

ORGANIZATION AND ANALYSIS OF MEASUREMENT WHILE DRILLING (MWD) DATA

FHWA/MT-25-001/10118-877

Final Report

February 2025

prepared for

THE STATE OF MONTANA DEPARTMENT OF TRANSPORTATION

in cooperation with THE U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

February 2025

prepared by Curtis A. Link, PhD David J. Barrick

Montana Technological University Butte, MT

You are free to copy, distribute, display, and perform the work; make derivative works; make commercial use of the work under the condition that you give the original author and sponsor credit. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the sponsor. Your fair use and other rights are in no way affected by the above.

Organization and Analysis of Measurement While Drilling (MWD) Data

Final Report

Prepared by

Curtis Link, PhD

Professor Emeritus Geophysical Engineering

and

David Barrick, P.E.

PhD candidate

Montana Technological University

Prepared for the

MONTANA DEPARTMENT OF TRANSPORTATION

in cooperation with the

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL HIGHWAY ADMINISTRATION

February 2025

TECHNICAL REPORT DOCUMENTATION PAGE

I. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle Spanization and Analysis of Measurement While Drilling (MWD) Data 5. Report Date [Petruary 2025] 6. Performing Organization Code 6. Performing Organization Report No. 7. Author(s) 8. Performing Organization Report No. Ouris A. Link, Ph.D. (https://orcid.org/0009-0006-2927-9481) 8. Performing Organization Report No. Montana Technological University 10. Work Unit No. 1300 West Park Street 11. Contract or Grant No. Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Scalable 5401 PO Box 201001 14. Sponsoring Agency Code 15. Supplementary Notes 5401 Conductation cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdl.nt.gov/research/project/showad.aps. DOI: https://doi.org/10.2149/1529456. 16. Abstract 14. Sponsoring Agency Code 17. Helena, MT: Montana Department of Indef research project highlighted collection and candysis of Measurement While Drilling (MWD) Data: Final Report. (HTWAMT-25-401/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.2149/1529456. <							
4. Title and Subitife S. Report Date Organization and Analysis of Measurement While Drilling (MWD) Data 5. Report Date Forward 2025 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Curtis A. Link, Ph.D. (https://orcid.org/0009-00064577-9386) 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. Montana Technological University 11. Contract or Grant No. Butte, MT 59701 MDT Project # 10118-877 13. Orgon Fing Agency Name and Address 13. Type of Report and Period Covered Final Report (August 2022 – March 2025) 701 Prospect A venue PO Box 201001 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code Conductation interpretation (SPR) 14. Sponsoring Agency Code 5401 5401 Supplementary Notes 10. Hyperite and Project Algo 2022 – March 2025) Conductation interpretation with the U.S. Department of Transportation and Analysis of Measurement While Drilling (MWD) Data: Final Report. (HTWA/MT-25001/10118-877). Helena, MT: Montana Department of Transportation falat anto a portal, data review and quality control and analysis of relationships between MWD filling parameters and reck properties such as SPT blow cout for hollow stem auger data and UCS or unit weight for rack ore	1. Report No. FHWA/MT-25-001/10118-877	2. Gove	rnment Access	ion No. 3	3. Recipient's Catalog No.		
Organization and Analysis of Measurement While Drilling (MWD) Data February 2025 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Curtis A. Link, Ph.D. (https://orcid.org/0009-0006-2927-9481) 8. Performing Organization Report No. David J. Barrick, P.E. (https://orcid.org/0009-0006-2927-9481) 10. Work Unit No. Soperforming Organization Name and Address 11. Contract or Grant No. Montana Technological University 13. Type of Report and Period Covered 1300 West Park Street 13. Type of Report and Period Covered Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report (August 2022 – March 2025) 14. Sponsoring Agency Code 701 Prospect Avenue 5401 PO Box 201001 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.indi.ntm.av/research/projects/mmd.asp. DOI: Imps://doi.org/10.21949/1529455. 16. Abstract 14. Sponsoring Agency Code 17. Supplementary Notes Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, feelral Highway Administration. This report can be found at https://www.indi.ntm.av/research/proj	4. Title and Subtitle	5	. Report Date				
6. Performing Organization Code 7. Author(s) Curtis A. Link, Ph.D. (https://orcid.org/0009-0006-2927-9481) David J. Barrick, P.E. (https://orcid.org/0009-0000-4577-9386) 9. Performing Organization Name and Address Montana Technological University 1300 West Park Street Butte, MT 59701 12. Sponsoring Agency Name and Address Research Programs Montana Department of Transportation (SPR) 2701 Prospect Avenue 2702 Forspect Avenue 2703 Prospect Mottes 16. Abstract 17 17 18. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project Supplementary on case project highlighted collection and organization at a antips//doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project inghlighted collection and organization at a sportal, duta review and qu	Organization and Analysis of Measurement While Drilling (MWD) Data			ata F	February 2025		
7. Author(s) 8. Performing Organization Report No. Curtis A. Link, Ph.D. (https://orcid.org/0009-0006-52927-9481) 8. Performing Organization Report No. David J. Barrick, P.E. (https://orcid.org/0009-0000-4577-9386) 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. Montana Technological University 13. Type of Report and Period Covered 1300 West Park Street 11. Contract or Grant No. Butte, MT 59701 13. Type of Report and Period Covered Yol Prospect Avenue 5401 2701 Prospect Avenue 5401 PO Box 201001 14. Sponsoring Agency Code 5. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://doi.org/10.21949/1529565. Recommended Citation: Link, C. Barrick, D. (2023). Organization and Anadysis of Heasting of Measurement Wille Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation, https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships betwee nWDD drilling parameters and rock properties. Our initial approach was investigation of radiational linear correlation analysis of relationships betwee we extended our correlation analysis os to teation filtifing with no infor				6	. Performing Organiza	Performing Organization Code	
7. Author(s) 8. Performing Organization Report No. Curtis A. Link, Ph.D. (https://orcid.org/0009-0006-2927-9481)) 1 David J. Barrick, P.E. (https://orcid.org/0009-0000-4577-9386) 1 9. Performing Organization Name and Address 10. Work Unit No. Montana Technological University 11. Contract or Grant No. 1300 West Park Street 11. Contract or Grant No. Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report (August 2022 - March 2025) Montana Department of Transportation (SPR) 2701 Prospect Avenue 5401 PO Box 201001 5401 15. Supplementary Notes 14. Sponsoring Agency Code Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.md.mit.gow/research/project/mwd.aspp. DOI: https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations and Nave single box count for hollow stem auger data and UCS or unit weight for rock cor data. In addition to individual MWD data types (deph, rotation rate, rotation forquel doware rate) we also included							
Curtis A. Link, Ph.D. (https://orcid.org/0009-0006-2927-9481) David J. Barrick, P.E. (https://orcid.org/0009-0006-4577-9386) 9. Performing Organization Name and Address Montana Technological University 1300 West Park Street Batte, MT. 59701 12. Sponsoring Agency Name and Address Research Programs Montana Department of Transportation (SPR) 2701 Prospect Avenue PO Box 201001 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.indum.gov/research/project/winwd.aspp DOI: https://doi.org/10.21949/152955. Recommended Citation: Link, C. Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (PHWAMT:25-601/10118-877). Helena, MT: Montana Department of Transportation. Jutes: //doi.org/10.21949/152955. Recommended Citation: Link, C. Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (PHWAMT:25-601/10118-877). Helena, MT: Montana Department of Transportation. Jutes: //doi.org/10.21949/152955. Recommended Citations: Link, C. Barrick, D. (2025). Organization and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlation set of the MDT funded research project highlighted collection and organization ratic work and parameter spo	7. Author(s)			8	. Performing Organiza	ation Report No.	
David J. Barrick, P. E. (https://orcid.org/0009-0000-4577-9386) II. Supplementation Name and Address Montana Technological University II. Contract or Grant No. Montana Technological University II. Contract or Grant No. Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address II. Contract or Grant No. Research Programs II. Sponsoring Agency Name and Address Research Programs II. Sponsoring Agency Code 5401 South (August 2022 - March 2025) PO Box 201001 II. Sponsoring Agency Code 5401 South (August 2022 - March 2025) Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://doi.org/10.21949/1529565. Io. Abstract Federal Highway Administration. This report can be found at https://doi.org/10.21949/1529565. Io. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of raditional linear correlation set sub as SPT blow count for hollows term ager data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation research project highlighted collection and organization and analysis or clationships between MWD drilling parameters and rock properties	Curtis A. Link, Ph.D. (https://orcid.org/0009	-0006-292	<u>27-9481</u>)				
9. Performing Organization Name and Address 10. Work Unit No. Montana Technological University 1300 West Park Street 11. Contract or Grant No. Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report (August 2022 – March 2025) Montana Department of Transportation (SPR) 14. Sponsoring Agency Code 2701 Prospect Avenue 5401 PO Box 201001 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdt.ntt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (PHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. I6. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between INMD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlation setul unity in the improvement in correlations. Set unity with and MUD drilling parameters and rock properties and nock properties. Our initial approach was investigation of traditional linear correlation set unity and multiple inear regression (MLR) approach using all possible combinations of heures in unity approvement and correlations. Set using MUD data from m	David J. Barrick, P.E. (https://orcid.org/0009	9-0000-45	<u>77-9386</u>)				
Montana Technological University II. Contract or Grant No. 1300 West Park Street MDT Project # 10118-877 Butte, MT 59701 II. Sponsoring Agency Name and Address II. Type of Report and Period Covered Research Programs Final Report (August 2022 – March 2025) Montana Department of Transportation (SPR) I4. Sponsoring Agency Code 2701 Prospect Avenue 5401 PO Box 201001 Supplementary Notes Conducted in cooperation with the US. Department of Transportation, Federal Highway Administration. This report can be found at https://dvi.org/10.21949/1529565. I6 Abstract Research Programs The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between advence rate) we also included the calculated compound parameter specific energy. Based on weak, single paramet, linear correlation results using MWD data types (det), rotation rate, totation torque, down pressure and advance rate) we also included the calculated on outpound parameters as inputs, using a nonlinear approach was investigation of the xix must. Single paramet network. The neural network (NN) approach investigate correlations individual MWD data types (det), rotation rate, totation torque, down pressure and advance rate) we also included the calc	9. Performing Organization Name and Ad	ldress		1	0. Work Unit No.		
1300 West Park Street 11. Contract or Grant No. MDT Project # 10118-877 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report (August 2022 – March 2025) Montana Department of Transportation (SPR) 14. Sponsoring Agency Code 2701 Prospect Avenue 5401 PO Box 201001 5401 15. Supplementary Notes 5401 Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.ndt.mt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of raditional linear correlations between individual MWD drilling parameters and rock properties. Our initial approach was investigation of raditional dimear correlation setween individual MWD drilling parameters and rock properties. Our initial approach was investigation of raditional linear correlation setween individual MWD drilling parameters and rock properties. Our initial approach was investigation of raditional mear correlation setween individual MWD drilling parameters and rock properties. Our initial approach was investigation of raditional linear correlation need prodictive results, we turned to a nonlinear approach by implementie in correlations. To further investigat correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inplus. Correlation results improved fo	Montana Technological University						
Butte, MT 59701 MDT Project # 10118-877 12. Sponsoring Agency Name and Address I.3. Type of Report and Period Covered Research Programs I.3. Type of Report and Period Covered Montana Department of Transportation (SPR) I4. Sponsoring Agency Code 2701 Prospect Avenue 5401 PO Box 201001 Int. gov/research/project/smvd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. Recore of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we a included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlation set, we extended our correlation analysis to exponential fifting with no improvement in correlations. To further investigate orrelation set, we extended our correlation analysis for ponomential fifting wi	1300 West Park Street			1	1. Contract or Grant I	No.	
12. Sponsoring Agency Name and Address I3. Type of Report and Period Covered Research Programs Final Report (August 2022 – March 2025) Montana Department of Transportation (SPR) 14. Sponsoring Agency Code 701 Prospect Avenue 5401 PO Box 201001 11. Symplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.ndt.ntm.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (PHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. I A sobtract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Sur initial approach was investigation of traditional linear correlations to take on unit weight for rock core data. In addition to individual MWD data trees (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations of the six inputs. Correlation results unyor dot a multiple bircheols, we extended our correlation analysis to exponential fitting with no improvement in correlations. To further investigate orrelations, we implemented a multiple linear regression (MLR) approach was investigation of neurons, and a single neuron output layer for predicting either SPT blow count weid	Butte, MT 59701			Ν	IDT Project # 10118-8	77	
Research Programs Final Report (August 2022 – March 2025) Montana Department of Transportation (SPR) 14. Sponsoring Agency Code 701 Prospect Avenue 5401 PO Box 201001 5401 15. Supplementary Notes Supplementary Code Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdt.mt.gov/research/projects/mwd.aspx D01: https://doi.org/10.21949/1529565. Recommended Citation: Link, C. Barrick, D. 2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD data types (depth, tration rate, rotation traque, dwn pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear orrelations. To further investigate orrelations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation results using MWD data types (depth, tration rate, possible combinations of the six inputs. Correlation analysis or exponential fitting with no improvement in correlations. To further investigate orrelations, we implemented a nultiple parameters and rock properties. Such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition	12. Sponsoring Agency Name and Address	8		1	3. Type of Report and	Period Covered	
Montana Department of Transportation (SPR) 14. Sponsoring Agency Code 2701 Prospect Avenue 5401 PO Box 201001 5401 IS. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdt.mt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD data Imparameters and rock properties. Our initial approach was investigation of traditional linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation results using MWD data from multiple boreholes, we extended our correlation analysis to supproach using all possible combinations of heurons. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of heurons. To further provement in correlations, we implemented a multiple binear regression (MLR) approach using all possible combinations of heurons. To further provement in correlations and vasible MWD poteruna neture towns. The nenure hetwork. The neural netw	Research Programs			F	inal Report (August 202	22 – March 2025)	
2701 Prospect Avenue 5401 PO Box 201001 5501 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdi.mt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD data Hypes (dept, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlation results using MWD data from multiple boreholes, we extended our correlation analysis to exponential fitting with no improvement in correlations. To further investigate all combinations of MWD drilling parameters an inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count Howker, weak gredictive models. Finally, because of poor linear correlation nodel predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting	Montana Department of Transportation (SPF	R)		1	4. Sponsoring Agency	Code	
PO Box 201001 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdt.mt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. I6. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation model predictive models. Finally, hecause of poor linear correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count (CS or unit	2701 Prospect Avenue			5	401		
15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. This report can be found at https://www.mdt.mt.gov/research/projects/mwd.aspx DOI: https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between individual MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation model predictive results, we turned to a onlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MDD drilling parameters ani puts, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count (LCS or unit weight. Using a nonlinear approach greaty the predictive proach set using the redictive power for methys. Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to a set of guidelines developed from experience and other researchers input that insure a consistent, repeatable drilling methodology with c	PO Box 201001						
Conducted in cooperation with the U.S. Department of Transportation, Federal High/ns29453. This report can be found at https://doi.org/10.21949/1529565. Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate our correlation analysis to exponential fitting with no improvement in correlations. To further investigate all combinations of inputs but still resulted in weak predictive models. Finally, because of poor linear correlation model predictive results, we turned to a nonlinear approach by implementing a feddforward neural network. The neural network (NN) approach using all combinations of MMD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count, UCS or unit weight. Using a nonlinear approach greatly improved the predictive power of the MWD inputs for rock properties. Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to	15. Supplementary Notes						
Recommended Citation: Link, C, Barrick, D. (2025). Organization and Analysis of Measurement While Drilling (MWD) Data: Final Report. (FHWA/MT-25-001/10118-877). Helena, MT: Montana Department of Transportation. https://doi.org/10.21949/1529565. 16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation results improved for a number of combinations of inputs but still resulted in weak predictive models. Finally, because of poor linear correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count. UCS or unit weight. Using a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters input that insure a consistent, repeatable MWD program adhere to a set of guidelines developed from experience and other researchers input that in	Conducted in cooperation with the U.S. Department <u>https://www.mdt.mt.gov/research/projects/mwd.a</u>	ent of Trans <u>spx</u> DOI: <u>h</u>	sportation, Federa https://doi.org/10.2	l Highway Administr 21949/1529565.	ation. This report can be fo	ound at	
16. Abstract The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MVD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count, UCS or unit weight. Using a nonlinear approach greatly improved the predictive properties. Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to a set of guidelines developed from experience and other researchers input that insure a consistent, repeatable drilling methodology with close attention to real-time data quality control. 17. Key Words 18. Distribution Statement MWD, regression analysis, geotechnical engineering neural network controls. 20. Security Classif. (of this report) 21. No. of Pages 22. Price Inclassified 122 122 <	Recommended Citation: Link, C, Barrick, D. (202 (FHWA/MT-25-001/10118-877). Helena, MT: M	25). Organi Iontana De	zation and Analy partment of Trans	sis of Measurement W portation. <u>https://doi.c</u>	hile Drilling (MWD) Data rg/10.21949/1529565.	a: Final Report.	
The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlation results using MWD data types (depth, rotation rate, rotation rotrue, down pressure and advance rate) we also included the calculated compound parameter secific energy. Based on weak, single parameter, linear correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation results improved for a number of combinations of inputs but still resulted in weak predictive models. Finally, because of poor linear correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow court, UCS or unit weight. Using a nonlinear approach greatly improved the predictive power of the MWD inputs for rock properties. Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to a set of guidelines developed from experience and other researchers input that insure a consist—repeatable drilling methodology with correlations. The regression analysis, geotechnical engineering, neural neuror setsectores input that insure a	16. Abstract						
17. Key Words 18. Distribution Statement MWD, regression analysis, geotechnical engineering, neural networks, multiple parameter linear correlation No restrictions. No restrictions. 19. Security Classif. (of this report) 20. Security Classif. (of this report) 21. No. of Pages 22. Price Unclassified Inclassified Inclassified Inclassified Inclassified Inclassified	The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy. Based on weak, single parameter, linear correlation results using MWD data from multiple boreholes, we extended our correlation analysis to exponential fitting with no improvement in correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count, UCS or unit weight. Using a nonlinear approach greatly improved the predictive power of the MWD inputs for rock properties. Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to a set of guidelines developed from experience and other researchers input that insure a consistent, repeatable drilling methodology with close attention to real-time data quality control.						
MWD, regression analysis, geotechnical engineering, neural networks, multiple parameter linear correlation No restrictions. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Inclassified Inclassi	17. Key Words			18. Distribution S	tatement		
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages 12222. PriceUnclassifiedunclassified122	MWD, regression analysis, geotechnical eng networks, multiple parameter linear correlati	ineering,	neural	No restrictions.			
Unclassified page) 122 Unclassified	19. Security Classif. (of this report)		20. Security (lassif. (of this	21. No. of Pages	22. Price	
Unclassified	Unclassified		page)	(•	122		
	Unclassified						

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Disclaimer Statement

This document is disseminated under the sponsorship of the Montana Department of Transportation (MDT) and the United States Department of Transportation (USDOT) in the interest of information exchange. The State of Montana and the United States assume no liability for the use or misuse of its contents.

The contents of this document reflect the views of the authors, who are solely responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or official policies of MDT or the USDOT.

The State of Montana and the United States do not endorse products of manufacturers. This document does not constitute a standard, specification, policy or regulation.

