour Factor | 0.8830 | 0.2500 | 1.0000 | 0.8440 | 0.7500 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 84 | 1 | 0 | 11 | 5 | 0 |
| Total Analysis Volume [veh/h] | 337 | 4 | 0 | 44 | 21 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 11.04 | 10.58 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | B |  | A | A |  |
| 95th-Percentile Queue Length [veh] | 1.68 | 1.68 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 42.07 | 42.07 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 11.04 |  | 0.00 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 9.27 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Shane Forsythe

# Intersection Level Of Service Report 

\#12: Vaughn Rd and I-15 NB

| Control Type: | Two-way stop |
| :---: | :---: |
| Analysis Method: | HCM2010 |
| Analysis Period: | 15 minutes |


| Delay (sec / veh): | 7.3 |
| :---: | :---: |
| Level Of Service: | A |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Thru | Thru | Right | Left | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 237 | 19 | 76 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 5.00 | 5.30 | 14.50 | 2.00 | 2.00 |
| Growth Rate | 1.37 | 1.37 | 1.37 | 1.37 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 325 | 26 | 104 | 0 | 0 |
| Peak Hour Factor | 1.0000 | 0.8590 | 0.5940 | 0.8260 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 95 | 11 | 31 | 0 | 0 |
| Total Analysis Volume [veh/h] | 0 | 378 | 44 | 126 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

## Shane Forsythe

Version 2.00-10
Scenario 3: 3: Future AM Scenario
Intersection Settings

| Priority Scheme | Free | Free | Stop |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 7.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | A | A | A | A |  |  |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 0.00 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 0.00 |  |  |  |  |  |
| Intersection LOS | A |  |  |  |  |  |

## Shane Forsythe

Version 2.00-10
Traffic Volume - Future Total Volume


Shane Forsythe
Robert Peccia and Associates

Version 2.00-10
Traffic Volume - Future Total Volume


## Shane Forsythe

Version 2.00-10
Traffic Conditions


Shane Forsythe
Robert Peccia and Associates

Version 2.00-10
Traffic Conditions


Vistro File: F:I...II-15 Corridor.vistropdb

Intersection Analysis Summary

| ID | Intersection Name | Control Type | Method | Worst Mvmt | V/C | Delay (s/veh) | LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tri Hill and Frontage Airport <br> Rd | Two-way stop | HCM2010 | NEBL | 0.713 | 43.7 | E |
| 2 | I-15 NB and Airport Rd | Two-way stop | HCM2010 | NEBR | 0.159 | $10,000.0$ | F |
| 3 | I-15 SB On and Airport RD | Two-way stop | HCM2010 | NWBL | 0.305 | 23.5 | C |
| 4 | I-15 SB Off and Airport RD <br> Frontage | Two-way stop | HCM2010 | SWBL | 7.378 | $3,138.9$ | F |
| 5 | 14th St SW and I-315 EB | Signalized | HCM2010 | NBL | 0.457 | 12.4 | B |
| 6 | 14th St SW and I-315 WB | Signalized | HCM2010 | EBR | 0.621 | 19.6 | B |
| 7 | Fox Farm and I-315 | Signalized | HCM2010 | NBT | 0.891 | 35.6 | D |
| 8 | Central Ave and I15 SB | Two-way stop | HCM2010 | SBL | 1.339 | 314.9 | F |
| 9 | Central Ave and I-15 NB | Two-way stop | HCM2010 | NBL | 1.211 | 445.2 | F |
| 10 | Central Ave and Vaughn Rd | Two-way stop | HCM2010 | SBL | 3.231 | $1,422.7$ | F |
| 11 | Vaughn Rd and I-15 SB | Two-way stop | HCM2010 | SBL | 0.254 | 11.0 | B |
| 12 | Vaughn Rd and I-15 NB | Two-way stop | HCM2010 | EBL | 0.000 | 7.4 | A |

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value; for all other control types, they are taken for the whole intersection.

## Intersection Level Of Service Report <br> \#1: Tri Hill and Frontage Airport Rd

Analysis Method: Analysis Period:

$$
\begin{array}{cc}
\text { Delay (sec / veh): } & 43.7 \\
\text { Level Of Service: } & \text { E } \\
\text { Volume to Capacity }(\mathrm{v} / \mathrm{c}): & 0.713
\end{array}
$$

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 75 | 7 | 9 | 160 | 207 | 70 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.70 | 0.00 | 22.20 | 33.80 | 18.90 | 15.80 |
| Growth Rate | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 128 | 12 | 15 | 272 | 352 | 119 |
| Peak Hour Factor | 0.5680 | 0.4380 | 0.7500 | 0.8000 | 0.8480 | 0.8330 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 56 | 7 | 5 | 85 | 104 | 36 |
| Total Analysis Volume [veh/h] | 225 | 27 | 20 | 340 | 415 | 143 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Prority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.71 | 0.05 | 0.02 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 43.71 | 38.46 | 9.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | E | E | A | A | A | A |
| 95th-Percentile Queue Length [veh] | 5.93 | 5.93 | 0.07 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 148.33 | 148.33 | 1.67 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 43.15 |  | 0.50 |  | 0.00 |  |
| Approach LOS | E |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 9.45 |  |  |  |  |  |
| Intersection LOS | E |  |  |  |  |  |