Alternative Format Statement

Alternative accessible formats of this document will be provided on request. Persons who need an alternative format should contact the Office of Civil Rights, Department of Transportation, 2701 Prospect Avenue, PO Box 201001, Helena, MT 59620. Telephone 406-444-5416 or Montana Relay Service at 711.

|--|

Disclaimer Statement
Alternative Format Statement
List of Figures
List of Tables
Abbreviations ix
1. Summary
2. Background1
2.1. Literature Review
3. MWD Data Collection and Organization
4. GIS Data Portal
5. Preprocessing and Quality Control
5.1. HSA Data
5.2. Rock Coring Data
6. Data Used for Analysis
6.1. GIS Portal Data
6.2. Hollow Stem Auger Data
6.3. HQ Rock Core Data
7. Data Formatting for Analysis
7.1. Compound Parameters
7.2. Final Data Assembly
8. Analysis Results
8.1. Phase 1: Single Parameter Linear and Exponential Regression Modeling
8.1.1. SPT Blow Count Correlations
8.1.2. UCS Correlations
8.1.3. Unit Weight Correlations
8.2. Phase 2: Multiple Parameter Linear Regression Modeling
8.2.1. SPT Blow Count MLR Correlations
8.2.2. UCS MLR Correlations
8.2.3. Unit Weight MLR Correlations
8.3. Phase 3: Multiple Parameter Non-Linear Regression Modeling 55
8.3.1. NN SPT Blow Count Prediction

	8.3.2	2. NN UCS Prediction	58
	8.3.3	3. NN Unit Weight Prediction	59
9.	Disc	cussion	60
9	.1.	Data Subsets	60
9	.2.	Single Parameter Linear Correlations – Phase 1	61
9	.3.	Evaluating The Relative Importance of Inputs	61
9	.4.	Multiple Parameter Linear Correlations – Phase 2	61
9	.5.	Multiple Parameter Nonlinear Correlations – Phase 3	
9	.6.	Final Models	
	9.6.1	1. Phase 1 Final Models – Single Parameter Linear/Exponential Regression	ı 62
	9.6.2	2. Phase 2 Final Models – Multiple Parameter Linear Regression	63
	9.6.3	3. Phase 3 Final Models – Nonlinear Fitting Using Neural Networks	63
9	.7.	Looking Ahead	64
10.	Co	Conclusions and Recommendations	65
11.	Re	eferences and Bibliography	66
12.	A	cknowledgements	
App	pendi	ices	71
A	ppen	ndix A – MLR SPT Blows Per Foot	
A	ppen	ndix B – MLR UCS	75
A	ppen	ndix C – MLR – Unit Weight	
A fo	appen or Six	ndix D – NN Modeling for SPT Blow Count: Mean R^2 and Best R^2 from 100 If x Best Models	terations
	App	pendix D-1 – Plots of Mean and Best R ² Values for SPT Blow Counts	
	App	pendix D-2 – Mean and Best R ² Results in Text Form for SPT Blow Counts	
A N	appen Iodel	ndix $E - NN$ Modeling for UCS: Mean R^2 and Best R^2 from 100 Iterations for 1s.	Four Best 91
	App	pendix E-1 – Plots of Mean and Best R ² Values for UCS	
	App	pendix E-2 – Mean and Best R ² Results in Text Form for UCS	
A S	appen even	ndix $F - NN$ Modeling for Unit Weight: Mean R^2 and Best R^2 from 100 Iteration Best Models	ons for 99
	App	pendix F-1 – Plots of Mean and Best R ² Values for Unit Weight	100
	App	pendix F-2 – Mean and Best R ² Results in Text Form for Unit Weight	106

List of Figures

Figure 1. Map segment from data portal showing location of MWD sites along Highway 200
used for analysis
Figure 2. Login screen from Expressway Data Portal
Figure 3. Access screen displaying active link (top link) for entering project site
Figure 4. Splash screen indicating research project is ongoing and will be continually updated 6
Figure 5. View of interactive map showing borehole numbering and list of data available for
each borehole (scrollable)
Figure 6. Example screen shot showing data types available for borehole 9727-05 with file size
and upload date
Figure 7. MWD data from borehole 9727-7 showing HSA depth section and rock coring section.
Note arrows on Down Pressure plot (green) showing sharp drop in down pressure when drilling
stopped
Figure 8. Single parameter linear regression correlation results for SPT blow counts versus (a)
depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy.
R^2 values are tabulated in Table 9
Figure 9. Single parameter exponential regression correlation results for SPT blow counts versus
(a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific
energy. R^2 values are tabulated in Table 9
Figure 10. Single parameter linear regression correlation results for UCS versus (a) depth, (b)
down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R ² values
are tabulated in Table 10
Figure 11. Single parameter exponential regression correlation results for UCS versus (a) depth,
(b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2
values are tabulated in Table 10
Figure 12. Single parameter linear regression correlation results for unit weight versus (a) depth,
(b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2
values are tabulated in Table 11
Figure 13. Single parameter exponential regression correlation results for unit weight versus (a)
depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy.
MWD parameter used is shown on horizontal axis. R ² values are tabulated in Table 11
Figure 14. Six matrix plots showing MLR results for the target SPT blow counts. Matrix
columns represent the six MWD inputs. Rows show MLR R ² values in cells representing which
of the six MWD inputs were used for the correlation. R^2 values are color-coded from blue to
yellow for easy comparison in a single plot or across plots
Figure 15. Six matrix plots showing MLR results for the target UCS. Matrix columns represent
the six MWD inputs. Rows show MLR R^2 values in cells representing which of the six MWD
inputs were used for the correlation. R^2 values are color-coded from blue to yellow for easy
comparison in a single plot or across plots
Figure 16. Six matrix plots showing MLR results for the target unit weight. Matrix columns
represent the six MWD inputs. Rows show MLR R ² values in cells representing which of the six

MWD inputs were used for the correlation. R^2 values are color-coded from blue to yellow for
Easy comparison in a single plot of across plots
Figure 17. Feedforward fitting neural network schematic used for our analysis. Schematic shows
6 inputs (our inputs vary from 1 to 6), one hidden layer using a <i>tansig</i> transfer function with 10
neurons (our number of neurons varies from 2 to 30) with weights w and biases b and 1 output
neuron with a <i>purelin</i> transfer function and one weight and bias. The output neuron produces a
value for either SPT blow count, UCS or unit weight depending on which target set was used 56
Figure 18. Bar plot showing the relative importance of the six input parameters in predicting unit
weight. Each column is labeled with the name of the corresponding input parameter. For unit
weight modelling, depth has the greatest relative importance in predicting unit weight; moving
speed the least
Figure 19. Bar plot showing the relative importance of the six input parameters in predicting
UCS. Each column is labeled with the name of the corresponding input parameter. For UCS
modelling, specific energy has the greatest relative importance in predicting UCS; moving speed
the least
Figure 20. Bar plot showing the relative importance of the six input parameters in predicting unit
weight. Each column is labeled with the name of the corresponding input parameter. For unit
weight modelling, depth has the greatest relative importance in predicting unit weight; moving
speed the least

List of Tables

Table 1. Comprehensive list showing all borehole information available on the portal. Data
entries are identified by borehole ID (which can be located on the interactive map by zooming
in). Data used for analysis are indicated by 'Point Files' in last column which contain the raw
data files
Table 2. Portion of Jean-Lutz data file 9727-5_Jean_Lutz_Output_with_API_Torque.xlsx used
for analysis. Full data file contains over 4,300 rows 12
Table 3. Portion of drilling data file Drilling_Data_9727-5.xlsx used for analysis. Full data file
contains about 75 rows
Table 4. Subset of MWD data containing Point Files which can be used for analysis. List is
organized by project number e.g., 9727-xx, 9726-xx 16
Table 5. List of boreholes containing SPT blow count data and MWD data 17
Table 6. List of boreholes containing UCS lab data and MWD data 18
Table 7. Final spreadsheet containing SPT blow count data and MWD drilling data: Depth (feet),
Peak Down Pressure (psi), Rotation Torque (lb-ft), Rotation Speed (rev/min), Moving Speed
(ft/h), Specific Energy (ft-lb/ft^3)19
Table 8. Final spreadsheet containing UCS and unit weight data and MWD drilling data: Depth
(feet), Peak Down Pressure (psi), Rotation Torque (lb-ft), Rotation Speed (rev/min), Moving
Speed (ft/h), Specific Energy (ft-lb/ft^3)21
Table 9. Tabulated R ² values for single parameter linear and exponential fitting for SPT blow
counts

Table 10. Tabulated R ² values for single parameter linear and exponential fitting for UCS	. 37
Table 11. Tabulated R ² values for single parameter linear and exponential fitting for unit weig	ght.
	44
Table 12. List of models with high sum R ² values for SPT NN modelling	. 63
Table 13. List of models with high sum R ² values for UCS NN modelling	. 64
Table 14. List of models with high sum R ² values for UW NN modelling	. 64

Abbreviations

- CME: Central Mine Equipment
- CPT: Cone Penetration Test
- DD: Dry Density
- HSA: Hollow Stem Auger
- MDT: Montana Department of Transportation
- MWD: Measurement While Drilling
- N1, N2, N3. N: SPT blow counts
- NN: Neural Network
- PMT: Pressure Meter Test
- REC: Sample Recovery
- RQD: Rock Quality Designation
- SPT: Standard Penetration Test
- Su: Undrained Shear Strength-Total
- Su_r: Undrained Shear Strength-Residual
- UCS: Unconfined Compressive Strength
- UW: Unit Weight
- VST: Vane Shear Test

1. Summary

The scope of the MDT funded research project highlighted collection and organization of data onto a portal, data review and quality control and analysis of relationships between MWD drilling parameters and rock properties. Our initial approach was investigation of traditional linear correlations between individual MWD drilling parameters and rock properties such as SPT blow count for hollow stem auger data and UCS or unit weight for rock core data. In addition to individual MWD data types (depth, rotation rate, rotation torque, down pressure and advance rate) we also included the calculated compound parameter specific energy.

We experimented with smoothing of MWD drilling data prior to analysis. Correlation results using smoothed or unsmoothed data were similar so we chose to use unsmoothed MWD data for analysis results presented here.

Based on weak, single parameter, linear correlation results using MWD data from multiple boreholes, we extended our correlation analysis to exponential fitting with no improvement in correlations. To further investigate correlations, we implemented a multiple linear regression (MLR) approach using all possible combinations of the six inputs. Correlation results improved for a number of combinations of inputs but still resulted in weak predictive models. Finally, because of poor linear correlation model predictive results, we turned to a nonlinear approach by implementing a feedforward neural network. The neural network (NN) approach investigated all combinations of MWD drilling parameters as inputs, used one hidden layer with varying numbers of neurons, and a single neuron output layer for predicting either SPT blow count, UCS or unit weight. Using a nonlinear approach greatly improved the predictive power of the MWD inputs for rock properties.

Based on our data investigation and analysis results, we suggest that a viable MWD program adhere to a set of guidelines developed from experience and other researchers input that insure a consistent, repeatable drilling methodology with close attention to real-time data quality control.

2. Background

The design and construction of any foundation, especially deep foundations in transportation infrastructure projects, requires reliable information about subsurface conditions. This usually includes not only information about the different soil/rock layers and their strength properties but also their variability across a project site. For example, Rodgers et al. (2018) reported that the stratigraphy and strength characteristics of the subsurface underneath two separate bridge piers at a project site varied significantly. Their study indicated that the mean unconfined compressive strengths (UCS) of the bearing material from two individual borings spaced only 5 meters (16.4 ft) apart at a drilled shaft site in Fort Lauderdale, Florida, were about 50 percent different. This example illustrates that it is critical to obtain accurate strength properties to reduce uncertainty in the design stage. Having a means of estimating the strength of subsurface geomaterials at every location and at every depth of interest in a project would be of high value. This is where estimating (correlating) the strength data from parameters that

can be continuously measured during the drilling operation at a site would become extremely valuable.

2.1. Literature Review

Fortunately, Measurement While Drilling (MWD) technology has shown potential to improve the characterization of the variability of soil/rock layers and their strength characteristics. MWD has a half-century history of successful use for improving subsurface characterization in the natural resource industries (Somerton 1959; Teale 1965; Warren 1984; Segui and Higgins 2002; Smith 2002; Rai et al. 2016; Rickert 2017; Yang et al. 2020). Since the 1980s, MWD has been instrumental in developing directional drilling within the petroleum industry (Barr 1984; McKenney and Knoll 1989; Pittard et al. 1989). In the geotechnical engineering realm, however, MWD technology is still in early research stages (Bishara and McReynolds 1990; Schunnesson 1996; Gui et al. 2002; Sadkowski et al. 2010; Reiffsteck 2011; Laudanski et al. 2013; Lonstein et al. 2015; Zetterlund et al. 2017; Reiffsteck et al. 2018; Rodgers 2019; van Eldert et al. 2020; McVay and Rodgers 2020 Roye 2020). This is partly due to the different types of drilling and drill bit configurations used in energy resources industries compared to those used in the geotechnical industry. With few exceptions, the correlations developed between MWD parameters and rock strengths in the energy resources industry usually contain coefficients for specific bit configurations and drilling operations (Teale 1965; Warren 1984; Wolcott and Bordelon 1993; Karasawa et al. 2002b, 2002a; Detournay et al. 2008; Li and Itakura 2012) that are not applicable to geotechnical drilling practices, such as the use of auger bits, that are usually used in drilled shafts projects (Rodgers et al. 2018a). To further complicate the matter, according to Bingham (1964), there are about 26 parameters that could influence drilling and in turn, affect any correlation between MWD parameters and rock strength.

According to Karasawa et al. (2002a, 2002b), correlation developed between MWD parameters and rock strength could be different in soft, medium, and hard rocks, unless a universal correlation can be developed. This is true for geotechnical correlations as well and the correlations mentioned above are only derived based on soft (less than 800 psi) sedimentary rocks. Reiffsteck et al. (2018), also explain that the capability of each method to evaluate the geotechnical characteristics of subsurface layers depends on the geomaterial type and mechanical properties being evaluated. They further elaborate that the soil texture, including particle size, clay content, compactness, and moisture content could affect MWD data and therefore any derived correlations. They also emphasize that the type of drilling tool (bit) plays an important role in developing correlations between MWD parameters and geomaterial properties. They further added that a relationship normalized based on the energies used by different tools is not available yet, meaning that different correlations are still needed for each type of tool used.

One of the main goals of this study was to investigate data collected through the MWD program of MDT, develop correlations between measured data and strength of the soil/ rock layers commonly encountered in the state of Montana and finally evaluate the influence of different measured parameters on the correlations. The primary focus of this effort was within sedimentary intermediate geomaterials (IGM's), such as sandstone, claystone, siltstone, and

mudstone, which are prevalent throughout Montana, and which exhibit strength properties for both a stiff soil and a soft rock, making strength interpretation, subsurface modeling and design a challenge.

3. MWD Data Collection and Organization

Utilizing a \$50,000 contract funded in early 2020 through FHWA's Every Day Counts (EDC) 5 Initiative, MDT installed a Jean-Lutz MWD system on their Central Mine Equipment (CME) 1050 ATM drill rig. Since then, MDT has been collecting MWD data on projects throughout the state but mainly focused in eastern Montana. The standard set of data collected includes drilling depth, drilling rate, rotation speed, down pressure, hold-back pressure, mast vibration, flow rate, and fluid pressure. A mechanical torque sensor was not included with the standard Jean Lutz MWD system and was added to the drill rig by MDT personnel. MDT continues to collect MWD data in an attempt to improve collection of accurate mechanical torque data with their aftermarket torque sensor. It is worth mentioning that auxiliary data including standard penetration test (SPT), vane shear test (VST), cone penetration test (CPT), pressure meter test (PMT) as well as geophysical survey data, can also be collected and can be included in MDT's comprehensive database. Data were collected at MDT project sites to investigate proposed cuts, embankment fills, culverts, and bridge foundations. The challenges with MWD technology include a combination of organizing large amounts of collected data of various types and correlating these data to the desired subsurface soil and rock strength parameters. As with most 'real world' data, quality control of the raw data is imperative before attempting any statistical/correlation techniques.

The MDT began collecting MWD data in the summer of 2020 and additional data collection is ongoing. For this project, we used MWD data collected at a number of sites along an approximate 20-mile stretch of Highway 200 in the Glendive district of eastern Montana. Figure 1 is a map segment from the data portal showing the site locations used for analysis. The near-surface geology in the project vicinity consisted of IGMs typical of eastern Montana.

Figure 1. Map segment from data portal showing location of MWD sites along Highway 200 used for analysis.

4. GIS Data Portal

The focus of Task 1 was the organization and preprocessing of collected MWD data. For this task, collected MWD data, as well as field VST, PMT, SPT, and laboratory UCS data, were organized and loaded into a GIS-based interactive map database. *Drill Data Maps* was hired as an outside consultant to create the interactive GIS map. In addition, *Drill Data Maps* also created Excel spreadsheet templates for entering raw numeric field data and rock core lab data. MDT was responsible for incorporating the raw field data into the template. The interactive GIS database website provides access to all available raw data files. Development of the GIS data portal was coordinated with MDT's data management office to ensure compatibility with MDT systems and processes. The GIS website (<u>https://expressway.app/portal/</u>) will be maintained and available to the research team for the duration of the research project and the data collected will be available for future reference in a similar GIS database.

In addition to the creation of the GIS portal, a software package called *SiteTools* was developed by *Drill Data Maps* to allow users to analyze data files in assorted formats, merge data files of different types, build relationships between data types, export data to common formats (i.e., csv, xlsx), and develop correlations between the various MWD data components. As work progressed with the research team, it became clear that the (in progress) *SiteTools* package was not functioning as planned. Updates and patches were not effective. To maintain the project schedule as well as possible, the research team developed their own analysis tools using a *Matlab*®/spreadsheet based approach. These team developed tools were used for the remainder of the project.

To investigate correlations, the collected (raw) data require preprocessing. This preprocessing step becomes complicated due to the large amount of collected data, the noisy nature of the collected MWD data and the various formats used to collect data from different sources, i.e., MWD data and subsurface property data rarely have compatible formats (Taleb et al. 2015;

García et al. 2016; Klyuchnikov et al. 2019). In addition to MWD data, Montana Tech's research team also included additional subsurface data such as natural moisture, soil/rock type, geologic formation identification, and unit weight to assist in developing correlations with the soil and rock strength data. These data were preprocessed for quality control and incorporated into spreadsheet files used by the research team.

The following figures (Figures 2 to 6) are sample screen shots from the data portal from user login to accessing the various data therein contained.

Figure 2. Login screen from Expressway Data Portal.