## Intersection Level Of Service Report \#2: I-15 NB and Airport Rd <br> Delay (sec / veh): <br> Level Of Service: <br> Volume to Capacity (v/c): <br> 10,000.0 <br> F <br> 0.159

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | heastbo |  |  | hwestbo |  |  | hwestbo |  |  | theastbo |  |
| Lane Configuration |  | $\stackrel{t}{4}$ |  |  |  |  |  | $\stackrel{\rightharpoonup}{5}$ |  |  | - |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 2 | 2 | 31 | 0 | 0 | 0 | 0 | 47 | 197 | 307 | 236 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 0.00 | 47.40 | 2.00 | 2.00 | 2.00 | 2.00 | 40.40 | 20.80 | 0.70 | 17.40 | 2.00 |
| Growth Rate | 1.90 | 1.90 | 1.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.90 | 1.90 | 1.90 | 1.90 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 4 | 4 | 59 | 0 | 0 | 0 | 0 | 89 | 374 | 583 | 448 | 0 |
| Peak Hour Factor | 0.5000 | 0.5000 | 0.7750 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6910 | 0.8210 | 0.6910 | 0.8680 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 2 | 2 | 19 | 0 | 0 | 0 | 0 | 32 | 114 | 211 | 129 | 0 |
| Total Analysis Volume [veh/h] | 8 | 8 | 76 | 0 | 0 | 0 | 0 | 129 | 456 | 844 | 516 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.85 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 10000.0 | 10000.0 | 10000.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 24.83 | 0.00 | 0.00 |
| Movement LOS | F | F | F |  |  |  |  | A | A | C | A |  |
| 95th-Percentile Queue Length [veh] | 13.97 | 13.97 | 13.97 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 54.79 | 54.79 | 0.00 |
| 95th-Percentile Queue Length [ft] | 349.24 | 349.24 | 349.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1369.74 | 1369.74 | 0.00 |
| d_A, Approach Delay [s/veh] | 10000.00 |  |  | 0.00 |  |  | 0.00 |  |  | 15.41 |  |  |
| Approach LOS | F |  |  | A |  |  | A |  |  | F |  |  |
| d_l, Intersection Delay [s/veh] | 461.93 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#3: l-15 SB On and Airport RD



Analysis Method: Analysis Period:

| Delay (sec / veh): | 23.5 |
| :---: | :---: |
| Level Of Service: | C |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.305 |

0.305

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 25 | 21 | 542 | 14 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.00 | 2.00 | 64.00 | 19.10 | 7.30 | 0.00 |
| Growth Rate | 1.00 | 1.00 | 2.12 | 2.12 | 2.12 | 2.12 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 53 | 45 | 1149 | 30 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.6250 | 0.7500 | 0.7450 | 0.7000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 21 | 15 | 386 | 11 |
| Total Analysis Volume [veh/h] | 0 | 0 | 85 | 60 | 1542 | 43 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.30 | 0.00 | 0.02 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 0.00 | 0.00 | 23.48 | 0.00 | 0.00 | 0.00 |
| Movement LOS |  |  | C | A | A | A |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 2.79 | 2.79 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 69.68 | 69.68 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 13.76 |  | 0.00 |  |
| Approach LOS | A |  | B |  | A |  |
| d_I, Intersection Delay [s/veh] | 1.15 |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |

## Intersection Level Of Service Report \#4: I-15 SB Off and Airport RD Frontage

 Analysis Method: Analysis Period:

Delay (sec / veh):
Level Of Service:
Volume to Capacity (v/c):

3,138.9
F
7.378

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | heastbo |  |  | thwestbo |  |  | hwestbo |  |  | theastbo |  |
| Lane Configuration |  | $T$ |  |  | $H$ |  |  | $\stackrel{\text { - }}{ }$ |  |  | $\stackrel{\square}{\square}$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 0 | 55 | 217 | 26 | 47 | 8 | 15 | 0 | 0 | 286 | 1 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 2.00 | 1.80 | 18.90 | 11.50 | 2.10 | 37.50 | 6.70 | 2.00 | 2.00 | 1.00 | 0.00 |
| Growth Rate | 2.22 | 1.00 | 2.22 | 2.22 | 2.22 | 2.22 | 2.22 | 2.22 | 1.00 | 1.00 | 2.22 | 2.22 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 0 | 122 | 482 | 58 | 104 | 18 | 33 | 0 | 0 | 635 | 2 |
| Peak Hour Factor | 1.0000 | 1.0000 | 0.7240 | 0.8350 | 0.7220 | 0.6910 | 0.6670 | 0.7500 | 1.0000 | 1.0000 | 0.6810 | 0.2500 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 42 | 144 | 20 | 38 | 7 | 11 | 0 | 0 | 233 | 2 |
| Total Analysis Volume [veh/h] | 0 | 0 | 169 | 577 | 80 | 151 | 27 | 44 | 0 | 0 | 932 | 8 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Stop | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.53 | 7.38 | 0.38 | 0.15 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 47.75 | 0.00 | 27.94 | 3138.95 | 3109.90 | 9.11 | 11.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | E |  | D | F | F | A | B | A |  |  | A | A |
| 95th-Percentile Queue Length [veh] | 2.88 | 0.00 | 2.88 | 74.83 | 74.83 | 0.52 | 0.40 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 72.12 | 0.00 | 72.12 | 1870.70 | 1870.70 | 12.88 | 9.95 | 9.95 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 27.94 |  |  | 2551.16 |  |  | 4.28 |  |  | 0.00 |  |  |
| Approach LOS | D |  |  | F |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 1039.42 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report <br> \#5: 14th St SW and I-315 EB

## Control Type: <br> Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 12.4 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.457 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | astbound |  |  | estbound |  |
| Lane Configuration |  | $71 \Gamma$ |  |  | $71 \Gamma$ |  |  | $71 \Gamma$ |  |  | $11 \Gamma$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  | 95 | 396 | 262 | 107 | 168 | 10 | 102 | 50 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 13 | 82 | 260 |  |  |  |  |  |  |  |  |  |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 2.40 | 1.20 | 4.30 | 1.30 | 0.40 | 0.90 | 0.00 | 0.00 | 1.00 | 0.00 | 12.90 |
| Growth Rate | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 16 | 102 | 322 | 118 | 491 | 325 | 133 | 208 | 12 | 126 | 62 | 38 |
| Peak Hour Factor | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 | 0.9380 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 4 | 27 | 86 | 31 | 131 | 87 | 35 | 55 | 3 | 34 | 17 | 10 |
| Total Analysis Volume [veh/h] | 17 | 109 | 343 | 126 | 523 | 346 | 142 | 222 | 13 | 134 | 66 | 41 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 2 | 3 | 0 | 6 | 7 | 7 | 4 | 0 | 3 | 8 | 0 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 15 | 0 | 5 | 15 | 15 | 5 | 0 | 15 | 15 | 0 |
| Maximum Green [s] | 0 | 50 | 20 | 0 | 50 | 20 | 20 | 45 | 0 | 20 | 45 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 22 | 18 | 0 | 22 | 18 | 18 | 20 | 0 | 18 | 20 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 5 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 10 | 0 | 10 | 0 | 0 | 10 | 0 | 10 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| I2, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | L | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 4.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 0.00 | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 21 | 21 | 41 | 21 | 21 | 41 | 33 | 15 | 15 | 33 | 15 | 15 |
| g / C, Green / Cycle | 0.35 | 0.35 | 0.68 | 0.35 | 0.35 | 0.68 | 0.55 | 0.25 | 0.25 | 0.55 | 0.25 | 0.25 |
| (v/s)_i Volume / Saturation Flow Rate | 0.02 | 0.06 | 0.21 | 0.10 | 0.28 | 0.22 | 0.09 | 0.12 | 0.01 | 0.09 | 0.03 | 0.03 |
| s, saturation flow rate [veh/h] | 893 | 1855 | 1596 | 1251 | 1876 | 1609 | 1564 | 1900 | 1615 | 1472 | 1900 | 1430 |
| c, Capacity [veh/h] | 183 | 647 | 1089 | 469 | 654 | 1097 | 998 | 466 | 396 | 872 | 466 | 351 |
| d1, Uniform Delay [s] | 26.40 | 13.51 | 3.86 | 17.33 | 17.64 | 3.86 | 6.75 | 19.34 | 17.22 | 7.01 | 17.69 | 17.58 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.20 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.22 | 0.12 | 0.16 | 0.30 | 2.31 | 0.30 | 0.06 | 0.75 | 0.03 | 0.08 | 0.14 | 0.15 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.09 | 0.17 | 0.32 | 0.27 | 0.80 | 0.32 | 0.14 | 0.48 | 0.03 | 0.15 | 0.14 | 0.12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 26.62 | 13.63 | 4.03 | 17.63 | 19.95 | 4.16 | 6.82 | 20.09 | 17.25 | 7.09 | 17.83 | 17.73 |
| Lane Group LOS | C | B | A | B | B | A | A | C | B | A | B | B |
| Critical Lane Group | no | no | no | no | yes | yes | no | yes | no | no | no | no |
| 50th-Percentile Queue Length [veh] | 0.23 | 0.94 | 1.10 | 1.32 | 6.19 | 1.15 | 0.74 | 2.53 | 0.13 | 0.70 | 0.68 | 0.42 |
| 50th-Percentile Queue Length [ft] | 5.73 | 23.57 | 27.43 | 32.90 | 154.65 | 28.69 | 18.54 | 63.35 | 3.27 | 17.48 | 17.01 | 10.58 |
| 95th-Percentile Queue Length [veh] | 0.41 | 1.70 | 1.97 | 2.37 | 10.26 | 2.07 | 1.33 | 4.56 | 0.24 | 1.26 | 1.22 | 0.76 |
| 95th-Percentile Queue Length [ft] | 10.31 | 42.42 | 49.37 | 59.22 | 256.62 | 51.65 | 33.37 | 114.02 | 5.88 | 31.46 | 30.62 | 19.05 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 26.62 | 13.63 | 4.03 | 17.63 | 19.95 | 4.16 | 6.82 | 20.09 | 17.25 | 7.09 | 17.83 | 17.73 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | B | A | B | B | A | A | C | B | A | B | B |
| d_A, Approach Delay [s/veh] | 7.08 |  |  | 14.16 |  |  | 15.00 |  |  | 11.84 |  |  |
| Approach LOS | A |  |  | B |  |  | B |  |  | B |  |  |
| d_I, Intersection Delay [s/veh] | 12.45 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.457 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 2 | 7 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | 6 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report <br> \#6: 14th St SW and I-315 WB