🗇 🛞 Montana Tech - Monta: X 📓 Astronomy Picture of th X 💌 511MT 🛛 X 🛪 p	ortal - Expressivey X 🚦 Butte, MT weather fore: X 🔮 State Plane Coordinate: X 🔮 Batch Convert X Home ICSMGE 2026 X + V - 🗆 X
← → C @ O A https://expressway.app/portal/	Ē☆ ♡ \$ % 约 =
🐨 Montana Tech 🛠 Digger Central 🐺 MyMTech 😹 OrediggerWeb 🕀 Montana Tech email 🕀 Tech Support 🖸	14mm Diamond Pron 🌀 Bring your data to life 📐 Scaffold Post Shores 🕀 Neural Network Design 🕅 Trump's Appeal: What 🛄 8 in. 5 Speed Bench Dr 🍬 Comparing shear-wav 📎
Connecting Data to Decisions	HOME PORTAL LOGIN/LOGOUT REGISTER/CONTACT
Warning: Undefined variable \$eeSFLA_ShowTheList in /home4	mousaith/public_html/expressway/wp-content/plugins/ee-simple-file-list-pro/ee-simple-file-list-pro.php on line 545
	M
	Instructions to access map and share link.
Your GIS link format is	ttps://expressway.app/gis_portal//sheet=MWD_Research&company=Montana_MDT
When you share the GIS link	replace "MWD_Research" text with the name of the google sheet tab you want to share.
Your Google she	t link is private, and cannot be derived and should not be shared. The link is:
https://docs.google.com/sp	readsheets/d/1F3q3fS5ALR4TTenDdyzZ7bKCW8UC69EvTrvgsmxnrgU/edit?usp=sharing
	Need to modify your password?
	Upload Files
Browse No files selected.	Upload
	size Limits 8 MB per file.

Figure 3. Access screen displaying active link (top link) for entering project site.

MWD_	_Research 2200	om To Data 🛛 🖿 All Project D	ata		EXPRESSWAY
			Thank you!	×	
		97 972531 162	 Persee be advised that this is an ongoing project and this site will automatically update as new data reports become available. You can find all data reports on the Point Flies typerink within the table and each Gis point. 		
and the second second					
T Filter Da	ata 🔷 Export Data 🗸 83	2 visible features			earch
T Filter Da	ata 🛆 Export Data - 83	2 visible features	Comment	Solder_shortcut	earch I File_url 0
T Filter Da	ata A Export Data S Boring_id 9728-9	2 visible features Data_type MWD	Comment SPT, MWD	Folder_shortcut	earch III H-
T Filter Da	ata A Export Data - 83 Boring_id 9728-9 9728-8	2 visible features Data_type MWD MWD	Comment SPT, MWD SPT	Folder_shortcut	aarch Elie_url 0
 ▼ Filter D: ◆ Action ○ ○<th>ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7</th><th>2 visible features Data_type MWD MWD MWD MWD</th><th>Comment SPT, MWD SPT SPT, MWD</th><th>Folder_shortcut</th><th>earch III - IIII - III - IIII - IIIII - IIIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIIII</th>	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7	2 visible features Data_type MWD MWD MWD MWD	Comment SPT, MWD SPT SPT, MWD	Folder_shortcut	earch III - IIII - III - IIII - IIIII - IIIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIIII
 ▼ Filter Da ◆ Action ● ●<th>ta ▲ Export Data → 85 Boring_id 9728-9 9728-8 9728-7 9728-5</th><th>2 visible features Data_type MWD MWD MWD MWD MWD MWD MWD MW</th><th>Comment SPT, MWD SPT SPT, MWD SPT, MWD</th><th>Folder_shortcut</th><th>anch III - IIII - III - IIIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIIII - I</th>	ta ▲ Export Data → 85 Boring_id 9728-9 9728-8 9728-7 9728-5	2 visible features Data_type MWD MWD MWD MWD MWD MWD MWD MW	Comment SPT, MWD SPT SPT, MWD SPT, MWD	Folder_shortcut	anch III - IIII - III - IIIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIIII - I
▼ Filter Da	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3	2 visible features Data_type MWD	Comment SPT, MWD SPT SPT, MWD SPT, MWD SPT, MWD	Folder_shortcut	earch III II I
T Filter Di C Action Q	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3 9728-22	2 visible features	Comment SPT, MWD SPT SPT, MWD SPT, MWD SPT, MWD SPT, MWD	Folder_shortcut	earch III II II II II
 ▼ Filter Di ◆ Action ○ ○<th>ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3 9728-22 9728-21</th><th>2 visible features</th><th>Comment SPT, MWD SPT SPT SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD</th><th>Folder_shortcut</th><th>aarch III II II II II I</th>	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3 9728-22 9728-21	2 visible features	Comment SPT, MWD SPT SPT SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD	Folder_shortcut	aarch III II II II II I
T Filter D. C Action Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-5 9728-3 9728-22 9728-21 9728-20	2 visible features 2 visible features MWVD MW	Comment SPT, MWD SPT SPT SPT, MWD SPT, MWD	Folder_shortcut	arch III II II II II
T Filter D: C Action Q	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3 9728-22 9728-21 9728-2	2 visible features 2 visible features MWVD MW	Comment SPT, MWD SPT SPT SPT, MWD SPT, MWD	Folder_shortcut	arch III II I
T Filter Da Action Q. 6 Q.	ta ▲ Export Data → 82 Boring_id → 9728-9 9728-8 9728-7 9728-5 9728-3 9728-22 9728-21 9728-2 9728-2 9728-19	2 visible features 2 visible features MWVD MW	Comment SPT, MWD SPT SPT SPT, MWD SPT, MWD SPT, MWD SPT, MWD	Folder_shortcut	sarch I II

Figure 4. Splash screen indicating research project is ongoing and will be continually updated.

	\textcircled{B} Montana Tech - Mo \times	Astronomy Picture 🗙	🥶 511MT X 🗶 portal – Expressway X	K 🛪 MWD_Research 🛛 🚦 Butte, MT weather f	× 😝 State Plane Coordin × 😝 Batch Convert	\times Home ICSMGE 2026 \times + \sim	- 0	×
$\leftarrow \rightarrow$	C G	O A https://express	way.app/gis_portal/?sheet=MWD_Research&com	npany=Montana_MDT#12/47.3186/-105.9950		E 🏠	© (£) % €	ב ב
T Montana	Tech 🛠 Digger Central 🐺	MyMTech 🛛 😹 OrediggerWeb	🕀 Montana Tech email 🕀 Tech Support 🛛 C. 14mm I	Diamond Pron 🥑 Bring your data to life 📡 Scaffol	d Post Shores	np's Appeal: What 👖 8 in. 5 Speed Bench Dr	🍽 Comparing shear-wa	v »
MWD	_Research 🗸	Zoom To Data 🛛 🖿 All Pr	oject Data 😐 Split View 👻		Scaffold Post Shores Scaffold Company Scaffolding https://www.scaffoldstore.com/Scaffold.	Scaffold Cheap Scaffold Discount Scaffold KC-QIVpBmtBh2yIQHkEAAYAiAAEgK7qfD_BwE	REXPRESS	WAY
+ - - - - - - - - - - - - - - - - - - -	2	97 978-31 / COCOCOC	AF 1026-31 0226-31 0226-32 026-32 0226-320-320-320-320-320-320-320-320-320-320	916-92 912 91 91 91 91 91 91 91 91 91 91 91 91 91	H 973 972 91 972511 28 3 01 977521 91 97	21 4 1 4 5 9778 22 70 FIFTH 10 10 10 10 10 10 10 10 10 10 10 10 10		
T Filter Da	ata 🛆 Export Data 🕶	82 visible features				Search		III •
Action	Boring_id	 Data_type 	Comment		Folder_shortcut		File_url	¢
0.0	9728-9	MWD	SPT, MWD					^
0.0	9728-8	MWD	SPT					
0.0	9728-7		OPT LUND					
		MWD	SPI, MWD					
Q ()	9728-5	MWD	SPT, MWD					
Q 0 Q 0	9728-5 9728-3	MWD MWD MWD	SPT, MWD SPT, MWD SPT, MWD					
0, 0 0, 0 0, 0	9728-5 9728-3 9728-22	MWD MWD MWD MWD	SPT, MWD SPT, MWD SPT, MWD SPT, MWD					
0 0 0 0 0 0 0 0	9728-5 9728-3 9728-22 9728-21	MWD MWD MWD MWD MWD	SPT, MWD SPT, MWD SPT, MWD SPT, MWD SPT, MWD					
0,0 0,0 0,0 0,0	9728-5 9728-3 9728-22 9728-21 9728-20	MWD MWD MWD MWD MWD MWD	SPT, MWD					
	9728-5 9728-3 9728-22 9728-21 9728-20 9728-2	MWD MWD MWD MWD MWD MWD MWD	SPI, MWD SPT, MWD					

Figure 5. View of interactive map showing borehole numbering and list of data available for each borehole (scrollable).

Thumb	Name	Size	Date
ß	9727-05_MWD_Point_RQD.mat Download Copy Link Send Edit Delete Move Copy	280.52 KB	March 6, 2023
ľ	9727-05_MWD_POINT_STRAT.mat Download CopyLink Send Edit Detee Move Copy	273.32 KB	March 6, 2023
<u>ک</u> ر	9727-05_TE-LAB.pdf Open Download CopyLink Send Edit Delete Move Copy	182.71 KB	March 6, 2023
<u>ک</u> ر	9727-05_TE-N-3UCS.pdf Open Download CopyLink Send Edit Delete Move Copy	176.46 KB	March 6, 2023
<u>ک</u> ر	9727-05_TE-UCS-RQD.pdf Open Download CopyLink Send Edit Delete Move Copy	183.51 KB	March 6, 2023
<u>ک</u> ر	9727-05_TE-UCS-XY1.pdf Open Download CopyLink Send Edit Delete Move Copy	182.91 KB	March 6, 2023
<u>ک</u> ر	9727-5_Draft_Boring_Log.pdf Open Download CopyLink Send Edit Delete Move Copy	709.28 KB	August 22, 2022
ß	9727-5_Jean_Lutz_Output_with_API_Torque.csv Download CopyLink Send Edit Delete Move Copy	374.24 KB	September 3, 2021
	Drilling_Data_9727-5.csv Download CopyLink Send Edit Delete Move Copy	8.31 KB	October 14, 2022
	MWD_9727-05_MWD.mat Download CopyLink Send Edit Delete Move Copy	427.7 KB	March 6, 2023

Figure 6. Example screen shot showing data types available for borehole 9727-05 with file size and upload date.

Table 1 shows all MWD and laboratory data available on the portal to date. Data are listed in Boring ID order. Boring ID numbers contain the MDT project control number (9728-, 9727-, 9726-) followed by the boring number for that control number (-28, -27, -26). The Comment column indicates the data types available. Finally, there is a column for MDT folder shortcuts and a File URL column indicating if Point Files (e.g., data entered into the spreadsheet templates, borehole logs, VST, PMT, etc.) are available for download.

Table 1. Comprehensive list showing all borehole information available on the portal. Data entries are identified by borehole ID (which can be located on the interactive map by zooming in). Data used for analysis are indicated by 'Point Files' in last column which contain the raw data files.

<u>Boring_id</u>	Data_type	<u>Comment</u>	Folder_shortcut	<u>File_url</u>
9728-9	MWD	SPT, MWD		
9728-8	MWD	SPT		
9728-7	MWD	SPT, MWD		
9728-5	MWD	SPT, MWD		
9728-3	MWD	SPT, MWD		
9728-22	MWD	SPT, MWD		
9728-21	MWD	SPT, MWD		
9728-20	MWD	SPT, MWD		
9728-2	MWD	SPT, MWD		
9728-19	MWD	SPT, MWD		
9728-18	MWD	SPT, MWD		
9728-17	MWD	SPT, MWD		
9728-16	MWD	SPT, MWD		
9728-15	MWD	SPT, MWD		
9728-14	MWD	SPT. MWD		
9728-13	MWD	SPT. MWD		
9728-12	MWD	SPT. MWD		
9728-11	MWD	SPT. MWD		
9728-10	MWD	SPT. MWD		
9728-1	MWD	SPT_MWD		
9727-9	MWD	SPT, MWD		

9727-8	MWD	SPT, MWD		
				Point
9727-7	MWD	SPT, MWD, UCS	MWD_Research/9727000/9727-7	Files
9727-6	MWD	SPT, MWD		
9727-5	MWD	SPT, MWD, VST, UCS	MWD_Research/9727000/9727-5	Point Files
9727-4	MWD	SPT, MWD, VST	MWD_Research/9727000/9727-4	Point Files
9727-3	MWD	SPT, MWD		
9727-23	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 23	Point Files
9727-22	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 22	Point Files
9727-21	MWD	SPT, MWD		
9727-20	MWD	SPT, MWD		
9727-2	MWD	SPT, MWD		
9727-19	MWD	SPT, MWD		
9727-18	MWD	SPT, MWD		
9727-17	MWD	SPT, MWD		
9727-16	MWD	SPT, MWD		
9727-15	MWD	SPT, MWD		
9727-14	MWD	SPT, MWD		
9727-13	MWD	SPT, MWD, VST	MWD_Research/9727000/9727- 13	Point Files
9727-12	MWD	SPT, MWD		
9727-11	MWD	SPT, MWD		
9727-10	MWD	SPT, MWD		
9727-1	MWD	SPT, MWD		
9726-9	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726-9	Point Files
9726-8	MWD	SPT, MWD, VST, UCS	MWD_Research/9726000/9726-8	Point Files
9726-7	MWD	SPT	MWD_Research/9726000/9726-7	Point Files

9726-6	MWD	SPT		
9726-5	MWD	SPT, MWD		
9726-4	MWD	SPT, MWD		
9726-39	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 39	Point Files
9726-38	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 38	Point Files
9726-37	MWD	SPT, MWD		
9726-36	MWD	SPT, MWD		
9726-35	MWD	SPT, MWD		
9726-34	MWD	SPT, MWD		
9726-33	MWD	SPT, MWD		
9726-32	MWD	SPT, MWD		
9726-31	MWD	SPT, MWD, VST		
9726-30	MWD	SPT		
9726-3	MWD	SPT, MWD	MWD_Research/9726000/9726-3	Point Files
9726-29	MWD	SPT		
9726-28	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 28	Point Files
9726-27	MWD	SPT, MWD		
9726-26	MWD	SPT		
9726-25	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 25	Point Files
9726-24	MWD	SPT, MWD		
9726-23	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 23	Point Files
9726-22	MWD	SPT, MWD		
9726-21	MWD	SPT, MWD		
9726-20	MWD	SPT, MWD		
9726-2	MWD	SPT, MWD		
9726-19	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 19	Point Files

9726-18	MWD	SPT, MWD		
9726-17	MWD	SPT, MWD		
9726-16	MWD	SPT, MWD		
9726-15	MWD	SPT, MWD		
9726-14	MWD	SPT, MWD		
9726-13	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 13	Point Files
9726-12	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 12	Point Files
9726-11	MWD	SPT, MWD		
9726-10	MWD	SPT, MWD		
9726-1	MWD	SPT, MWD	MWD_Research/9726000/9726-1	Point Files

The preprocessing and analysis parts of the research used two main files: the Jean-Lutz MWD data file and a drilling data file. For example, for borehole 9727-5, the Jean-Lutz data are contained in a file named 9727-5_Jean_Lutz_Output_with_API_Torque.csv which is then converted to an *xlsx* file for easier manipulation. Table 2 shows a portion of this file, which contains over 4,300 rows. Drilling stopped at 72 feet depth for this borehole. The file contains basic information about the borehole such as location and drilling parameters. Each sample (row) of the data file contains a time stamp, drilling depth, moving speed, down pressure, rotation speed, rotation torque (measured at the drive shaft), tool acceleration, flow rate, injection pressure, torque 2 (measured at the drill spindle), and two columns calculating the difference between the two measured torque values.

The drilling data for borehole 9727-5 are contained in the file *Drilling_Data_9727-5.csv*, which has also been converted to an *xlsx* file. Table 3 shows a large portion of this file. The file contains about 75 rows of data comprising drilling depth, sample thickness, offset, layer and sample IDs, stratigraphy and lithology IDs, top and bottom depths of samples, top and bottom elevations of samples, SPT blow count values, sample dry density, UCS, recovery, and RQD. Insitu shear strength (Su and Su_r) from vane shear testing were also included in the data for 9727-5, though these columns are not shown in the table to save room.

Both files were assembled using the templates created by *Drill Data Maps* and populated with the relevant information by MDT.

Table 2. Portion of Jean-Lutz data file 9727-5_Jean_Lutz_Output_with_API_Torque.xlsx used for analysis. Full data file contains over 4,300 rows.