Control Type:
Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 19.6 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.621 |

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthboun |  |  | uthboun |  |  | astboun |  |  | estbound |  |
| Lane Configuration |  | $7 \\|$ |  |  | $7 \hat{}$ |  |  | $\stackrel{t}{4}$ |  |  | $\stackrel{\dagger}{\dagger}$ |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 5 | 76 | 146 | 22 | 131 | 2 | 3 | 5 | 19 | 638 | 12 | 142 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 40.00 | 6.60 | 0.70 | 0.00 | 2.30 | 0.00 | 0.00 | 0.00 | 15.80 | 1.80 | 8.30 | 4.20 |
| Growth Rate | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 6 | 88 | 169 | 26 | 152 | 2 | 3 | 6 | 22 | 740 | 14 | 165 |
| Peak Hour Factor | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 | 0.9880 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 2 | 22 | 43 | 7 | 38 | 1 | 1 | 2 | 6 | 187 | 4 | 42 |
| Total Analysis Volume [veh/h] | 6 | 89 | 171 | 26 | 154 | 2 | 3 | 6 | 22 | 749 | 14 | 167 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 |
| Lead / Lag | - | - | - | - | - | - | - | - | - | - | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Maximum Green [s] | 0 | 35 | 40 | 0 | 35 | 0 | 0 | 25 | 0 | 0 | 40 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 25 | 19 | 0 | 25 | 0 | 0 | 16 | 0 | 0 | 19 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 9 | 7 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| Pedestrian Clearance [s] | 0 | 11 | 7 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Maximum Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Pedestrian Recall |  | no | no |  | no |  |  | no |  |  | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10
Lane Group Calculations

| Lane Group | L | C | R | L | C | C | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| 11_p, Permitted Start-Up Lost Time [s] | 2.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 11 | 11 | 49 | 11 | 11 | 2 | 33 | 33 |
| $\mathrm{g} / \mathrm{C}$, Green / Cycle | 0.18 | 0.18 | 0.81 | 0.18 | 0.18 | 0.03 | 0.54 | 0.54 |
| (v / s)_i Volume / Saturation Flow Rate | 0.01 | 0.06 | 0.12 | 0.02 | 0.09 | 0.02 | 0.51 | 0.12 |
| s , saturation flow rate [veh/h] | 804 | 1604 | 1443 | 1196 | 1668 | 1513 | 1505 | 1395 |
| c, Capacity [veh/h] | 167 | 290 | 1168 | 234 | 301 | 51 | 820 | 760 |
| d1, Uniform Delay [s] | 26.79 | 21.32 | 1.24 | 25.10 | 22.21 | 28.59 | 12.61 | 7.06 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.27 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 0.09 | 0.59 | 0.06 | 0.21 | 1.37 | 11.05 | 11.60 | 0.14 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp , platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.04 | 0.31 | 0.15 | 0.11 | 0.52 | 0.61 | 0.93 | 0.22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 26.88 | 21.91 | 1.30 | 25.31 | 23.59 | 39.64 | 24.21 | 7.20 |
| Lane Group LOS | C | C | A | C | C | D | C | A |
| Critical Lane Group | no | no | no | no | yes | yes | yes | no |
| 50th-Percentile Queue Length [veh] | 0.08 | 1.06 | 0.08 | 0.34 | 1.97 | 0.58 | 9.92 | 0.92 |
| 50th-Percentile Queue Length [ft] | 2.04 | 26.57 | 1.93 | 8.44 | 49.22 | 14.38 | 247.97 | 23.06 |
| 95th-Percentile Queue Length [veh] | 0.15 | 1.91 | 0.14 | 0.61 | 3.54 | 1.04 | 15.08 | 1.66 |
| 95th-Percentile Queue Length [ft] | 3.67 | 47.82 | 3.47 | 15.19 | 88.60 | 25.89 | 377.09 | 41.51 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 26.88 | 21.91 | 1.30 | 25.31 | 23.59 | 23.59 | 39.64 | 39.64 | 39.64 | 24.21 | 24.21 | 7.20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | C | C | A | C | C | C | D | D | D | C | C | A |
| d_A, Approach Delay [s/veh] | 8.77 |  |  | 23.83 |  |  | 39.64 |  |  | 21.15 |  |  |
| Approach LOS | A |  |  | C |  |  | D |  |  | C |  |  |
| d_I, Intersection Delay [s/veh] | 19.57 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.621 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



## Intersection Level Of Service Report \#7: Fox Farm and I-315

## Control Type: <br> Analysis Method: Analysis Period:

Signalized
HCM2010
15 minutes

| Delay (sec / veh): | 35.6 |
| :---: | :---: |
| Level Of Service: | D |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.891 |

0.891

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthbound |  |  | outhbound |  |  | heastbo |  |  | hwestbo |  |
| Lane Configuration |  | 111 |  |  | 1\1 |  |  | \\| \| |  |  | \11 |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  | 153 | 274 | 325 | 242 | 706 | 103 | 486 | 874 | 250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 71 | 155 | 227 |  |  |  |  |  |  |  |  |  |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 2.80 | 1.90 | 0.40 | 1.30 | 0.70 | 2.10 | 2.50 | 3.60 | 2.90 | 0.40 | 3.90 | 1.60 |
| Growth Rate | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Right-Turn on Red Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 83 | 181 | 266 | 179 | 321 | 380 | 283 | 826 | 121 | 569 | 1023 | 293 |
| Peak Hour Factor | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 23 | 49 | 72 | 49 | 87 | 103 | 77 | 224 | 33 | 155 | 278 | 80 |
| Total Analysis Volume [veh/h] | 90 | 197 | 289 | 195 | 349 | 413 | 308 | 898 | 132 | 618 | 1112 | 318 |
| Presence of On-Street Parking | no |  | no |
| On-Street Parking Maneuver Rate ${ }_{\text {/ }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Local Bus Stopping Rate [/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Located in CBD |  |
| :---: | :---: |
| Signal Coordination Group |  |
| Cycle Length [s] |  |
| Coordination Type | - |
| Actuation Type | Time of Day Pattern Coordinated |
| Offset [s] | Semi-actuated |
| Offset Reference | 0.0 |
| Permissive Mode | LeadGreen |
| Lost time [s] | SingleBand |
|  | 0.00 |

## Phasing \& Timing

| Control Type | Permiss | Permiss | Overlap | Permiss | Permiss | Overlap | Protecte | Permiss | Permiss | Protecte | Permiss | Permiss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Group | 0 | 1 | 8 | 0 | 3 | 6 | 6 | 4 | 0 | 8 | 2 | 5 |
| Lead / Lag | - | - | - | - | - | - | Lead | - | - | Lead | - | - |
| Minimum Green [s] | 0 | 5 | 5 | 0 | 5 | 5 | 5 | 5 | 0 | 5 | 5 | 0 |
| Maximum Green [s] | 0 | 60 | 60 | 0 | 60 | 60 | 60 | 60 | 0 | 60 | 60 | 0 |
| Amber [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| All red [s] | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| Split [s] | 0 | 35 | 26 | 0 | 20 | 23 | 23 | 39 | 0 | 26 | 42 | 0 |
| Vehicle Extension [s] | 0.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0.0 | 3.0 | 3.0 | 0.0 |
| Walk [s] | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 |
| Pedestrian Clearance [s] | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 0 | 10 | 0 |
| 11, Start-Up Lost Time [s] | 0.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.0 | 2.0 | 2.0 | 0.0 |
| 12, Clearance Lost Time [s] | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 1.0 | 1.0 | 3.0 | 0.0 | 1.0 | 3.0 | 0.0 |
| Minimum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Maximum Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Pedestrian Recall |  | no | no |  | no | no | no | no |  | no | no |  |
| Detector Location [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Detector Length [ft] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Version 2.00-10

## Lane Group Calculations

| Lane Group | C | C | R | L | C | R | L | C | R | L | C | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L, Total Lost Time per Cycle [s] | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 3.00 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 5.00 |
| I1_p, Permitted Start-Up Lost Time [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| I2, Clearance Lost Time [s] | 3.00 | 3.00 | 0.00 | 3.00 | 3.00 | 0.00 | 1.00 | 3.00 | 3.00 | 1.00 | 3.00 | 3.00 |
| g_i, Effective Green Time [s] | 18 | 18 | 82 | 28 | 28 | 61 | 28 | 47 | 47 | 27 | 47 | 47 |
| g / C, Green / Cycle | 0.15 | 0.15 | 0.68 | 0.24 | 0.24 | 0.51 | 0.23 | 0.40 | 0.40 | 0.23 | 0.39 | 0.39 |
| (v/s)_i Volume / Saturation Flow Rate | 0.06 | 0.12 | 0.20 | 0.12 | 0.11 | 0.29 | 0.19 | 0.29 | 0.09 | 0.20 | 0.35 | 0.22 |
| s, saturation flow rate [veh/h] | 1604 | 1527 | 1448 | 1608 | 3233 | 1424 | 1589 | 3143 | 1413 | 3150 | 3134 | 1431 |
| c, Capacity [veh/h] | 243 | 231 | 985 | 380 | 764 | 729 | 371 | 1245 | 559 | 719 | 1224 | 559 |
| d1, Uniform Delay [s] | 46.00 | 49.37 | 7.66 | 39.82 | 39.22 | 20.15 | 43.70 | 30.64 | 24.14 | 44.46 | 34.54 | 28.65 |
| k, delay calibration | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.15 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| I, Upstream Filtering Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| d2, Incremental Delay [s] | 1.06 | 7.18 | 0.16 | 1.07 | 0.43 | 0.96 | 4.79 | 0.80 | 0.21 | 3.15 | 2.94 | 0.91 |
| d3, Initial Queue Delay [s] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Rp, platoon ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PF, progression factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Lane Group Results