					Davia	Datation	Datation	Rotation Torque	T1	5 1.000				
		Measure Time	Depth	Speed (ft/h)	Pressure (nsi)	Speed	Torque (lbfft)	d_with_Gear_Fa	Acceleration	(gal/	Pressure (nsi)	Torque 2	Diff (%)	Difference (Ib-ft)
Jobsite	WEST OF BROCKWAY WEST	0:00:00	0	0	46.45	0	136.58	648.7379275	-0.01	0	-1.24	-123	294%	771.7379
Contract	9727	0:00:00	0	0	45.98	0	136.85	650.0203938	0	0	-1.27	-122.6	293%	772.6204
Machine	1050	0:00:00	0	0	45.98	0	136.85	650.0203938	0	0	-1.27	-122.6	293%	772.6204
Survey Name	5	0:00:00	0	0	45.98	0	136.85	650.0203938	0	0	-1.27	-122.6	293%	772.6204
Start date	8/17/2021 8:28	0:00:00	0	0	45.98	0	136.85	650.0203938	0	0	-1.27	-122.6	293%	772.6204
Stop Date	8/1//2021 14:14	0:00:00	0	0.02	32.07	0	3 10	15 15210125	-0.01	0	-1.17	-62.6	251%	16 25 21
Lenger (m)	21.54	0:00:00	0	0.02	35.87	0	-2.67	-12.68216625	-0.02	0	-1.15	-1.1	168%	-11.5822
		0:00:00	0	0.02	35.66	0	-2.67	-12.68216625	-0.01	0	-1.18	-1.2	165%	-11.4822
		0:00:00	0	0.02	35.83	0	3.3	15.6745875	-0.01	0	-1.19	-1.1	230%	16.77459
		0:00:00	0	0.02	36.64	0	3.27	15.53209125	0	0	-1.19	-1.1	230%	16.63209
		0:00:00	0	0.02	36.51	0	3.26	15.4845925	0	0	-1.15	1.1	173%	14.38459
		0:00:00	0	0.02	36.22	0	3.06	14.5346175	0	0	-1.12	-1.3	239%	15.83462
		0:00:00	0	0.02	36.96	0	3.17	15.05710375	0.01	0	-1.16	1.2	170%	13.8571
		0:00:00	0	0.02	36.91	0	3.18	15.1046025	0.01	0	-1.11	1.1	173%	14.0046
		0.00.00	0	0.02	37.47	0	3.10	15 43709375	0.01	0	-1.12	1.1	175%	14 43709
		0:00:01	0	0.02	37.94	0	3.19	15.15210125	0.02	0	-1.24	0.9	178%	14.2521
		0:00:02	0	12.2	45.56	0	3.27	15.53209125	0.01	0	-1.27	0.9	178%	14.63209
		0:00:03	0.03	81.24	81.01	0	3.37	16.00707875	0	0	-1.22	0.8	181%	15.20708
		0:00:04	0.06	99.25	99.47	0	3.3	15.6745875	-0.01	0	-1.16	0.9	178%	14.77459
		0:00:05	0.1	158.21	166.51	0	3.4	16.149575	-0.01	0	-1.19	0.8	181%	15.34958
		0:00:06	0.14	156.06	165.07	0	3.58	17.0045525	-0.01	0	-1.21	0.7	184%	16.30455
		0:00:07	0.18	157	167.24	0	2.89	13./2/138/5	0	0	-1.14	1	1/3%	12.72714
		0.00.07	0.22	155.86	169 38	0	3.23	14 7246125	0	0	-1.10	0.8	177%	13 82461
		0:00:09	0.31	151.6	184.71	0	3.19	15.15210125	0	0	-1.28	1	175%	14.1521
		0:00:10	0.35	149.5	219.72	0	3.27	15.53209125	0.01	0	-1.32	0.9	178%	14.63209
		0:00:12	0.39	143.69	258.04	0	3.67	17.43204125	0.01	0	-1.22	1	178%	16.43204
		0:00:13	0.43	146.96	325.86	0	3.32	15.769585	0	0	-1.24	1	176%	14.76959
		0:00:14	0.48	147.51	397.77	0	3.05	14.48711875	0	0	-1.28	1	174%	13.48712
		0:00:15	0.52	146.16	462.25	0	3.47	16.48206625	0	0	-1.19	1	177%	15.48207
		0:00:15	0.56	1/4.1/	302.43	0	103.27	490.5195913	0.28	0	-1.15	0.9	199%	489.0190
		0:00:17	0.65	151.96	282.65	2.58	103.81	493.0845238	0.62	0	-1.15	0.8	199%	492.2845
		0:00:18	0.69	160.73	291.05	20.66	115.01	546.2831238	0.4	0	-1.18	1	199%	545.2831
		0:00:19	0.73	151.38	303.66	20.96	138.68	658.712665	0.27	0	-1.16	0.8	200%	657.9127
		0:00:20	0.78	153.21	307.87	21.46	144.86	688.0668925	0.17	0	-1.16	0.9	199%	687.1669
		0:00:21	0.82	160.9	312.96	21.26	151.32	718.751085	0.11	0	-1.22	0.9	199%	717.8511
		0:00:22	0.86	147.97	342.61	21.3	160.43	762.0224463	0.07	0	-1.2	1	199%	761.0224
		0:00:23	0.9	160.65	353.61	23.29	157.58	748.4853025	0.04	0	-1.19	1	199%	747.4853
		0.00.24	0.95	168.96	369.4	30.65	153.02	739.1755475	0.02	0	-1.23	0.8	200%	731 3032
		0.00.25	1.03	108.50	378 41	34 39	156.7	744 3054125	0.01	0	-1.24	0.0	200%	743 4054
		0:00:27	1.08	165.59	374.65	34.59	154.92	735.850635	0	0	-1.17	0.9	200%	734.9506
		0:00:28	1.12	160.53	381.52	34.69	157.59	748.5328013	-0.01	0	-1.14	1	199%	747.5328
		0:00:29	1.16	160.13	374.93	34.71	159.8	759.030025	-0.01	0	-1.14	0.9	200%	758.13
		0:00:30	1.2	159.01	377.01	34.71	164.39	780.8319513	-0.01	0	-1.18	0.9	200%	779.932
		0:00:31	1.25	155.9	384.51	34.73	167.12	793.79911	0	0	-1.22	0.9	200%	792.8991
		0:00:32	1.29	164.2	382.66	34.65	172.10	802.3963838	0.01	0	-1.19	0.9	200%	801.4964
		0.00.33	1 3 7	166 45	393.35	34.00	169 19	803 6313512	0.02	0	-1.16	0.7	200%	802 8314
		0:00:34	1.42	158.89	407.27	34.66	177.63	843.7202963	0.02	0	-1.08	0,9	200%	842.8203
		0:00:36	1.46	166.66	400.84	34.61	176.14	836.6429825	0.01	0	-1.13	0.7	200%	835.943
		0:00:37	1.5	159.35	415.5	34.56	180.24	856.11747	0	0	-1.06	0.9	200%	855.2175
		0:00:38	1.54	162.82	413.76	34.56	181.51	862.1498113	0	0	-1.16	0.8	200%	861.3498
		0:00:39	1.59	162.74	424.43	34.55	187.57	890.9340538	0	0	-1.19	0.7	200%	890.2341
		0:00:39	1.63	157.47	423.52	34.49	191.38	909.0310775	0	0	-1.17	0.7	200%	908.3311
		0:00:40	1.68	165.59	431.23	34.45	193.95	921.2382563	0	0	-1.18	0.8	200%	920.4383
		0:00:41	1.72	150.46	431.1	34.43	107.0	948.02/5513	0_01	0	-1.13	0.8	200%	947.2276
		0:00:42	1.70	155.85	433.17	34.33	205 74	977,2392825	-0.01	0	-1.19	0.7	200%	976 4393
		0:00:44	1.84	164.54	442.8	34.31	207.14	983.8891075	-0.01	0	-1.11	0.8	200%	983.0891
		0:00:45	1.89	160.31	448.55	34.22	218.4	1037.3727	-0.01	0	-1.12	1	200%	1036.373
		0:00:46	1.93	166.2	434.64	34.14	211.28	1003.55359	-0.01	0	-1.11	0.8	200%	1002.754
		0:00:47	1.97	129.46	407.5	34	214.23	1017.565721	0	0	-1.17	0.8	200%	1016.766
		0:00:48	2	131.9	395.03	34.11	202.93	963.8921338	0.01	0	-1.17	0.8	200%	963.0921

Jobsite	West of Brockwa	y-West																
Contra	9727000																	
HoleID	9727-5																	
Northin	1139540 507																	
Eacting	20200646										-	-	-	-				_
Easting	2828804.0										-	-		-				
Elevati	2535.83											-		-				
Latitud	47.32348968											_		_				
Longitu	-106.0278662																	
Start D	8/17/2021 8:28																	
Date	8/17/2021																	
RigID	1050																	
-																		
Denth		Offset			Stratigraphy	Lithology	Ton Denth	Bottom Denth					-	-		lics		
(f+)	Thicknoss (ft)	(f+)	LaworlD	SampleID		ID	(ft)	(f+)	Top El	Pottom El	N11	NI2	NIC	N	DD (ncf)	Inci	DEC	POD
2.75		(11)				10	(10)	(11)	2522.22	2522.02	111	INZ	IN3	IN	DD (pci)	(psi	NEC	κųυ
2.75	0.5	0	9727-05-591-1	9727-05-5PT-1-INI			2.5	3	2555.55	2552.85	2	-		-				
3.25	0.5	0	9727-05-SPI-1	9727-05-SPT-1-N2			3	3.5	2532.83	2532.33		3						
3.5	1	0	9727-05-SPT-1	9727-05-SPT-1-N			3	4	2532.83	2531.83		_		6				
3.75	0.5	0	9727-05-SPT-1	9727-05-SPT-1-N3			3.5	4	2532.33	2531.83			3					
5.25	0.5	0	9727-05-SPT-2	9727-05-SPT-2-N1			5	5.5	2530.83	2530.33	2							
5.75	0.5	0	9727-05-SPT-2	9727-05-SPT-2-N2			5.5	6	2530.33	2529.83		2						
6	1	0	9727-05-SPT-2	9727-05-SPT-2-N			5.5	6.5	2530.33	2529.33				5				
6.25	0.5	0	9727-05-SPT-2	9727-05-SPT-2-N3			6	6.5	2529.83	2529.33			3					
7.75	0.5	n	9727-05-SPT-3	9727-05-SPT-3-N1			75	8	2528.33	2527.83	0							
8 25	0.5	n	9727-05-SPT-2	9727-05-SPT-3-NI2			2.5	85	2527.82	2527 33	5	2						
0.23	0.5	-	0727 05 507 2	0727 OF CDT 2 N			0	0.5	2527.05	2527.33	-	- 2	-					
0.5	1	0	0727 05 0772	0727 OF CDT 2 M2			8 0 7	9	2527.03	2520.63	-	-	-	4				
8.75	0.5	0	9/2/-05-5P1-3	9727-05-5P1-3-N3			8.5	9	2527.33	2526.83	-	-	2	-		$\left \right $		
10.25	0.5	0	9/2/-05-SPT-4	9/2/-05-SPT-4-N1			10	10.5	2525.83	2525.33	2	-	-	-		\square	$ \longrightarrow $	
10.4	0.7	0	9727-05-VST-1									_		_				
10.75	0.5	0	9727-05-SPT-4	9727-05-SPT-4-N2			10.5	11	2525.33	2524.83		3						
11	1	0	9727-05-SPT-4	9727-05-SPT-4-N			10.5	11.5	2525.33	2524.33				5				
11.25	0.5	0	9727-05-SPT-4	9727-05-SPT-4-N3			11	11.5	2524.83	2524.33			2					
12.75	0.5	0	9727-05-SPT-5	9727-05-SPT-5-N1			12.5	13	2523.33	2522.83	3							
13.25	0.5	0	9727-05-SPT-5	9727-05-SPT-5-N2			13	13.5	2522.83	2522.33		5						
13.5	1	0	9727-05-SPT-5	9727-05-SPT-5-N			13	14	2522.83	2521.83				13				
13.75	0.5	0	9727-05-SPT-5	9727-05-SPT-5-N3			13.5	14	2522.33	2521.83			8					
15.25	0.5	0	9727-05-SPT-6	9727-05-SPT-6-N1			15	15.5	2520.83	2520 33	1		-	-				
15.75	0.5	0	9727-05-SPT-6	9727-05-SPT-6-N2			15.5	16	2520.33	2519.83	_	5	-					
15.75	0.5	0	0727-05-5FT-0	0727-05-5FT-0-NZ			15.5	16 5	2520.55	2515.05	-			11				
10	1	0	9727-03-3FT-0	9727-03-3FT-0-IN			13.3	10.5	2520.55	2519.33		-	<i>c</i>	11				
10.25	0.5	0	9727-05-591-0	9727-05-SP1-0-IN5			10	10.5	2519.65	2519.55		-	0	-				
20.25	0.5	0	9727-05-SPI-7	9727-05-SPT-7-N1			20	20.5	2515.83	2515.33	11			-				
20.75	0.5	0	9727-05-SPI-7	9727-05-SP1-7-N2			20.5	21	2515.33	2514.83		14						
21	1	0	9727-05-SPT-7	9727-05-SPT-7-N			20.5	21.5	2515.33	2514.33				40				
21.25	0.5	0	9727-05-SPT-7	9727-05-SPT-7-N3			21	21.5	2514.83	2514.33			26					
25.25	0.5	0	9727-05-SPT-8	9727-05-SPT-8-N1			25	25.5	2510.83	2510.33	14							
25.75	0.5	0	9727-05-SPT-8	9727-05-SPT-8-N2			25.5	26	2510.33	2509.83		25						
26	1	0	9727-05-SPT-8	9727-05-SPT-8-N			25.5	26.5	2510.33	2509.33				64				
26.25	0.5	0	9727-05-SPT-8	9727-05-SPT-8-N3			26	26.5	2509.83	2509.33			39					
27.5	0.6	0	9727-05-C-1	9727-05-UCS-01			27.2	27.8	2508.63	2508.03					102	21		
27.5	5	0	9727-05-C-1				25	30	2510.83	2505.83	-		-				66	12
21.05	0.7	0	0727 05 C 1	0727 05 LICS 02			20.7	21.4	2510.05	2505.05	-	-	-	-	111.0	50	00	12
21 -	0.7	0	0727 05 0 2	0727 05-003-02			30.7	31.4	2505.15	2504.45	-	-	-	-	100 4	120		
51.5	0.0	0	9727-05-0-5	9727-05-003-03			51.2	51.6	2504.05	2504.03	-	-		-	108.4	130		
32.3	0.6	0	9/2/-05-C-4	9121-05-065-04			32	32.6	2503.83	2503.23	-	-	-	-	109.4	48		
32.5	5	0	9/2/-05-C-2				30	35	2505.83	2500.83	-	-	-	-			100	86
32.9	0.6	0	9727-05-C-5	9727-05-UCS-05			32.6	33.2	2503.23	2502.63		_		_	109	133		
34.8	0.6	0	9727-05-C-6	9727-05-UCS-06			34.5	35.1	2501.33	2500.73		_		_	105.9	61		
35.6	0.6	0	9727-05-C-7	9727-05-UCS-07			35.3	35.9	2500.53	2499.93					98.79	12		
37.5	5	0	9727-05-C-3				35	40	2500.83	2495.83							80	30
40.65	0.3	0	9727-05-C-8	9727-05-UCS-08			40.5	40.8	2495.33	2495.03					90.5	30		
41.25	0.3	0	9727-05-C-9	9727-05-UCS-09			41.1	41.4	2494.73	2494.43					72.4	225		
41.55	0.3	0	9727-05-C-10	9727-05-UCS-10			41.4	41.7	2494.43	2494,13					71.9	320		
417	0.2	0	9727-05-C-11	9727-05-UCS-11			41.6	41.8	2494 23	2494.03	-		-	-	83.4	80		
42.1	0.2	0	9727-05-0-12	9727-05-1105-12			/1 0	41.0	2404 02	2402 12	-				20.0	289		
42.1	0.0 E	0	0727-05-0-12	5727-05-005-12			41.0	42.4	2454.05	2455.45	-			-	05.5	200	100	24
42.5	5	0	0727.05-0-4	0727 05 1100 42			40	45	2433.03	2490.63	-	-	-	-	07.0	07	100	54
42.95	0.3	0	9/2/-05-0-13	9727-05-005-13			42.8	43.1	2493.03	2492./3		-	-	-	87.3	8/		
46.7	0.6	0	9/2/-05-C-14	9727-05-UCS-14			46.4	47	2489.43	2488.83	-	-	-	-	105.2	14		
47.5	5	0	9/2/-05-C-5				45	50	2490.83	2485.83		-	-	-			100	52
47.7	0.6	0	9727-05-C-15	9/27-05-UCS-15			47.4	48	2488.43	2487.83		_	_	_	112.3	71		
48.5	0.6	0	9727-05-C-16	9727-05-UCS-16			48.2	48.8	2487.63	2487.03		_		_	108.5	96		
51.1	0.6	0	9727-05-C-17	9727-05-UCS-17			50.8	51.4	2485.03	2484.43		_		_	109.8	51		
51.8	0.6	0	9727-05-C-18	9727-05-UCS-18			51.5	52.1	2484.33	2483.73				_	114.4	255		
52.4	0.6	0	9727-05-C-19	9727-05-UCS-19			52.1	52.7	2483.73	2483.13					113.2	111		
52.5	5	0	9727-05-C-6				50	55	2485.83	2480.83							96	68

Table 3. Portion of drilling data file Drilling_Data_9727-5.xlsx used for analysis. Full data file contains about 75 rows.

5. Preprocessing and Quality Control

MWD data types used for this project consisted of hollow stem auger (HSA) data and HQ rock coring data below HSA refusal, extending to the borehole bottom. Quality control and data parsing were performed for both types of data.

5.1. HSA Data

Figure 7 is an example of MWD data from borehole 9727-7 showing HSA drilling from 0 to 35 feet and rock coring data from 35 feet to approximately 72 feet depth. This figure shows continuous MWD data recording with depth; however, red arrows indicate where sharp drops and subsequent gaps in down pressure (green trace) and torque (red trace) measurements are observed. This phenomenon is also observed in the moving speed and rotation speed traces, though it is not as pronounced as with down pressure and torque. These gaps appear to occur at approximate 5-foot depth intervals, where drilling was stopped to perform a SPT measurement and split spoon sampling and to add another 5-foot auger section. Initial observation suggested that the observed sudden drops and gaps in data might be a result of drilling through the hole in the subsurface as a result of the split spoon sampling. Another explanation might be that this might be more influenced by the drill string re-engaging prior to making contact with the subsurface after the addition of each new auger section. Because of this effect, any analysis using especially down pressure or torque cannot simply use the recorded data as is from the data file at those depths. Our first preprocessing/quality control step was to manually extract the last recorded down pressure and torque measurement prior to the sudden drop occurring when adding additional HSA auger sections.

For HSA analysis, rather than using the continuous down pressure and torque data traces, we determined that we could only use the individual down pressure and torque values just prior to the sudden drop, as indicated by arrows on the plot in Figure 7. This greatly reduces the amount of data that can be used for analysis. In addition, the amount of effort necessary to extract data for analysis is greatly increased because this is done by visual inspection. As the MWD data are in spreadsheet format (i.e., all measured quantities at a specific time/depth), only the data from depths identified with the red arrows would be kept for analysis.

Future work should focus on how MWD data are collected to mitigate this problem and/or developing an automated approach to extract the relevant down pressure data points (and associated measurements in the same row) to streamline the analysis data flow. One possible solution suggested by experienced geotechnical engineers is to drill a second borehole adjacent to the first borehole to eliminate gaps in data due to the SPT and split spoon sampling. Split spoon sampling and rock coring would be accomplished in borehole 1. In borehole 2, MWD data collection would take place continuously within the limits of lengths of drill sections. Drillers would also be trained for optimum starting/stopping MWD recording to reduce gaps in data due to the addition of new auger sections.

5.2. Rock Coring Data

Rock coring data were also entered into the Drilling Data template by MDT. The template has columns for entry of depth and thickness of sample, IDs for the sample, elevations of the top and bottom of the sample, SPT blow counts and lab measurements such as dry density, UCS, Rec, RQD and Su. Table 3 shows a portion of the rock coring data for borehole 9727-5. The rock coring data were reviewed by an experienced research team member for quality control prior to analysis.

Figure 7. MWD data from borehole 9727-7 showing HSA depth section and rock coring section. Note arrows on Down Pressure plot (green) showing sharp drop in down pressure when drilling stopped.

6. Data Used for Analysis

6.1. GIS Portal Data

The full set of MWD data available on the GIS portal website is shown in Table 1. The data used for analysis are a subset from that list which contains Point Files. Point files contain the actual data files that can be used for analysis. This subset is shown as Table 4 below.

As can be seen in the Table 1 Comment column, not all MWD data Point Files contain the same types of data. Most of the borehole data sets contained SPT blow count data with MWD data from 0 to auger refusal depth (i.e., HSA data). Typical auger refusal depth in these eastern Montana IGM's was in the range of approximately 30 feet depth. A smaller set of boreholes contained lab measurements (i.e., UCS or unit weight) from HQ rock coring results below HSA refusal depth.

Our analysis approach took two forms: correlating SPT blow counts from HSA drilling with the various MWD measurements recorded and correlating UCS and unit weight from lab measurements with MWD measurements.

Table 5 lists the boreholes available for SPT blow count correlations and Table 6 lists the boreholes available for UCS and unit weight correlations.

Boring_id	Data_type	<u>Comment</u>	Folder_shortcut	<u>File_url</u>
9727-7	MWD	SPT, MWD, UCS	MWD_Research/9727000/9727-7	Point Files
9727-5	MWD	SPT, MWD, VST, UCS	MWD_Research/9727000/9727-5	Point Files
9727-4	MWD	SPT, MWD, VST	MWD_Research/9727000/9727-4	Point Files
9727-23	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 23	Point Files
9727-22	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 22	Point Files
9727-13	MWD	SPT, MWD, VST	MWD_Research/9727000/9727- 13	Point Files
9726-9	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726-9	Point Files
9726-8	MWD	SPT, MWD, VST, UCS	MWD_Research/9726000/9726-8	Point Files
9726-7	MWD	SPT	 MWD_Research/9726000/9726-7	Point

Table 4. Subset of MWD data containing Point Files which can be used for analysis. List is organized by project number e.g., 9727-xx, 9726-xx.

				Files
9726-39	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 39	Point Files
9726-38	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 38	Point Files
9726-3	MWD	SPT, MWD	MWD_Research/9726000/9726-3	Point Files
9726-28	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 28	Point Files
9726-25	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 25	Point Files
9726-23	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 23	Point Files
9726-19	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 19	Point Files
9726-13	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 13	Point Files
9726-12	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 12	Point Files
9726-1	MWD	SPT, MWD	MWD_Research/9726000/9726-1	Point Files

Table 5. List of boreholes containing SPT blow count data and MWD data.

Boring_id	Data_type	<u>Comment</u>	Folder_shortcut	<u>File_url</u>
9727-7	MWD	SPT, MWD, UCS	MWD_Research/9727000/9727-7	Point Files
9727-5	MWD	SPT, MWD, VST, UCS	MWD_Research/9727000/9727-5	Point Files
9727-4	MWD	SPT, MWD, VST	MWD_Research/9727000/9727-4	Point Files
9727-13	MWD	SPT, MWD, VST	MWD_Research/9727000/9727- 13	Point Files
9726-9	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726-9	Point Files
9726-8	MWD	SPT, MWD, VST, UCS	MWD_Research/9726000/9726-8	Point Files
9726-7	MWD	SPT	MWD_Research/9726000/9726-7	Point

				Files
9726-39	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 39	Point Files
9726-38	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 38	Point Files
9726-3	MWD	SPT, MWD	MWD_Research/9726000/9726-3	Point Files
9726-28	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 28	Point Files
9726-25	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 25	Point Files
9726-23	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 23	Point Files
9726-19	MWD	SPT, MWD, VST	MWD_Research/9726000/9726- 19	Point Files
9726-13	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 13	Point Files
9726-12	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 12	Point Files
9726-1	MWD	SPT, MWD	MWD_Research/9726000/9726-1	Point Files

Table 6. List of boreholes containing UCS lab data and MWD data.

<u>Boring_id</u>	Data_type	<u>Comment</u>	Folder_shortcut	<u>File_url</u>
9727-7	MWD	SPT, MWD, UCS	MWD_Research/9727000/9727-7	Point Files
9727-5	MWD	SPT, MWD, VST, UCS	MWD_Research/9727000/9727-5	Point Files
9727-23	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 23	Point Files
9727-22	MWD	CSPT (1.875" DIA SPOON), MWD, VST, PMT, BST, UCS	MWD_Research/9727000/9727- 22	Point Files
9726-9	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726-9	Point Files
9726-8	MWD	SPT, MWD, VST, UCS	MWD_Research/9726000/9726-8	Point Files
9726-39	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726-	Point

			39	Files
9726-38	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 38	Point Files
9726-13	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 13	Point Files
9726-12	MWD	SPT, MWD, UCS	MWD_Research/9726000/9726- 12	Point Files

6.2. Hollow Stem Auger Data

Our goal for analysing hollow stem auger (HSA) data was to correlate relevant MWD parameters and/or compound parameters with borehole SPT blow count values. As detailed in the Task 1 report and also shown in Figure 7, plots of drilling data pulldown pressure exhibit a sharp decrease in pulldown pressure at intervals of 2.5 feet for depths 0 to 15 feet and at intervals of 5 feet for depths 15 to 35 feet. These sharp decreases represent drilling stops for auger section additions. Also, when drilling restarts, there is a delay before pulldown pressure reach full operating values again. These sharp decreases and ramping up of pressure prevent using the raw pulldown pressure values as recorded for analysis. Instead, we manually picked the peak pressure values prior to each auger change to correlate with SPT blow counts. Possible future work will consider an automated approach to identify these drilling discontinuities. After preprocessing, our analysis used data from 12 boreholes for a total of 64 data samples. Table 7 shows the final values used for correlation analysis of SPT blow count data with MWD data and the boreholes used.

6.3. HQ Rock Core Data

Our approach for analyzing MWD and rock coring lab data was exploring correlation of MWD parameters with UCS values as well as unit weight. After pre-processing, our data set for MWD and UCS consisted of data from six boreholes for a total of 117 data samples. The MWD parameters used were depth, pulldown pressure, rotation torque, rotation speed and rate of advance along with compound parameter specific energy. These parameters were extracted at the recorded depth and not averaged over an interval. Some rotation torque values from two boreholes were problematic and eliminated. All data were reviewed prior to correlation analysis. Table 8 shows the final values used for correlation analysis of UCS and unit weight with MWD data and their corresponding boreholes.

Table 7. Final spreadsheet containing SPT blow count data and MWD drilling data: Depth (feet), Peak Down Pressure (psi), Rotation Torque (lb-ft), Rotation Speed (rev/min), Moving Speed (ft/h), Specific Energy (ft-lb/ft^3).

Depth (feet)	Peak Down Pressure (psi)	Rotation Torque (lb-ft)	Rotation Speed (rev/min)	Moving Speed (ft/h)	Specific Energy (ftlb/ft^3)	Blows per foot
Borehole 9726-23						
7.5	467.49	247.05	37.43	137.7	67774.25926	4
10	450.74	324.94	36.67	126.06	65547.98104	3
12.5	440.63	370.5	37.42	131.06	64168.56046	4
15	419.98	520.62	36.83	138.64	61415.63133	3
20	415.87	400.05	45.43	127.84	60849.98759	4
25	513.23	632.83	37.96	127.4	75184.64617	9
30	804 32	594 79	49.65	134.24	117314 8978	60
35	794 73	526.88	46 77	121 55	115816 8401	91
40	570 77	640.23	46.77	136.80	83681 89695	75
Perchala 0727 7	570.77	040.23	40.56	150.85	85081.85055	75
	220.42	202 72	26.04	111.02	22404 05557	C
7.5	220.43	202.72	36.04	111.93	32184.85557	6
10	376.07	266.43	35.17	107.2	54747.23321	0
12.5	298.41	244.03	34.29	108.65	43493.66108	5
15	280.25	258.98	34.21	111.52	40895.10369	3
20	497.2	492.46	32.89	120.86	72506.20661	8
25	517.61	581.68	30.92	99.08	75767.64801	28
30	515.5	437.44	39.69	112.05	75283.46153	83
Borehole 9726-28						
7.5	259.84	151.28	40.92	110.46	37797.25311	5
12.5	533.74	640.08	29.08	126.77	77854.92391	28
15	476	647.53	37.72	83.5	70528.95132	38
20	705 45	648.86	44 75	100.65	103542.4518	41
Borehole 9726-13	, 05.45	0.0.00	.4.75	100.05	1000.2.7010	+ 1
5	350 75	120 8	10 07	128.06	50811 50628	0.1
	330.75	1/1 20	40.97	142.00	30011.30020	0.1
/.5	2/0.8/	141.28	35.44	142.12	40100.3512	0.1
10	298.13	140.5	38.37	144.32	43184.20352	3
12.5	510.63	140.21	33.97	146.78	/3/50.9213	50
15	634	140.08	43.29	135.29	91600.16512	72
9726-38						
8	561.4	359.53	39.13	104.15	81758.22523	29
13	440.51	447.42	42.02	112.6	64566.462	29
18	470.77	220.77	43.16	109.2	68382.99438	38
23	465.7	536.39	43.83	95.21	68736.4159	39
28	515.35	307.87	42.04	135.12	74860.40573	43
9726-39						
5	194.48	61.5	45.51	105.32	28185.45452	2
10	328.7	125.24	50.14	103.47	47744.63163	3
15	793 36	447 95	47.89	112.87	115533 5794	48
20	540.21	403.28	48.01	113.02	78952 72847	51
0726 1	540.21	403.20	40.01	115.02	70552.72047	51
3/20-1	F36.88	106.45	62.66	72.56	76404 52040	F
7.5	520.00	100.45	62.00	72.50	76494.32049	5
10	580.02	185.79	63.42	66.83	84/19.29/48	3
12.5	617.27	274.52	52.08	/1.99	90234.53378	4
15	566.93	104.47	/3.2/	/6.23	82319.3147	5
20	661.37	59.96	61.87	80.7	95549.22621	18
25	679.6	222.2	40.37	43.64	99257.2378	21
9726-3						
7	560.24	125.27	23.69	160.17	80800.29346	16
9.5	626.96	518.06	29.18	127.28	91088.197	12
12	648.98	375.81	37.1	168.25	94015.45513	43
14.5	693.52	220.58	78.95	38.2	102960.4476	29
9726-19						
6.5	404.43	264.15	40.36	105.22	58925.47823	6
9	588.57	329.05	39.47	158.32	85310.754	26
11 5	863 35	327 16	36.84	152 53	124858 6092	38
9727-4		527.10	50.04	152.55	12-030.0052	
	250 01	311 EQ	36 NE	60.07	52664 67200	1
10	530.01	244.30	36.00	146.30	722004.07309	4
10	504.75	365.17	50.09	140.29	73520.00947	9
12.5	493.54	455.63	31.//	03.06	/202/.44843	16
15	511.83	436.66	32.03	102.16	/4632.54059	14
20	378.93	372.13	33.1	63.85	55875.00158	30
9/27-5						
5	381.1	150.84	35.38	106.36	55218.88967	5
7.5	262.81	146.09	36.66	114.4	38162.32287	4
10	249.28	119.97	36.36	123.15	36136.68418	5
12.5	203.45	114.52	36.47	124.83	29523.8415	13
15	217.78	180.73	36.86	122.83	31728.35333	11
20	537.37	587.29	39.18	114.2	78748.55616	40
9727-11	* No Point Files					
5	237.41	132.18	34.99	94.66	34518.59048	4
7 5	260.05	149 79	36.48	123.65	37747.0821	2
10	200.05	11/ 01	38.32	126.05	29138 70706	01
12 5	200.78	271.22	22 54	120.50	20110 07/11	21
12.3	E00.06	420.04	55.54	02 50	7/251 00000	21
15	506.96	450.04	35.07	92.59	74551.90989	50
20	516.51	509.86	36.65	119.97	/5558./8014	54

Montana Technological University

Table 8. Final spreadsheet containing UCS and unit weight data and MWD drilling data: Depth (feet), Peak Down Pressure (psi), Rotation Torque (lb-ft), Rotation Speed (rev/min), Moving Speed (ft/h), Specific Energy (ft-lb/ft^3).

Depth (feet)	Peak Down Pressure (psi)	Rotation Torque (lb-ft)	Rotation Speed (rev/min)	Moving Speed (ft/h)	Specific Energy (ftlb/ft^3)	UCS (psi)	Unit Weight (pcf)
Borehole 9727-7							
36.75	350.81	41.22	331.86	113.24	54,224	202.3	114.9
39.45	307.77	58.23	333.33	105.69	49,954	62.12	106.4
41.05	281.31	47.08	334.18	118.73	44,575	122.8	111.7
44.55	295.8	67.52	312.19	33.85	61,704	189.4	110.6
46.15	346.5	48.6	313.91	134.07	53,388	196.1	109.9
50.95	494.44	66.37	339.15	164.45	75,400	23.21	106.3
54.25	351.9	66.03	329.4	110.27	56,726	11.03	104
Borehole 9726-12							
31.05	412.4	3	335.57	51.92	59,981	58.84	111.8
31.5	404.39	2.99	337.8	48.78	58,868	136.4	108.4
32.3	495.83	3.12	338.32	6.11	76,701	48.18	109.4
32.9	489.42	2.81	340.15	51.88	71,042	133	109
35.6	223.37	3.04	321.67	146.39	32,370	12.17	98.79
40.65	581.2	3.09	329.09	44.38	84,396	30	90.5
41.25	579.62	3.2	334.17	357.31	83,557	224.9	72.4
41.55	577.5	3.24	332.53	150.53	83,380	320.4	71.9
41.7	282.74	3.17	333.03	19.38	42,386	80.2	83.4
42.1	333.04	3.32	332.5	51.5	48,616	288.2	89.9
42.95	331.48	2.99	332.8	53.1	48,308	86.6	87.3
46.7	399.11	3.22	331.18	55.03	58,067	14.38	105.2
47.7	395.38	3.09	331.64	58.12	57,476	70.81	112.3
51.1	397.69	3.19	316.25	134.72	57,497	51.07	109.8
51.8	426.96	2.98	316.07	146.75	61,679	255	114.4
52.4	426.51	3.28	311.03	50.02	62,043	111.1	113.2
53.05	424.68	2.95	313.91	54.25	61,678	72.62	107.9
53.8	428.17	3.26	314.42	127.01	61,904	70.29	112.2
56	412.15	3.04	333.12	143.54	59,566	28.03	102.1
56.6	349.43	3.04	334.5	76.23	50,727	216	115
60.5	452.71	2.85	320.27	58.56	65,669	218.3	118.7
61.2	450.82	3.12	320.59	60.03	65,429	156.7	119.9
61.9	499.05	3.07	320.48	95.89	72,178	74.58	115.4
62.6	497.16	3.17	320.44	119.88	71,851	115.5	114.1
64.1	480.3	3.16	320.32	234.52	69,296	9.54	104.7
66.15	444.53	3.2	326.14	183.55	64,187	122	112.6
6/	506.31	3.25	324.05	1/1.31	73,097	75.68	109.8
67.7	506.01	2.95	323.41	161.25	/3,04/	289.8	118.5
09 Desete la 0720 12	409.04	3.20	324.41	80.52	59,277	18.33	106
Borenole 9/26-13	264.22	40.60	221.04	24.95	E4 722	40	105
21.9	204.22	40.05	222.26	24.03	54,722	45	105
22.7	410.95 521.15	40.66	207 74	215.15	02,255	2/ E0	112
32.7	421.60	40.50	221.05	79.41	61,476	202	112
38.0	421.05	40.02	331.03	70.41	66 511	233	112
41.4	414.97	40.64	340.62	46.82	68 828	141	114
42.4	412.4	40.68	340.89	77 53	64 874	101	114
42.1	409 52	40.55	340.55	53.05	66 959	145	117
43.4	565.96	40.64	339.41	87.47	86 337	200	119
44.05	604 44	40.53	339.93	86.49	91 928	102	113
44.8	412 55	40.61	341 42	59.78	66 524	400	119
50.4	404.37	40.47	340.1	76.48	63,752	25	106
51.9	407.56	40.75	340.9	180.42	61.051	26	116
52.8	412.18	40.8	340.96	88.08	64,200	105	115
53.55	184.56	40.64	344.82	15.87	53,673	70	113
9726-38							
33.75	422.96	67.13	252.84	58.7	69,779	83	116.3
34.4	414.67	63.34	253.51	35.83	73,465	445.4	97.1
34.7	410.71	59.36	253.62	24.91	77,688	259	71.8
35.1	407.56	65.27	253.31	34.9	73,226	437.1	75.9
35.3	406.24	63.9	253.17	8.7	115,560	547.1	70.3
35.45	403.23	57.35	254.18	28.3	73,872	351.1	87.3
36.75	392.66	52	255.98	10.82	94 294	119.6	124 5

37.75	330.02	58.74	256.03	30.16	62,825	54.01	122.2
40.25	299.77	39.59	241.95	79.49	46,865	44.01	106.3
41.25	182.48	43.68	248.57	131.81	28,805	206.7	115.4
44.75	282.83	57.53	247.9	29.37	55,628	64.25	114.5
45.25	275.93	39.73	249.87	28.83	50,301	43.85	111.8
46.25	314.54	58.92	247.79	42.76	55,771	78.84	114.8
46.75	313.06	58.28	247.65	43.69	55,218	104.2	112.6
47.25	295.02	56.86	248.37	41.51	52.923	42.26	116.7
48.25	302.84	84.34	263.2	41.01	60.219	41.95	117.8
48.75	305.03	75 37	263.69	49.58	56 225	62 72	119.8
49 75	304 45	70.53	263 71	55 34	54 154	67.43	118.8
50.25	299.34	66 55	264 33	58.99	52,256	161.9	125.4
50.25	295.33	55.84	264 21	82.04	48 046	188.1	121.8
9726-39	200100	55101	201122	02.01	10,010	100.1	12110
22.25	247.96	95 08	259 51	44.83	52 596	37 14	106.8
24.4	345 15	100.05	259.51	/0.05	65 670	462.5	76.6
24.4	243.13	09.04	255.75	49.95	65,070	402.J	70.0
24.0	343.74 242.65	00.54	255.50	50.00	64.454	608.0	74.5
24.00	210 02	90.00	259.01	52.50	59 474	E2E 4	71
25.1	320.95	120.52	211.07	70.42	56,474	355.4	77
25.4	336.04	103.54	274.75	47.25	70,200	448.5	72.7
25.05	324.01	105.7	2/4./3	37.69	70,300	383.7	/3./
26.1	300.01	94.89	246.47	35.04	63,683	8.86	105.2
33.75	313.84	95.54	2/3.81	104.61	52,867	40.68	112.1
34.25	312.21	92.27	2/3./1	83.77	54,210	59.2	114.8
36.25	301.52	96.03	247.93	66.38	54,425	228.3	114.7
36.75	287.41	92.08	233.03	53.85	53,615	298.7	116.6
46.75	114.01	83.51	258.49	119.81	21,946	133	120.7
9727-5							
27.5	309.82	23.1	308.49	293.16	45,360	20.69	102
31.05	390.17	28.64	320.65	81.02	59,663	58.84	111.8
31.5	501.63	28.5	321.01	62.44	76,731	136.4	108.4
32.3	497.46	43.73	318.9	108.74	75,570	48.18	109.4
32.9	496.55	47.45	319.17	86.83	76,855	133	109
34.8	416.58	27.37	321.1	88.55	63,033	61.03	105.9
35.6	376.6	17.98	311.46	343.41	54,731	12.17	98.79
40.65	407.35	19.53	331.05	76.56	61,250	30	90.5
41.25	550.38	47.52	329.22	49.37	88,979	224.9	72.4
41.55	549.05	49.69	328.51	64.98	86,772	320.4	71.9
41.7	548.73	49.09	329.22	64.61	86,693	80.2	83.4
42.1	593.61	39.34	328.69	65.55	91,533	288.2	89.9
42.95	593.65	51.83	328.44	63.29	93,739	86.6	87.3
46.7	273.51	33.11	339.74	82.42	43,574	14.38	105.2
47.7	308.07	39.68	338.67	82.78	49,344	70.81	112.3
48.5	323.19	35.73	337.89	140.34	49,179	95.77	108.5
51.1	309.73	43.84	342.17	90.17	49,706	51.01	109.8
51.8	314.32	42.55	342.99	89.46	50,268	255	114.4
52.4	304.12	25.44	343.77	81.47	47,087	111.1	113.2
53.05	171.96	31.79	344.09	114.22	27,701	72.62	107.9
53.8	309.11	34.15	342.67	108.05	47,835	70.29	112.2
56	307.45	52.14	266.73	169.6	46.789	28.03	120.1
56.6	285.88	35.24	267.9	54.24	46,508	216	115
57.4	399.29	53.27	339.43	83.6	64,135	165.4	110.5
60.5	318.01	35.21	318.5	55.79	51.962	218.3	118.7
61.2	481.6	56.24	316.23	69.08	77,251	156.7	119.9
61.9	496.43	57.89	316.48	85 58	78 055	74 58	115.4
62.6	497 85	51 21	318.46	47.43	82 262	155 5	114 1
64.1	419 97	72 15	315.82	83.63	68 837	9 54	104.7
66 15	275.00	25.15	336 15	62.02	<u>44</u> 075	122	112.6
67	207 52	51 40	222 E0	75 21	54 JEJ	75.60	100.9
67 7	357.55	25 51	224 0	53.22	57 611	280 0	119 5
07.7	332.0	33.31 DE C1	204.0	33.30	42.002	10 22	110.3
69	273.08	25.61	344.21	/4.34	42,962	18.33	106

7. Data Formatting for Analysis

Data analysis took two forms: 1) correlation of MWD data with SPT blow counts for the HSA drilled section, and 2) correlation of MWD data with UCS and unit weight for the cored section. In addition to the raw MWD data, we calculated what are referred to as compound parameters. Compound parameters are a combination or function of individual drilling parameters that allow comparison of soil and site conditions while limiting the influence of changing drilling conditions and drilling operator choices (Baser et al. 2023/4).

7.1. Compound Parameters

We calculated and investigated three compound parameters as functions of four drilling parameters. The four MWD drilling parameters used for calculating compound parameters were:

- Peak down pressure (psi)
- Rotation torque (lb-ft)
- Rotation speed (rev/min)
- Moving speed (ft/h)

The compound parameters we investigated are:

- Specific drilling energy (Teale 1956),
- Somerton index (Somerton 1959) and
- Drilling energy (Pfister 1985).

Equations 1 to 3 show the formulas used to calculate each of the investigated compound parameters:

Specific drilling energy =
$$\frac{F}{A} + \frac{2\pi NT}{AV}$$
 (1)

Somerton index =
$$\frac{P}{\sqrt{V}}$$
 (2)

$$Drilling \ energy = \frac{TN}{V}$$
(3)

where

 $\frac{F}{A} = P = down \ pressure$ $N = rotation \ rate$ T = torque A = area $V = penetration \ rate.$

Drilling parameters are typically recorded in a variety of convenient drilling units. For compound parameter calculations, we converted each drilling parameter to SI units and then converted the final compound parameter SI value to units more amenable to interpretation. Ultimately our compound parameter of choice was *specific drilling energy* which was used as an additional input in our correlation analyses.

7.2. Final Data Assembly

The last step of data pre-processing was assembling the spreadsheets to be used for Task 2 analysis. After data organization and quality control, the final data to be used for analysis were brought together into a single 'master' spreadsheet. Simple correlations could be calculated within the spreadsheet or data from the spreadsheet could be imported into the Matlab® based scripts developed by the research team.

8. Analysis Results

8.1. Phase 1: Single Parameter Linear and Exponential Regression Modeling

Initial analyses consisted of plotting target parameters (SPT blow count, UCS, and unit weight) against six individual MWD parameters: depth, down pressure, rotation torque, rotation speed, moving speed and the compound parameter specific energy. A best fit linear regression line was calculated and the Pearson correlation coefficient (R^2) recorded for each MWD parameter. We also explored correlation results using a best fit exponential curve and tabulated those R^2 values as well.

8.1.1. SPT Blow Count Correlations

Figure 8 shows results for single parameter *linear* regression correlation for SPT blow counts. Figure 9 shows results for single parameter *exponential* fitting for SPT blow counts. R² values are tabulated and listed in Table 9.

(b)

(d)

Figure 8. Single parameter linear regression correlation results for SPT blow counts versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2 values are tabulated in Table 9.

(b)

(d)

(e)

Figure 9. Single parameter exponential regression correlation results for SPT blow counts versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2 values are tabulated in Table 9.

MWD parameter	Linear R ²	Exponential R ²		
Depth	0.51	0.49		
Down pressure	0.36	0.34		
Rotation torque	0.25	0.24		
Rotation speed	0.01	0.01		
Moving speed	0.02	0.02		
Specific energy	0.37	0.34		

Table 9. Tabulated R² values for single parameter linear and exponential fitting for SPT blow counts.

8.1.2. UCS Correlations

Figure 10 shows results for single parameter *linear* regression correlation for UCS. Figure 11 shows results for single parameter *exponential* fitting for UCS. R² values are tabulated and listed in Table 10.

(a)

(c)

(e)

Figure 10. Single parameter linear regression correlation results for UCS versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R² values are tabulated in Table 10.

Montana Technological University

(c)

(d)

(e)

(f)

Figure 11. Single parameter exponential regression correlation results for UCS versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2 values are tabulated in Table 10.

MWD parameter	Linear R ²	Exponential R ²	
Depth	0.009	0.11	
Down pressure	0.005	0.004	
Rotation torque	0.13	0.18	
Rotation speed	0.10	0.11	
Moving speed	0.05	0.06	
Specific energy	0.08	0.09	

Table 10. Tabulated R² values for single parameter linear and exponential fitting for UCS.

8.1.3. Unit Weight Correlations

Figure 12 shows results for single parameter *linear* regression correlation for unit weight. Figure 13 shows results for single parameter *exponential* fitting for unit weight. R² values are tabulated and listed in Table 11

(b)

(d)

Figure 12. Single parameter linear regression correlation results for unit weight versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy. R^2 values are tabulated in Table 11.

(b)

(d)

Figure 13. Single parameter exponential regression correlation results for unit weight versus (a) depth, (b) down pressure, (c) torque, (d) rotation speed (e) moving speed and(f) specific energy.. MWD parameter used is shown on horizontal axis. R² values are tabulated in Table 11.

MWD parameter	Linear R ²	Exponential R ²		
Depth	0.19	0.19		
Down pressure	0.05	0.05		
Rotation torque	0.02	0.02		
Rotation speed	0.01	0.01		
Moving speed	0.00	0.00		
Specific energy	0.17	0.11		

			2						
T-1-1-	11	Talaslatad	D 2 realman	famainala		1:	arrea a contral	fitting f	an som it recaindet
rable		гаршатео	R values	TOP SIDUE	parameter	nnear and	exponential	THUMP I	or unit weight.
1 4010		1 40 414004	10 000000	ioi biiigie	parameter	minear and	emponentia	income in	

8.2. Phase 2: Multiple Parameter Linear Regression Modeling

Analysis of correlations using single parameter MWD parameters against SPT blow count, UCS and unit weight yielded correlations with poor predictive power as can be seen by the low Pearson correlation coefficient (R^2) values. Trying to understand the poor results, we speculated that working in IGM's categorized as extremely weak rock (35 to 150 psi) and very weak rock (150 to 725 psi) could be a major contributing factor. Another possibility was the fact that MWD data were collected in the same borehole that sampling was done which could have a possible impact on modifying the materials in situ.

To further investigate *linear* correlation of MWD data and rock strength data, we implemented a multiple linear regression (MLR) approach. We used the same set of six MWD parameters as inputs and investigated correlations of these inputs to SPT blow count, UCS and unit weight – an approach similar to single parameter linear regression analysis. However, we explored all of the possible combinations of inputs in the analysis. That is, all possible combinations of six inputs using one input, all possible combinations of six inputs using two inputs, etc., up to the combination using all six inputs which resulted in 63 different combinations to test: 6 combinations using 1 input, 15 combinations using 2 inputs, 20 combinations using 3 inputs, 15 combinations using 4 inputs, 6 combinations using 5 inputs and 1 combination using all 6 inputs).

To display our results, we developed a graphical matrix approach. The matrix columns represent each of the possible six MWD inputs. The rows represent the number of possible combinations. The R^2 correlation coefficient for each correlation is displayed in each cell of the horizontal row for a particular combination. In addition to displaying the numerical R^2 value, the cells are colorcoded on a scale of 0 to 1 with blue representing low R^2 values and yellow representing high R^2 values. Color-coding makes quick comparisons of various combinations easy for either a specific number of combinations or across various numbers of correlations.

8.2.1. SPT Blow Count MLR Correlations

Figure 14 shows six matrix plots representing MLR correlation results for SPT blow counts. The first plot shows R^2 values for one combination of MWD inputs, the second plot shows R^2 results

for all possible combinations of two inputs, and so on to the sixth plot which shows only one possible combination of the six MWD inputs.

A text summary of MLR results for SPT blow count prediction is also shown in Appendix A.

Figure 14. Six matrix plots showing MLR results for the target SPT blow counts. Matrix columns represent the six MWD inputs. Rows show MLR R² values in cells representing which of the six MWD inputs were used for the correlation. R² values are color-coded from blue to yellow for easy comparison in a single plot or across plots.

8.2.2. UCS MLR Correlations

Figure 15 shows the six matrix plots representing MLR correlation results for predicting UCS. Similar to SPT blow count results, the first plot shows R^2 values for one combination of MWD inputs, the second plot shows R^2 results for all possible combinations of two inputs, and so on to the sixth plot which shows only one possible combination of the six MWD inputs.

A text summary of MLR results for UCS prediction is shown in Appendix B.

Figure 15. Six matrix plots showing MLR results for the target UCS. Matrix columns represent the six MWD inputs. Rows show MLR R^2 values in cells representing which of the six MWD inputs were used for the correlation. R^2 values are color-coded from blue to yellow for easy comparison in a single plot or across plots.

8.2.3. Unit Weight MLR Correlations

Figure 16 shows the six matrix plots representing MLR correlation results for predicting unit weight. The first plot shows R^2 values for one combination of MWD inputs, the second plot shows R^2 results for all possible combinations of two inputs, and so on to the sixth plot which shows only one possible combination of the six MWD inputs.

A text summary of MLR results for unit weight prediction is shown in Appendix C.

Montana Technological University

Figure 16. Six matrix plots showing MLR results for the target unit weight. Matrix columns represent the six MWD inputs. Rows show MLR R^2 values in cells representing which of the six MWD inputs were used for the correlation. R^2 values are color-coded from blue to yellow for easy comparison in a single plot or across plots.

8.3. Phase 3: Multiple Parameter Non-Linear Regression Modeling

Considering the overall weak predictive power of linear regression modeling as evidenced in the preceding sections, we next implemented a non-linear, neural network (NN) modeling approach. Literature is rich with many references for details of NN modeling. An especially useful reference is Hagan et al. (2014). Neural network modeling was implemented using Matlab[®] software and toolboxes (https://www.mathworks.com/). The Matlab[®] scripting environment allowed easy implementation of loops over the number of neurons used in the hidden layer and the number of trials to use for each hidden layer architecture. For our work, we modeled the hidden layer with [2 3 5 7 9 10 11 15 20 25 30] neurons and 100 trials for each hidden layer neuron number. In addition to varying the number of neurons in the hidden layer we used the same set of 63 possible combinations of inputs for each hidden layer setting. This resulted in 693 different NN model architectures to test with 100 iterations for each architecture.

Neural network modeling is a stochastic method. Each individual model is initiated with random initial weights and biases comprising the network (these are adjusted in training to decrease error in an iterative process). In addition, the input data set is divided into training (70%), validation (15%) and testing subsets (15%) which are randomly chosen for each trial. The network is trained using data from the training subset. The validation subset is used to dynamically monitor if error increases instead of decreasing and the independent testing subset is applied after training to test the generalization capability of the trained network. Figure 17 is a schematic illustrating the fitting network architecture we used showing inputs, hidden layer and output layer. Our modeling varied the number of inputs and the number of hidden layer neurons.

Figure 17. Feedforward fitting neural network schematic used for our analysis. Schematic shows 6 inputs (our inputs vary from 1 to 6), one hidden layer using a *tansig* transfer function with 10 neurons (our number of neurons varies from 2 to 30) with weights w and biases b and 1 output neuron with a *purelin* transfer function and one weight and bias. The output neuron produces a value for either SPT blow count, UCS or unit weight depending on which target set was used.

NN modeling used the same sets of input and target data used for linear correlation analysis: SPT blow count data (n = 64) and UCS and unit weight data (n = 117). To show NN modeling results, we generated plots of model predictions vs. targets and calculated the coefficient of determination R^2 to quantify goodness of fit. R^2 values are calculated for the training, validation and testing subsets as well as for the entire data set (all). Two sets of plots were produced: plots showing the *mean* R^2 values for 100 trials for each hidden layer number of neurons and a plot showing the *best* R^2 value out of the 100 trials for each hidden layer number of neurons.

The NN modelling results are presented in Appendices D, E and F. Each appendix contains two

sets of results (D-1, D-2, E-1, E-2, F-1, F-2). The first appendix subset (e.g. D-1) shows plots for the approximately six best models displaying mean R^2 values and best R^2 values for the 100 trials for each NN architecture (i.e. number of neurons in the hidden layer). The particular inputs that resulted in the best models are shown on the plots by number: 1 – Depthfeet, 2 – PeakDownPressurepsi, 3 - RotationTorquelbft, 4 – RotationSpeedrevmin, 5 – MovingSpeedfth, 6 - SpecificEnergyftlbft3.

The best model results shown came from 63 scenarios. The number of scenarios results from the total possible number of input combinations: 6 combinations using 1 input, 15 combinations using 2 inputs, 20 combinations using 3 inputs, 15 combinations using 4 inputs, 6 combinations using 5 inputs and 1 combination using all 6 inputs. On each plot, the horizontal axis shows the number of neurons used in the hidden layer for each scenario. Mean R² and best R² are displayed using four colors: blue for training, green for validation, red for testing and black for all. These plots are useful for quick comparisons of performance of the various NN scenarios.

In addition to the plots, a second appendix subset (e.g. D-2) contains a text listing of mean R^2 and best R^2 values for each of the best models plotted in the first appendix subset.

The complete text list for all models along with plots has been archived. Furthermore, each of the NN model architectures for best R^2 results is also saved to the same folder. This allows the user, after NN training, to review the performance results and choose the saved NN that has the best R^2 performance for a specified number of neurons in the hidden layer from the best combination of the six inputs. This represents the application phase of NN modelling. At this point, the user chooses the desired trained NN model and presents new MWD data resulting in a prediction of either SPT blow counts, UCS or unit weight. The application phase is analogous to having a regression equation and providing a new independent variable to produce the new dependent variable (i.e., present a new 'x' to the regression equation to get a new 'y').

8.3.1. NN SPT Blow Count Prediction

Prior to beginning NN modelling, we used an F-test to compare the importance of the contribution of each of the six input variables to predicting the desired target. We implemented the F-test using the built-in F-test function in Matlab®.

Figure 18 is a bar plot showing the relative importance of each of the six inputs to predicting SPT blow counts. The F-test calculations are based on comparison of variances of two parameters.

Figure 18. Bar plot showing the relative importance of the six input parameters in predicting unit weight. Each column is labeled with the name of the corresponding input parameter. For unit weight modelling, depth has the greatest relative importance in predicting unit weight; moving speed the least.

Results for NN modelling of SPT blow counts are presented in Appendices D-1 and D-2 as described in section 8.3. Appendix D-1 contains two sets of 6 network model plots (mean R^2 and best R^2 for 100 trials). Appendix D-2 contains the text list of the 6 best NN models.

8.3.2. NN UCS Prediction

Prior to NN modelling for UCS, we used the F-test to compare the importance of the contribution of each of the six input variables to predicting UCS. The F-test was implemented using the built-in F-test function in Matlab®.

Figure 19 is a bar plot showing the relative importance of each of the six inputs to predicting UCS. The F-test calculations are based on comparison of variances of two parameters.

Figure 19. Bar plot showing the relative importance of the six input parameters in predicting UCS. Each column is labeled with the name of the corresponding input parameter. For UCS modelling, specific energy has the greatest relative importance in predicting UCS; moving speed the least.

Results for NN modelling of UCS are presented in Appendices E-1 and E-2 as described in section 8.3. Appendix E-1 contains the two sets of 63 network scenario plots (mean R^2 and best R^2 for 100 trials). Appendix E-2 contains a subset of the full text list of the 693 NN scenarios.

8.3.3. NN Unit Weight Prediction

Prior to NN modelling for unit weight, we used the F-test to compare the importance of the contribution of each of the six input variables to predicting unit weight. The F-test was implemented using the built-in F-test function in Matlab®.

Figure 20 is a bar plot showing the relative importance of each of the six inputs to predicting unit weight.

Figure 20. Bar plot showing the relative importance of the six input parameters in predicting unit weight. Each column is labeled with the name of the corresponding input parameter. For unit weight modelling, depth has the greatest relative importance in predicting unit weight; moving speed the least.

9. Discussion

9.1. Data Subsets

As stated in the proposal and contract, the focus of Task 2 was investigation of correlations between MWD measurements and geotechnical parameters of interest. After assembling and organizing MWD data and geotechnical data, initial investigation explored linear correlations. It quickly became apparent that the streams of recorded MWD data required significant user input for data quality control. Specifically, for developing correlations of MWD and SPT blow count data, it was necessary to extract a small subset of values from the recorded data stream. As detailed in section 5, the down pressure data stream recorded sharp drops in measured pressure when auger changes happened. Our approach was to identify the pressure values before the sharp drops and use those pressures and corresponding MWD measurements for SPT blow count correlations.

Similarly, for UCS and unit weight correlations, we identified the MWD values associated with the UCS and unit weight lab values at those depths and used that data subset for correlation analysis. In addition, we evaluated the lab measurement values for unrealistic values.

After inspection of MWD data, we ended up with a data set for SPT blow count correlations of 64 examples. For UCS and unit weight correlations, we used 117 data examples. These data sets

are described in sections 6.2 and 6.3 of this report.

For correlation analysis we used six inputs from MWD measurements: depth, down pressure, rotation torque, rotation speed, moving speed and the compound parameter specific energy.

9.2. Single Parameter Linear Correlations – Phase 1

Correlation results for single parameter linear correlation are detailed in section 8.1 in this report. We used the coefficient of determination (\mathbb{R}^2) to quantify goodness of fit. The single best \mathbb{R}^2 value was 0.49 for depth and SPT blow counts. Tables in section 8.1 summarize the results. Figures in section 8.1 show plots with the linear regression fit lines overlain on the data used. Correlation results for UCS and unit weight were very low. Obviously, this approach was not going to be of use for any prediction analysis.

9.3. Evaluating The Relative Importance of Inputs

An F-test was used to evaluate the relative importance of the six individual inputs to predict each of the three targets: SPT blow counts, UCS and unit weight. The results of the F-tests are presented at the beginning of sections 8.3.1, 8.3.2 and 8.3.3. Interestingly, depth is an important predictive variable for both SPT blow count and unit weight predictions.

Although the F-test provides a useful tool for evaluating the relative importance of inputs in modelling, a more comprehensive insight is obtained by reviewing results from both MLR (multiple linear regression) and NN modelling. For MLR, results are shown as matrix values in graphical form and as text listings in Appendices A, B and C. Each row in the plots or text listing represents a single combination of inputs. The highlighted cells on the plots are populated with the MLR correlation coefficient for those particular inputs. These values can be viewed as giving the importance of that combination of inputs.

For NN modelling, we can look at either the plots of modelling results, or the text listings. These are shown in Appendices D, E and F. The text listing shows the four correlation coefficients (training, validation, testing and all) for each of the 63 combinations as well as varying that over the number of neurons in the hidden layer resulting in 693separate sets of results.

9.4. Multiple Parameter Linear Correlations – Phase 2

Considering the poor correlation results for single parameter linear correlation, we implemented a multiple parameter linear approach. Details are discussed in section 8.2 of this report. Continuing with the six MWD inputs, we calculated all of the possible combinations of those inputs resulting in 63 possible sets of inputs. We calculated the multiple linear regressions (MLR) for those input sets for the same geotechnical parameters: SPT blow counts, UCS and unit weight. MLR results are detailed in section 8.2 and shown in Appendices A, B and C.

The appendices show the results in text form; figures in section 8.2 show the result in graphic form. As the number of inputs increased, MLR R^2 values also increased. The highest R^2 value of
0.65 occurred for correlating SPT blow counts with all six possible inputs. Best correlation values for UCS and unit weight also occurred with all six inputs but were still low at 0.25 for UCS and 0.29 for unit weight.

MLR results showed a significant improvement over single parameter linear results, likely indicating that we are dealing with a multiparameter process; not surprizing considering complicated geologic conditions.

9.5. Multiple Parameter Nonlinear Correlations – Phase 3

In light of the correlation improvements with MLR, we next implemented a nonlinear, multiple parameter approach in the context of machine learning (ML). There are a variety of ML techniques to explore including classification and clustering. Methods can be broadly grouped as supervised or unsupervised. Unsupervised approaches explore data sets to identify groupings without user intervention. Supervised approaches require known *targets* to train to. Both techniques are iterative methods and begin with a starting model guess or estimation or randomized model parameters.

We chose to use a supervised neural network (NN) approach because we are correlating inputs with known geotechnical parameters (targets). Also, in the framework of exploring models, we can implement multiple models in a programming environment that does not require user intervention for individual models. We used Matlab®'s Statistics and Machine Learning Toolbox to implement the modelling.

We used the same sets of 63 possible combinations of inputs we used for MLR in NN modelling. Additional variables in NN modelling are the number of hidden layers and the number of neurons in each hidden layer. We used a single hidden layer with number of neurons varying from 2 3 5 7 9 10 11 15 20 25 30 (11 possibilities). This results in 693 modeling scenarios. For each of these scenarios, we used 100 trials. For each trial, we recorded the best trial based on regression results as well as the mean regression results. Section 8.3 details results for predictions of SPT blow counts, UCS and unit weight. Results are presented in Appendices D, E and F as plots and in Appendices G, H and I in text format.

Results for nonlinear NN modeling showed large improvements in predictive ability. Compared to best case R^2 values of 0.65. 0.25 and 0.29 for MLR, we see a best R^2 of 0.91 for SPT blow counts, a best R^2 of 0.75 for UCS and a best R^2 of 0.86 for unit weight.

9.6. Final Models

9.6.1. Phase 1 Final Models – Single Parameter Linear/Exponential Regression

The best result for traditional, linear correlation for SPT blow counts is 0.51 R^2 resulting from using the input of measured depth.

The best result for traditional correlation for UCS is 0.18 R² using an exponential fit and input of rotational torque.

The best result for traditional correlation for unit weight is 0.19 R² using either a linear or

exponential fit and the input of measured depth.

9.6.2. Phase 2 Final Models – Multiple Parameter Linear Regression

The best result for multiple linear regression for SPT blow counts is 0.65 R^2 using all six MWD inputs.

The best result for multiple linear regression for UCS is 0.25 R^2 using all six MWD inputs or the combination of depth, down pressure, rotation torque, rotation speed and specific energy.

The best result for multiple linear regression for unit weight is 0.29 R^2 using all six MWD inputs, or depth, moving speed, specific energy, or depth, down pressure, moving speed, specific energy, or depth, rotation torque, moving speed, specific energy, or depth, rotation speed, moving speed, specific energy, or depth, rotation speed, moving speed, specific energy, or depth.

9.6.3. Phase 3 Final Models – Nonlinear Fitting Using Neural Networks

SPT Results

The best result for neural network fitting for SPT blow counts was a model using five inputs: depth, peak down pressure, rotation torque, rotation speed and moving speed. The sum of R^2 values for training, validation, testing and all was 3.64/4.0 using 15 neurons in the hidden layer. Table 12 shows results for additional models with high sum R^2 values.

Depth	Down pressure	Rotation torque	Rotation speed	Moving speed	Specific energy	HL no.	Sum R ²
~	✓		\checkmark	✓		9	3.54
~			~	~	✓	15	3.61
~	✓	~	~	~		10	3.51
~	✓	~	\checkmark	~		15	3.64
~	✓	~	\checkmark		✓	9	3.53
~	\checkmark		\checkmark	\checkmark	\checkmark	11	3.52

Table 12. List of models with high sum R² values for SPT NN modelling.

UCS Results

The best result for neural network fitting for UCS was a model using four inputs: down pressure, rotation torque, moving speed and specific energy. The sum of R^2 values for training, validation, testing and all was 2.99/4.0 using 30 neurons in the hidden layer. Table 13 shows results for additional models with high sum R^2 values.

Depth	Down pressure	Rotation torque	Rotation speed	Moving speed	Specific energy	HL no.	Sum R ²
~				~		10	2.77
			✓		✓	20	2.86
	✓	~		~	✓	30	2.99
	✓		~	~	~	25	2.83

Table 13. List of models with high sum R² values for UCS NN modelling.

Unit Weight Results

The best result for neural network fitting for unit weight was a model using three inputs: depth, down pressure and rotation torque. The sum of R^2 values for training, validation, testing and all was 3.43/4.0 using 25 neurons in the hidden layer. Table 14 shows results for additional models with high sum R^2 values.

Depth	Down pressure	Rotation torque	Rotation speed	Moving speed	Specific energy	HL no.	Sum R ²
~	~	~				25	3.43
~		~			✓	25	3.32
~	~	~		~		5	3.35
~	~	~		~		7	3.31
~		~	~		✓	20	3.35
	~	~	~		\checkmark	9	3.35
~	✓	✓	✓		~	9	3.32

Table 14. List of models with high sum R² values for UW NN modelling.

9.7. Looking Ahead

MWD is a relatively new approach for answering relevant questions about subsurface parameters. MWD technology and standards are evolving as we speak. Developing robust recording technology on the drill rig is not a trivial challenge. Revisiting drilling methodology and training MWD drillers will be critical to achieving high data quality. As the technology is applied in new geologic settings, new analysis techniques will need to be evaluated.

The takeaways from the current MDT project highlight drilling methodology for consistent, usable data and analysis techniques to explore nonlinear relationships among MWD parameters and geotechnical parameters.

Suggestions for future MWD projects are to consider a separate borehole for the sole purpose of collecting MWD data adjacent to a borehole used for HSA sampling and rock coring along with

focused training for MWD drillers with input from other MWD practitioners. Such training would include how drilling methodology affects final MWD data quality and how these data are used for analysis. We think it is important to involve the driller in reviewing MWD and geotechnical data to inform best drilling practices for optimum data quality.

10. Conclusions and Recommendations

- Successful correlation of MWD data to geotechnical parameters requires careful preprocessing of MWD data and quality control/editing of drilling data such as UCS or SPT N. In addition, any correlations developed will be site specific and closely correlated with the local geology.
- The geology at MWD sites for the Montana project consisted of intermediate geomaterials (IGMs) categorized as extremely weak rock (35 to 150 psi) and very weak rock (150 to 725 psi). These weak materials present a challenge to the MWD drilling process and ultimately data analysis and correlation development.
- Future MWD work should focus on controlling the drilling environment to achieve optimized drilling parameters for highest drilling efficiency and optimal core recovery to achieve high quality MWD data. This approach may require dedicated MWD drillers adhering to standards developed by organizations involved. In addition, drilling a second adjacent borehole specifically for MWD data collections should be explored.
- Our work with MWD data from IGMs indicates that the relationship between MWD drilling parameters and correlations with geotechnical parameters is likely nonlinear.

11. References and Bibliography

- Barr MV. Instrumented horizontal drilling for tunnelling site investigations. Imperial College of Science and Technology, London, UK; 1984.
- Baser, T., A. Abhinav, M. Rodgers, A Sychterz, S. Kassel and B Hessing 2023/4. "Breaking Ground with Smart Drilling – How MWD Enhanced by Machine Learning Can Reshape Geotechnical Engineering." Geostrata 27, no. 6 (December 2023 – January 2024): 54-61.
- Bingham MG. Needed: Formulas for Predicting Drilling in the Field. Oil gas J. 1964;44(44):52–7.
- Bishara SW, McReynolds RL. The use of HPGPC for determination of MWD of asphalt cement -A spectrophotometric vs. gravimetric finish. In: Preprints Symposia-Symposium on Chemistry and Characterization of Asphalts, 1990, Washington, DC, USA. 1990. p. 396–406.
- Detournay E, Richard T, Shepherd M. Drilling response of drag bits: Theory and experiment. Int J Rock Mech Min Sci. 2008 Dec 1;45(8):1347–60.
- driven model for the identification of the rock type at a drilling bit. J Pet Sci Eng. 2019 Jul 1;178:506–16.
- García S, Ramírez-Gallego S, Luengo J, Benítez JM, Herrera F. Big data preprocessing: methods and prospects. Big Data Anal [Internet]. 2016 Nov 1 [cited 2021 Jul 10];1(1):1–22. Available from: https://bdataanalytics.biomedcentral.com/articles/10.1186/s41044-016-0014-0
- Gui MW, Soga K, Bolton MD, Hamelin JP. Instrumented Borehole Drilling for Subsurface Investigation. J Geotech Geoenvironmental Eng [Internet]. 2002 Apr 1 [cited 2021 Apr 27];128(4):283–91. Available from: http://ascelibrary.org/doi/10.1061/%28ASCE%291090-0241%282002%29128%3A4%28283%29
- Karasawa H, Ohno T, Kosugi M, Rowley JC. Methods to Estimate the Rock Strength and Tooth Wear While Drilling with Roller-Bits—Part 2: Insert Bits. J Energy Resour Technol [Internet]. 2002a Sep 1 [cited 2021 Jun 24];124(3):133–40. Available from: https://asmedigitalcollection.asme.org/energyresources/article/124/3/133/453903/Methodsto-Estimate-the-Rock-Strength-and-Tooth
- Karasawa H, Ohno T, Kosugi M, Rowley JC. Methods to estimate the rock strength and tooth wear while drilling with roller-bits Part 1: Milled-tooth bits. J Energy Resour Technol Trans ASME. 2002b Sep 1;124(3):125–32.
- Klyuchnikov N, Zaytsev A, Gruzdev A, Ovchinnikov G, Antipova K, Ismailova L, et al. Datadriven model for the identification of the rock type at a drilling bit. J Pet Sci Eng. 2019 Jul 1; 178:506–16.
- Laudanski G, Reiffsteck P, Tacita JL, Desanneaux G, Benoit J. Experimental study of drilling parameters using a test embankment. In: Geotechnical and Geophysical Site Characterization4 Proceedings of the 4th International Conference on Site Characterization 4, ISC-4 [Internet]. 2013 [cited 2021 Jul 6]. p. 435–40. Available from: https://scholars.unh.edu/civeng_facpub/5

- Li Z, Itakura KI. An analytical drilling model of drag bits for evaluation of rock strength. Soils Found. 2012 Apr 1;52(2):216–27.
- Lonstein E, Benoit J, Sadkowski S, Stetson K. Estimation of Cambridge Argillite Strength Based on Drilling Parameters. In: Proceedings of the 66th Highway Geology Symposium. 2015. p. 74–102.
- McKenney FS, Knoll WG. Hard rock directional crossings problems solved with new directional drilling systems. No-dig 89. Developments underground. [internet]. Proceedings of the 4th international conference on trenchless construction for utilities, London. 1989, [cited 2021 Jul 6]. p. 211–6. Available from: https://trid.trb.org/view/316069
- McVay M, Rodgers M. Implementation of Measuring While Drilling Shafts in Florida (FLMWDS). 2020 Jun.
- Pfister, P. 1985. "Recording Drilling Parameters in Ground Engineering." Journal of Ground Engineering 18 no. 3: 16-21.
- Pittard GT, McDonald WJ, Kramer SR. Instrumentation systems for guidedboring. No-dig 89. Developments underground. [internet]. Proceedingsof the 4th international conference on trenchless construction for utilities, London. 1989 [cited 2021 Jul 6]. p. 191–9. Available from: https://trid.trb.org/view/316067
- Rai P, Schunnesson H, Lindqvist PA, Kumar U. Measurement-while-drilling technique and its scope in design and prediction of rock blasting. Int J Min Sci Technol. 2016 Jul 1;26(4):711–9.
- Reiffsteck P, Benoît J, Bourdeau C, Desanneaux G. Enhancing Geotechnical Investigations Using Drilling Parameters. J Geotech Geoenvironmental Eng [Internet]. 2018 Jan 6 [cited 2021 Jul 6];144(3):04018006. Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0001836
- Reiffsteck P. Influence factors of measuring while drilling method. In: Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering-Geotechnics of Hard Soils-Weak Rocks, Vol 1, IOS Press, Amsterdam, Netherlands [Internet]. IOS Press; 2011 [cited 2021 Jul 7]. p. 67–72. Available from: https://ebooks.iospress.nl/doi/10.3233/978-1-60750-801-4-67
- Rickert T. Hole Drilling With Orbiting Motion for Residual Stress Measurement Effects of Tool and Hole Diameters. SAE Int J Engines. 2017 Mar 28;10(2):467–70.
- Rodgers M, McVay M, Ferraro C, Horhota D, Tibbetts C, Crawford S. Measuring Rock Strength While Drilling Shafts Socketed into Florida Limestone. J Geotech Geoenvironmental Eng [Internet]. 2018a Mar 23 [cited 2021 Jun 22];144(3):04017121. Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0001847
- Rodgers M, McVay M, Horhota D, Hernando J, Paris J. Measuring while drilling in florida limestone for geotechnical site investigation. Can Geotech J [Internet]. 2020 [cited 2021 Jun 21];57(11):1733–44. Available from: https://cdnsciencepub.com/doi/abs/10.1139/cgj-2019-0094

- Rodgers M, McVay M, Horhota D, Hernando J. Assessment of rock strength from measuring while drilling shafts in Florida limestone. Can Geotech J [Internet]. 2018b [cited 2021 Jun 21];55(8):1154–67. Available from: https://cdnsciencepub.com/doi/abs/10.1139/cgj-2017-0321
- Rodgers M, McVay M, Horhota D, Sinnreich J, Hernando J. Assessment of shear strength from measuring while drilling shafts in Florida limestone. Can Geotech J [Internet]. 2019 [cited 2021 Jun 21];56(5):662–74. Available from: https://cdnsciencepub.com/doi/abs/10.1139/cgj-2017-0629
- Rodgers M. Assessing Axial Capacities of Auger Cast Piles from Measuring While Drilling [Internet]. 2019 [cited 2021 Apr 27]. Available from: https://rip.trb.org/view/1665498
- Rodgers M., M. McVay, C. Ferraro, D. Horhota, C. Tibbetts, and S. Crawford 2018A. "Measuring Rock Strength While Drilling Shafts Socketed into Florida Limestone." ASCE Journal of Geotechnical and Geoenvironmental Engineering. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001847
- Roye T. Unsettled Technology Domains in Industrial Smart Assembly Tools Supporting Industry4.0 [Internet]. 2020 Sep. Available from: https://trid.trb.org/view/1745932
- Sadkowski SS, Stetson KP, Benoît J, Roche JT. Characterizing Subsurface Conditions Using Drilling Parameters for a Deep Foundation Project in Boston, MA, USA. In American Society of Civil Engineers; 2010 [cited 2021 Jul 7]. p. 1132–41. Available from: https://ascelibrary.org/doi/10.1061/41095%28365%29112
- Schunnesson H. RQD predictions based on drill performance parameters. Tunn Undergr Sp Technol. 1996 Jul 1;11(3):345–51.
- Segui JB, Higgins M. Blast design using measurement while drilling parameters. Fragblast. 2002 Sep;6(3–4):287–99.
- Smith B. Improvements in blast fragmentation using measurement while drilling parameters. Fragblast. 2002 Sep;6(3–4):301–10.
- Somerton WH. A Laboratory Study of Rock Breakage by Rotary Drilling. Trans AIME [Internet]. 1959 Dec 1 [cited 2021 Jul 7];216(01):92–7. Available from: http://onepetro.org/TRANS/article-pdf/216/01/92/2175967/spe-1163-g.pdf
- Somerton, W.H. 1959. "A Laboratory Study of Rock Breakage by Rotary Drilling." Petroleum Transactions, AIME 216: 92-97.
- Taleb I, Dssouli R, Serhani MA. Big Data Pre-processing: A Quality Framework. In: Proceedings - 2015 IEEE International Congress on Big Data, BigData Congress 2015. Institute of Electrical and Electronics Engineers Inc.; 2015. p. 191–8.
- Teale R. The concept of specific energy in rock drilling. Int J Rock Mech Min Sci. 1965 Mar 1;2(1):57–73.
- Teale, R. 1965. "The Concept of Specific Energy in Rock Drilling." International Journal of Rock Mechanics and Mining Sciences 2: 57-73.

Montana Technological University

- Warren TM. Factors Affecting Torque for a Roller Cone Bit. JPT, J Pet Technol. 1984 Sep 1;36(10):1500–8.
- Wolcott DS, Bordelon DR. Lithology determination using downhole bit mechanics data. In: Proceedings - SPE Annual Technical Conference and Exhibition. Publ by Society of Petroleum Engineers (SPE); 1993. p. 769–78.
- Yang Z, Zhang H, Li S, Fan C. Prediction of Residual Gas Content during Coal Roadway Tunneling Based on Drilling Cuttings Indices and BA-ELM Algorithm. Adv Civ Eng. 2020;2020.
- Zetterlund M, Martinsson L, Dalmalm T. Implementation of MWD-Data for Grouting Purposes in a Large Infrastructure Project—The Stockholm Bypass. In American Society of Civil Engineers; 2017 [cited 2021 Jul 6]. p. 61–70. Available from: https://ascelibrary.org/doi/10.1061/9780784480793.006
- Zhong R, Johnson RL, Chen Z. Using machine learning methods to identify coal pay zones from drilling and logging-while-drilling (LWD) data. SPE J [Internet]. 2020 Jun 11 [cited 2021 Jul 8];25(3):1241–58. Available from: http://onepetro.org/SJ/articlepdf/25/03/1241/2326754/spe-198288-pa.pdf

12. Acknowledgements

The majority of the bibliography is the effort of Mohammadhossein Sadeghiamirshahidi, Ph.D., A.M. ASCE. Mohammad had left Montana Tech after the initial proposal was written and his proposal was adapted and put into place for the research team at Montana Tech.

Appendices

Appendix A – MLR SPT Blows Per Foot

----- MLR ------

---> Target = BlowsPerFoot

---- Number of combinations = 1 Depthfeet R squared = 0.50963 PeakDownPressurepsi R squared = 0.36366 RotationTorquelbft R squared = 0.25189 RotationSpeedrevmin R squared = 0.0077129 MovingSpeedfth R squared = 0.017877 SpecificEnergyftlbft3 R squared = 0.36605

---- Number of combinations = 2 Depthfeet PeakDownPressurepsi R squared = 0.60025 Depthfeet RotationTorquelbft R squared = 0.51796 Depthfeet RotationSpeedrevmin R squared = 0.51058 Depthfeet MovingSpeedfth R squared = 0.53243 Depthfeet SpecificEnergyftlbft3 R squared = 0.59937 PeakDownPressurepsi RotationTorquelbft R squared = 0.42455 PeakDownPressurepsi RotationSpeedrevmin R squared = 0.37985 PeakDownPressurepsi MovingSpeedfth R squared = 0.38953 PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.37529 RotationTorguelbft RotationSpeedrevmin R squared = 0.28888 RotationTorquelbft MovingSpeedfth R squared = 0.26066 RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.42397 RotationSpeedrevmin MovingSpeedfth R squared = 0.046513 RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.38316 MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.39421

---- Number of combinations = 3

Depthfeet PeakDownPressurepsi RotationTorquelbft R squared = 0.60039 Depthfeet PeakDownPressurepsi RotationSpeedrevmin R squared = 0.6169 Depthfeet PeakDownPressurepsi MovingSpeedfth R squared = 0.62666 Depthfeet PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.60485 Depthfeet RotationTorquelbft RotationSpeedrevmin R squared = 0.51798 Depthfeet RotationTorquelbft MovingSpeedfth R squared = 0.53789 Depthfeet RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.59945 Depthfeet RotationSpeedrevmin MovingSpeedfth R squared = 0.53443 Depthfeet RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.61634 Depthfeet MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.62705 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.42501 PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.44232 PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.42569 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.39281 PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.39965 PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.45037 RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.33081 RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.42464 RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.4434 RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.39758

---- Number of combinations = 4

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.62068 Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.62676 Depthfeet PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.60725 Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.63007 Depthfeet PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.61831 Depthfeet PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.62837 Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.62837 Depthfeet RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.62073 Depthfeet RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.62073 Depthfeet RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.62074 Depthfeet RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.63044 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.44467 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.44467 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.44467

PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.45449 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.45203

RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.44547

---- Number of combinations = 5

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.63216

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.62074

Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.63139

Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.63144

Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.63298

PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.45449 ---- Number of combinations = 6 Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.64512

Appendix B – MLR UCS

----- MLR ------

---> Target = UCSpsi

---- Number of combinations = 1 Depthfeet R squared = 0.088592 PeakDownPressurepsi R squared = 0.0046785 RotationTorquelbft R squared = 0.13225 RotationSpeedrevmin R squared = 0.10315 MovingSpeedfth R squared = 0.050543 SpecificEnergyftlbft3 R squared = 0.07835

---- Number of combinations = 2 Depthfeet PeakDownPressurepsi R squared = 0.096613 Depthfeet RotationTorquelbft R squared = 0.15775 Depthfeet RotationSpeedrevmin R squared = 0.14069 Depthfeet MovingSpeedfth R squared = 0.12097 Depthfeet SpecificEnergyftlbft3 R squared = 0.14908 PeakDownPressurepsi RotationTorquelbft R squared = 0.17245 PeakDownPressurepsi RotationSpeedrevmin R squared = 0.14307 PeakDownPressurepsi MovingSpeedfth R squared = 0.060659 PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.1816 RotationTorquelbft RotationSpeedrevmin R squared = 0.14531 RotationTorquelbft MovingSpeedfth R squared = 0.14708 RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.20815 RotationSpeedrevmin MovingSpeedfth R squared = 0.12432 RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.19532 MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.1146

---- Number of combinations = 3

Depthfeet PeakDownPressurepsi RotationTorquelbft R squared = 0.19317 Depthfeet PeakDownPressurepsi RotationSpeedrevmin R squared = 0.17533 Depthfeet PeakDownPressurepsi MovingSpeedfth R squared = 0.13392 Depthfeet PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.21037 Depthfeet RotationTorquelbft RotationSpeedrevmin R squared = 0.16644 Depthfeet RotationTorquelbft MovingSpeedfth R squared = 0.17115 Depthfeet RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.22397 Depthfeet RotationSpeedrevmin MovingSpeedfth R squared = 0.1582 Depthfeet RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.21717 Depthfeet MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.17261 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.19811 PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.18953 PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.22136 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.16713 PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.21806 PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.18346 RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.15767 RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.22874 RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.21562 RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.20536

---- Number of combinations = 4

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.21255 Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.20875 Depthfeet PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.23503 Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.1956 Depthfeet PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.23422 Depthfeet PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.21242 Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.17801 Depthfeet RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.2398 Depthfeet RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.23098 Depthfeet RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.22589 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.21175 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.21175 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.21175 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.21175

PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.22344 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.21992

RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.23374

---- Number of combinations = 5

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.22542

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.24526

Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.23722

Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.23624

Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.24473

PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.23686 ---- Number of combinations = 6 Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.24738

Appendix C – MLR – Unit Weight

----- MLR ------

---> Target = UnitWeightpcf

---- Number of combinations = 1 Depthfeet R squared = 0.19272 PeakDownPressurepsi R squared = 0.046071 RotationTorquelbft R squared = 0.025197 RotationSpeedrevmin R squared = 0.010595 MovingSpeedfth R squared = 7.9056e-05 SpecificEnergyftlbft3 R squared = 0.11669

---- Number of combinations = 2 Depthfeet PeakDownPressurepsi R squared = 0.2533 Depthfeet RotationTorquelbft R squared = 0.19352 Depthfeet RotationSpeedrevmin R squared = 0.19652 Depthfeet MovingSpeedfth R squared = 0.1965 Depthfeet SpecificEnergyftlbft3 R squared = 0.27739 PeakDownPressurepsi RotationTorquelbft R squared = 0.10551 PeakDownPressurepsi RotationSpeedrevmin R squared = 0.084097 PeakDownPressurepsi MovingSpeedfth R squared = 0.047597 PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.13725 RotationTorquelbft RotationSpeedrevmin R squared = 0.025198 RotationTorquelbft MovingSpeedfth R squared = 0.026826 RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.14058 RotationSpeedrevmin MovingSpeedfth R squared = 0.01095 RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.13298 MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.11794

---- Number of combinations = 3

Depthfeet PeakDownPressurepsi RotationTorquelbft R squared = 0.25658 Depthfeet PeakDownPressurepsi RotationSpeedrevmin R squared = 0.25424 Depthfeet PeakDownPressurepsi MovingSpeedfth R squared = 0.25419 Depthfeet PeakDownPressurepsi SpecificEnergyftlbft3 R squared = 0.27754 Depthfeet RotationTorquelbft RotationSpeedrevmin R squared = 0.1966 Depthfeet RotationTorquelbft MovingSpeedfth R squared = 0.1966 Depthfeet RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.27765 Depthfeet RotationSpeedrevmin MovingSpeedfth R squared = 0.19891 Depthfeet RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.27805 Depthfeet MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.28634 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.10942 PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.10629 PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.14379 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.084133 PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.14022 PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.15104 RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.026853 RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.14192 RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.14791 RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.13835

---- Number of combinations = 4

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin R squared = 0.25658 Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth R squared = 0.25853 Depthfeet PeakDownPressurepsi RotationTorquelbft SpecificEnergyftlbft3 R squared = 0.27837 Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth R squared = 0.25556 Depthfeet PeakDownPressurepsi RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.27893 Depthfeet PeakDownPressurepsi MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.2902 Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.19921 Depthfeet RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.27805 Depthfeet RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.28643 Depthfeet RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.28635 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.11055 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.11055 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.11055 PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.11055

PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.15734 PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.154 RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.15007

---- Number of combinations = 5

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth R squared = 0.25855

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin SpecificEnergyftlbft3 R squared = 0.27917

Depthfeet PeakDownPressurepsi RotationTorquelbft MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.29108

Depthfeet PeakDownPressurepsi RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.29157

Depthfeet RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.28653

PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.15784 ---- Number of combinations = 6

Depthfeet PeakDownPressurepsi RotationTorquelbft RotationSpeedrevmin MovingSpeedfth SpecificEnergyftlbft3 R squared = 0.29184 Appendix D – NN Modeling for SPT Blow Count: Mean R^2 and Best R^2 from 100 Iterations for Six Best Models

The inset text on each plot shows the training input number code, the training target, input file name (for reference) and the number of modeling iterations (trials). The legend on the plots is color coded for the data sets: blue for training, green for validation, red for testing and black for all.

Appendix D-1 – Plots of Mean and Best R² Values for SPT Blow Counts

Results for NN modeling of SPT blow counts. Five pairs of plots are shown for the six best models listed in Table 12.

Appendix D-2 – Mean and Best R² Results in Text Form for SPT Blow Counts

Results for NN modelling of SPT blow counts showing results for the six best NN models. inp = 1 2 4 5

шр	-		T	Z	4	5		
					PeakDownPr	RotationSpe		
>	Input(s)		=	Depthfeet	essurepsi	edrevmin	MovingSpeed	fth
	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.56688	0.6028	0.55371	0.51149		
		3	0.60124	0.65773	0.60232	0.45842		
		5	0.60169	0.67605	0.52959	0.47642		
		7	0.63067	0.71867	0.54594	0.44241		
		9	0.59203	0.71327	0.52948	0.38692		
		10	0.625494	0.724467	0.535856	0.498885		
		11	0.596638	0.70677	0.569383	0.41594		
		15	0.576854	0.734512	0.481786	0.385983		
		20	0.566077	0.762825	0.378829	0.346146		
		25	0.495042	0.714279	0.341465	0.337571		
		30	0.433693	0.717525	0.311769	0.269431		
BestR	=							
		2	0.73284	0.74441	0.73646	0.76193	2.9756	
		3	0.70847	0.65152	0.8035	0.91738	3.0809	
		5	0.8497	0.89405	0.60257	0.83923	3.1856	
		7	0.78438	0.81594	0.93394	0.70031	3.2346	
		9	0.77216	0.92302	0.91381	0.93609	3.5451	
		10	0.814826	0.86456	0.910245	0.873964	3.46359	
		11	0.850421	0.872267	0.737422	0.888129	3.34824	
		15	0.799636	0.796908	0.80838	0.851063	3.25599	
		20	0.749859	0.917255	0.85494	0.739854	3.26191	
		25	0.599554	0.930434	0.853318	0.760191	3.1435	
		30	0.750925	0.983939	0.947946	0.314096	2.99691	
inp	=		1	4	5	6		
•					RotationSpe	MovingSpee		
>	Input(s)		=	Depthfeet	edrevmin	dfth	SpecificEnergy	yftlbft3
	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.55444	0.59262	0.56579	0.44191		
		3	0.56748	0.62625	0.55499	0.46526		
		5	0.6008	0.67607	0.55012	0.4423		
		7	0.59515	0.67996	0.48948	0.43668		
		9	0.6128	0.7271	0.52685	0.45262		
		10	0.625948	0.743716	0.540184	0.435125		
		11	0.590069	0.706629	0.552058	0.383818		
		15	0.595574	0.748739	0.49437	0.438679		

		20	0.512768	0.730131	0.383746	0.308186		
		25	0.487565	0.72458	0.344208	0.310793		
		30	0.460058	0.661762	0.310391	0.348316		
BestR	=							
		2	0 70009	0 62949	0 88298	0 84811	3 0607	
		2	0 77175	0 76655	0.82311	0 75807	3 1195	
		5	0.92009	0.70055	0.02511	0.96122	2 2252	
		7	0.83038	0.85007	0.78045	0.80122	2.2222	
		,	0.80418	0.80495	0.79520	0.87045	5.5526	
		9	0.74272	0.73283	0.92433	0.86993	3.2698	
		10	0.85/169	0.942793	0.811351	0.643121	3.25443	
		11	0.767863	0.809854	0.854536	0.907775	3.34003	
		15	0.915271	0.99503	0.780809	0.919126	3.61023	
		20	0.722696	0.912494	0.789688	0.882624	3.3075	
		25	0.817902	0.925863	0.892106	0.548734	3.18461	
		30	0.874452	0.952563	0.713892	0.786234	3.32714	
inp	=		1	2	3	4	5	
					PeakDownPr	RotationTor	RotationSpe	MovingSpe
>	Input(s)		=	Depthfeet	essurepsi	quelbft	edrevmin	edfth
	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.53058	0.57904	0.54612	0.40207		
		3	0.5387	0.60332	0.54909	0.41704		
		5	0.56391	0.65293	0.51768	0.40356		
		7	0.60678	0 72855	0 53131	0 45008		
		ģ	0 60308	0 71813	0 5319	0.43668		
		10	0.608221	0.727221	0.5315	0.43000		
		11	0.008221	0.737321	0.001901	0.412937		
		11	0.590177	0.710064	0.495714	0.300782		
		20	0.507801	0.742266	0.437148	0.315016		
		20	0.505144	0.726558	0.387981	0.289501		
		25	0.510665	0.753123	0.352138	0.291461		
		30	0.464307	0.71226	0.354742	0.288934		
BestR	=							
		2	0.70783	0.77882	0.81514	0.71746	3.0192	
		3	0.78791	0.88105	0.90297	0.68878	3.2607	
		5	0.8295	0.8934	0.88931	0.5678	3.18	
		7	0.80336	0.89923	0.62528	0.82879	3.1567	
		9	0.86332	0.89856	0.87976	0.75654	3.3982	
		10	0.860339	0.868422	0.926853	0.852136	3.50775	
		11	0.804035	0.814216	0.63521	0.958332	3.21179	
		15	0.898764	0.949395	0.915523	0.8771	3.64078	
		20	0.873582	0.999477	0.94193	0.544816	3.3598	
		25	0.79794	0.989442	0.636168	0.708876	3.13243	
		30	0.813625	0.83898	0.931768	0.604696	3,18907	
inn	=		1	2.00000	2	4	6	
P			1	2	PeakDownPr	RotationTor	RotationSne	SpecificEne
>	Input(s)		=	Depthfeet	essurensi	quelbft	edrevmin	rgvftlhft3
-	input(5)			Depineer	2350i Cp3i	queion	Curcynnin	.91.09.03

Montana Technological University

	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.53753	0.57832	0.54708	0.41594		
		3	0.56248	0.62983	0.52877	0.45344		
		5	0.57136	0.65796	0.52566	0.41447		
		7	0.56426	0.6709	0.54921	0.36746		
		9	0.54944	0.65717	0.45073	0.38349		
		10	0.547177	0.668745	0.470812	0.372511		
		11	0.567688	0.715419	0.435057	0.341982		
		15	0.505829	0.670055	0.405403	0.309037		
		20	0.476797	0.712486	0.33157	0.295064		
		25	0.457154	0.717743	0.3136	0.250269		
		30	0.419561	0.682634	0.254522	0.259345		
BestR	=							
		2	0.70325	0.6904	0.88875	0.59687	2.8793	
		3	0.75222	0.75591	0.91261	0.73178	3.1525	
		5	0.76743	0.77822	0.8427	0.77903	3.1674	
		7	0.8097	0.94584	0.81421	0.73049	3.3002	
		9	0.86618	0.89075	0.91019	0.86744	3.5346	
		10	0.755302	0.825282	0.746032	0.781528	3.10814	
		11	0.750913	0.975963	0.510014	0.782477	3.01937	
		15	0.785796	0.847465	0.562956	0.861024	3.05724	
		20	0.766173	0.968534	0.782872	0.824503	3.34208	
		25	0.734848	0.770924	0.806976	0.71784	3.03059	
		30	0.772921	0.86314	0.823844	0.472467	2.93237	
inp	=		1	2	4	5	6	
					PeakDownPr	RotationSpe	MovingSpee	SpecificEne
>	Input(s)		=	Depthfeet	essurepsi	edrevmin	dfth	rgyftlbft3
	HL		no.	all	train	val	test	Sum
Mean								
R	=	_						
		2	0.53348	0.573	0.52588	0.45373		
		3	0.58333	0.62821	0.56674	0.50524		
		5	0.59688	0.68008	0.55108	0.43818		
		7	0.61242	0.68851	0.58007	0.47741		
		9	0.61232	0.70822	0.55254	0.42641		
		10	0.594963	0.699755	0.510806	0.453596		
		11	0.646336	0.763646	0.548237	0.44483		
		15	0.60009	0.761969	0.444649	0.446075		
		20	0.539563	0.739141	0.341263	0.383575		
		25	0.488689	0.721812	0.387022	0.310765		
		30	0.491162	0.705274	0.382269	0.320449		
BestR	=	~	0 70 70 7	0 7/0/5	0.00101	0 == 0.0=	0.050	
		2	0.72508	0.71313	0.86181	0.75007	3.0501	
		3	0.73029	0.70499	0.85387	0.83852	3.1277	

Montana Technological University

	5	0.77658	0.75105	0.9434	0.78458	3.2556	
	7	0.82981	0.84773	0.8688	0.92349	3.4698	
	9	0.83455	0.84694	0.90292	0.70815	3.2926	
	10	0.876638	0.926911	0.979241	0.645889	3.42868	
	11	0.877473	0.908914	0.864492	0.868317	3.5192	
	15	0.877706	0.899344	0.908213	0.739036	3.4243	
	20	0.752313	0.854844	0.603535	0.81169	3.02238	
	25	0.750315	0.960966	0.750458	0.612398	3.07414	
	30	0.781279	0.831647	0.799869	0.797835	3.21063	
Elaps							
ed	time	is	102.6447	minutes.			
Traini							
ng	INPUTS:	1	2	3	4	5	6
Dept	PeakDownPr	RotationTo	RotationSpe	MovingSpee			
hfeet	essurepsi	rquelbft	edrevmin	dfth	SpecificEnergy	ftlbft3	
Traini							
ng	TARGETS:	7					
BlowsP	PerFoot						

Appendix E – NN Modeling for UCS: Mean R^2 and Best R^2 from 100 Iterations for Four Best Models

The inset text on each plot shows the training input number code, the training target, input file name (for reference) and the number of modeling iterations (trials). The legend on the plots is color coded for the data sets: blue for training, green for validation, red for testing and black for all.

Appendix E-1 – Plots of Mean and Best R² Values for UCS

Results for NN modeling of UCS. Four pairs of plots are shown for the four best models listed in Table 13.

Appendix E-2 – Mean and Best R² Results in Text Form for UCS

Results for NN modelling of UCS showing results for the four best NN models.

test Sum
test Sum
.14654 .17365 .13844 .14247 .15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
.14654 .17365 .13844 .14247 .15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
.14654 .17365 .13844 .14247 .15362 .64564 .67174 .42218 .18884 .54372 .34253 .24003 1.721 .16869 1.6066
.17365 .13844 .14247 .15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
.13844 .14247 .15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
.14247 .15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
.15362 164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
164564 167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
167174 142218 118884 154372 134253 .24003 1.721 .16869 1.6066
142218 118884 154372 134253 .24003 1.721 .16869 1.6066
118884 154372 134253 .24003 1.721 .16869 1.6066
154372 134253 .24003 1.721 .16869 1.6066
134253 .24003 1.721 .16869 1.6066
.24003 1.721 .16869 1.6066
.24003 1.721 .16869 1.6066
.16869 1.6066
.70073 1.9599
.54903 2.1593
.66533 2.2422
⁷ 50203 2.77423
62136 2.08936
579419 2.22872
294269 2.35567
307148 2.49562
403188 2.31371
test Sum
.19276
.18204
.18902
.17503
.21479
179107
190196
192638
0.2144
0.4.4.0
194418
1111

Montana Technological University

BestR	=							
		2	0.30894	0.24148	0.2843	0.73908	1.5738	
		3	0.36048	0