| X, volume / capacity | 0.40 | 0.82 | 0.29 | 0.51 | 0.46 | 0.57 | 0.83 | 0.72 | 0.24 | 0.86 | 0.91 | 0.57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d, Delay for Lane Group [s/veh] | 47.07 | 56.55 | 7.83 | 40.89 | 39.65 | 21.11 | 48.50 | 31.44 | 24.35 | 47.61 | 37.48 | 29.57 |
| Lane Group LOS | D | E | A | D | D | C | D | C | C | D | D | C |
| Critical Lane Group | no | yes | no | no | no | yes | yes | no | no | no | yes | no |
| 50th-Percentile Queue Length [veh] | 2.70 | 5.98 | 2.86 | 5.12 | 4.46 | 7.98 | 9.16 | 10.99 | 2.55 | 9.09 | 15.51 | 7.26 |
| 50th-Percentile Queue Length [ft] | 67.38 | 149.57 | 71.39 | 127.98 | 111.45 | 199.62 | 228.90 | 274.66 | 63.65 | 227.31 | 387.83 | 181.61 |
| 95th-Percentile Queue Length [veh] | 4.85 | 9.99 | 5.14 | 8.83 | 7.92 | 12.62 | 14.12 | 16.42 | 4.58 | 14.04 | 21.97 | 11.68 |
| 95th-Percentile Queue Length [ft] | 121.29 | 249.86 | 128.51 | 220.75 | 198.02 | 315.47 | 352.97 | 410.56 | 114.57 | 350.95 | 549.31 | 292.12 |

Version 2.00-10
Movement, Approach, \& Intersection Results

| d_M, Delay for Movement [s/veh] | 47.07 | 56.22 | 7.83 | 40.89 | 39.65 | 21.11 | 48.50 | 31.44 | 24.35 | 47.61 | 37.48 | 29.57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement LOS | D | E | A | D | D | C | D | C | C | D | D | C |
| d_A, Approach Delay [s/veh] | 30.51 |  |  | 31.90 |  |  | 34.67 |  |  | 39.31 |  |  |
| Approach LOS | C |  |  | C |  |  | C |  |  | D |  |  |
| d_I, Intersection Delay [s/veh] | 35.58 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | D |  |  |  |  |  |  |  |  |  |  |  |
| Intersection V/C | 0.891 |  |  |  |  |  |  |  |  |  |  |  |

Sequence

| Ring 1 | 1 | 3 | 8 | 4 | - | - | - | - | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring 2 | - | - | 6 | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ring 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |



\section*{Intersection Level Of Service Report \#8: Central Ave and I15 SB <br> | Delay (sec / veh): | 314.9 |
| :---: | :---: |
| Level Of Service: | $F$ |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 1.339 | 1.339}

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | outhbound |  |  | Eastbound |  |  | Vestbound |  |  | hwestbo |  |
| Lane Configuration |  | $7 \Gamma$ |  |  | I/ |  |  | 1\} |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 66 | 0 | 6 | 0 | 166 | 30 | 230 | 299 | 0 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 6.00 | 0.00 | 0.00 | 2.00 | 0.60 | 0.00 | 6.50 | 1.00 | 2.00 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.41 | 1.41 | 1.41 | 1.00 | 1.41 | 1.41 | 1.41 | 1.41 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 93 | 0 | 8 | 0 | 234 | 42 | 324 | 422 | 0 | 0 | 0 | 0 |
| Peak Hour Factor | 0.9170 | 1.0000 | 0.7500 | 1.0000 | 0.8470 | 0.8330 | 0.8980 | 0.8690 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 25 | 0 | 3 | 0 | 69 | 13 | 90 | 121 | , | , | 0 | 0 |
| Total Analysis Volume [veh/h] | 101 | 0 | 11 | 0 | 276 | 50 | 361 | 486 | 0 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 1.34 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 314.89 | 307.18 | 11.27 | 0.00 | 0.00 | 0.00 | 8.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | B |  | A | A | A | A |  |  |  |  |
| 95th-Percentile Queue Length [veh] | 7.96 | 7.96 | 0.06 | 0.00 | 0.00 | 0.00 | 1.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 198.90 | 198.90 | 1.44 | 0.00 | 0.00 | 0.00 | 29.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 285.07 |  |  | 0.00 |  |  | 3.83 |  |  | 0.00 |  |  |
| Approach LOS | F |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 27.37 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

## Intersection Level Of Service Report \#9: Central Ave and I-15 NB <br> Delay (sec / veh): <br> Volume to Capacity (v/c): <br> Delay (sec / veh): Level Of Service: Volume to Capacity $(\mathrm{v} / \mathrm{c})$ : <br> 445.2 <br> F <br> 1.211

Control Type: Analysis Method: Analysis Period:

Two-way stop
HCM2010
15 minutes

Intersection Setup

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  | orthboun |  |  | astbound |  |  | estbound |  |  | theastbo |  |
| Lane Configuration |  | $4$ |  |  | 1 औ |  |  | \\|̂ |  |  |  |  |
| Turning Movement | Left | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  | 30.00 |  |  |
| Grade [\%] | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  | 0.00 |  |  |
| Crosswalk | yes |  |  | yes |  |  | yes |  |  | yes |  |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 57 | 0 | 170 | 5 | 249 | 0 | 0 | 471 | 113 | 0 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 1.80 | 0.00 | 7.00 | 0.00 | 2.00 | 2.00 | 2.00 | 4.60 | 0.90 | 2.00 | 2.00 | 2.00 |
| Growth Rate | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.00 | 1.00 | 1.64 | 1.64 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 93 | 0 | 279 | 8 | 408 | 0 | 0 | 772 | 185 | 0 | 0 | 0 |
| Peak Hour Factor | 0.7130 | 1.0000 | 0.7590 | 0.4170 | 0.8650 | 1.0000 | 1.0000 | 0.9350 | 0.8310 | 1.0000 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 33 | 0 | 92 | 5 | 118 | 0 | 0 | 206 | 56 | 0 | 0 | 0 |
| Total Analysis Volume [veh/h] | 130 | 0 | 368 | 19 | 472 | 0 | 0 | 826 | 223 | 0 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |
| Bicycle Volume [bicycles/h] | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |  |
| :---: | :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |  |
| Storage Area [veh] | 0 | 0 | 0 |  |
| Two-Stage Gap Acceptance | no |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 1.21 | 0.00 | 0.63 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 445.19 | 435.47 | 417.85 | 9.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | F | A | A |  |  | A | A |  |  |  |
| 95th-Percentile Queue Length [veh] | 33.98 | 33.98 | 33.98 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 849.39 | 849.39 | 849.39 | 1.79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 424.99 |  |  | 0.37 |  |  | 0.00 |  |  | 0.00 |  |  |
| Approach LOS | F |  |  | A |  |  | A |  |  | A |  |  |
| d_I, Intersection Delay [s/veh] | 103.94 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |  |  |  |  |  |  |

Intersection Level Of Service Report
\#10: Central Ave and Vaughn Rd
Two-way stop
HCM2010
15 minutes

Delay (sec / veh):
Level Of Service:
Volume to Capacity (v/c):

1,422.7
F
3.231

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 68 | 121 | 66 | 361 | 462 | 76 |  |  |  |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |  |  |  |
| Heavy Vehicles Percentage [\%] | 2.90 | 1.60 | 1.50 | 4.00 | 3.40 | 2.60 |  |  |  |
| Growth Rate | 1.63 | 1.63 | 1.63 | 1.63 | 1.63 | 1.63 |  |  |  |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Total Hourly Volume [veh/h] | 111 | 197 | 108 | 588 | 753 | 124 |  |  |  |
| Peak Hour Factor | 0.6540 | 0.9450 | 0.7500 | 0.7910 | 0.8680 | 0.7310 |  |  |  |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |  |  |  |
| Total 15-Minute Volume [veh/h] | 42 | 52 | 36 | 186 | 217 | 42 |  |  |  |
| Total Analysis Volume [veh/h] | 170 | 208 | 144 | 743 | 868 | 170 |  |  |  |
| Pedestrian Volume [ped/h] |  | 0 |  |  | 0 |  |  |  |  |
| Bicycle Volume [bicycles/h] |  | 0 |  | 0 |  | 0 |  |  |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 3.23 | 0.66 | 0.21 | 0.01 | 0.01 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 1422.75 | 1365.77 | 11.82 | 0.00 | 0.00 | 0.00 |
| Movement LOS | F | F | B | A | A | A |
| 95th-Percentile Queue Length [veh] | 38.77 | 38.77 | 0.81 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 969.13 | 969.13 | 20.22 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 1391.39 |  | 1.92 |  | 0.00 |  |
| Approach LOS | F |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 229.11 |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |

## Intersection Level Of Service Report \#11: Vaughn Rd and I-15 SB

Control Type:
Analysis Method:
Analysis Period:
Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 11.0 |
| :---: | :---: |
| Level Of Service: | B |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.254 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Right | Left | Thru | Thru | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 143 | 1 | 0 | 53 | 50 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 7.00 | 0.00 | 2.00 | 7.60 | 4.00 | 2.00 |
| Growth Rate | 1.36 | 1.36 | 1.00 | 1.36 | 1.36 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 194 | 1 | 0 | 72 | 68 | 0 |
| Peak Hour Factor | 0.9410 | 0.2500 | 1.0000 | 0.7790 | 0.8930 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 52 | 1 | 0 | 23 | 19 | 0 |
| Total Analysis Volume [veh/h] | 206 | 4 | 0 | 92 | 76 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Stop | Free | Free |
| :---: | :---: | :---: | :---: |
| Flared Lane | no |  |  |
| Storage Area [veh] | 0 | 0 | 0 |
| Two-Stage Gap Acceptance | no |  |  |
| Number of Storage Spaces in Median | 0 | 0 | 0 |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 10.97 | 10.17 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | B | B |  | A | A |  |
| 95th-Percentile Queue Length [veh] | 1.03 | 1.03 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 25.74 | 25.74 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 10.96 |  | 0.00 |  | 0.00 |  |
| Approach LOS | B |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 6.09 |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |

## Intersection Level Of Service Report \#12: Vaughn Rd and l-15 NB

Control Type:
Analysis Method:
Analysis Period:
Two-way stop
HCM2010
15 minutes

| Delay (sec / veh): | 7.4 |
| :---: | :---: |
| Level Of Service: | A |
| Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.000 |

Intersection Setup

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach |  |  |  |  |  |  |
| Lane Configuration |  |  |  |  |  |  |
| Turning Movement | Left | Thru | Thru | Right | Left | Right |
| Lane Width [ft] | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
| No. of Lanes in Pocket | 0 | 0 | 0 | 0 | 0 | 0 |
| Pocket Length [ft] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Speed [mph] | 30.00 |  | 30.00 |  | 30.00 |  |
| Grade [\%] | 0.00 |  | 0.00 |  | 0.00 |  |
| Crosswalk | yes |  | yes |  | yes |  |

## Volumes

| Name |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 165 | 55 | 334 | 0 | 0 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 6.10 | 1.80 | 4.80 | 2.00 | 2.00 |
| Growth Rate | 1.37 | 1.37 | 1.37 | 1.37 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [ve | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 226 | 75 | 458 | 0 | 0 |
| Peak Hour Factor | 1.0000 | 0.7500 | 0.8090 | 0.9180 | 1.0000 | 1.0000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 75 | 23 | 125 | 0 | 0 |
| Total Analysis Volume [veh/h] | 0 | 301 | 93 | 499 | 0 | 0 |
| Pedestrian Volume [ped/h] | 0 |  | 0 |  | 0 |  |
| Bicycle Volume [bicycles/h] | 0 |  | 0 |  | 0 |  |

Version 2.00-10
Intersection Settings

| Priority Scheme | Free | Free | Stop |
| :---: | :---: | :---: | :---: |
| Flared Lane |  |  |  |
| Storage Area [veh] | 0 | 0 |  |
| Two-Stage Gap Acceptance |  | 0 |  |
| Number of Storage Spaces in Median | 0 | 0 |  |

Movement, Approach, \& Intersection Results

| V/C, Movement V/C Ratio | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d_M, Delay for Movement [s/veh] | 7.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Movement LOS | A | A | A | A |  |  |
| 95th-Percentile Queue Length [veh] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95th-Percentile Queue Length [ft] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d_A, Approach Delay [s/veh] | 0.00 |  | 0.00 |  | 0.00 |  |
| Approach LOS | A |  | A |  | A |  |
| d_I, Intersection Delay [s/veh] | 0.00 |  |  |  |  |  |
| Intersection LOS | A |  |  |  |  |  |

Version 2.00-10
Traffic Volume - Future Total Volume


Version 2.00-10
Traffic Volume - Future Total Volume


Version 2.00-10
Traffic Conditions


Version 2.00-10
Traffic Conditions



[^0]:    ${ }^{1}$ U.S. Department of Transportation, Federal Highway Administration, Access to the Interstate System, Notice of revised policy statement, http://www.gpo.gov/fdsys/pkg/FR-2009-08-27/html/E9-20679.htm

[^1]:    ${ }^{2}$ MDT Bridge Design Standards, National Highway System (NHS) Interstate

[^2]:    ${ }^{3}$ MDT Maintenance Operations and Procedures Manual, Chapter 9, Winter Maintenance Program, December 2009, http://www.mdt.mt.gov/publications/docs/manuals/mmanual/chapt9c.pdf

[^3]:    ${ }^{4}$ Great Falls Area Long Range Transportation Plan - 2014, page 219.

[^4]:    ${ }^{5}$ MDT Traffic Engineering Manual, Chapter 25, Section 25.5, Equation 25.5-1

[^5]:    (a) Value measured in the field.
    ${ }^{(b)}$ Information unavailable.
    ${ }^{(c)}$ Estimated based on aerial photography.

[^6]:    ${ }^{6}$ MDT Traffic Engineering Manual, Chapter 29, Section 29.3.6
    ${ }^{7}$ MDT Traffic Engineering Manual, Chapter 29, Section 29.3.7

[^7]:    ${ }^{8}$ FHWA Interstate Access Guidelines Informational Guide, August 2010, page 6.

[^8]:    ${ }^{(a)}$ Outside the bounds of the software.

[^9]:    ${ }^{9}$ MDT Environmental, I-15 Gore Hill to Emerson Junction Corridor Study - Environmental Scan, August 2014

[^10]:    Late Reason:
    Inspection Date: 12/19/2012

[^11]:    Late Reason:
    Inspection Date: 12/05/2012

[^12]:    Late Reason:
    Inspection Date: 12/06/2010

[^13]:    Late Reason:
    Inspection Date: 06/28/2012

[^14]:    Inspection Notes:

[^15]:    Inspection Notes:

[^16]:    Inspection Notes:

[^17]:    Late Reason:

[^18]:    Previous Inspection Notes:

[^19]:    Inspection Notes:

[^20]:    Inspection Notes:

[^21]:    Inspection Notes:

[^22]:    Inspection Notes:

[^23]:    Inspection Notes:

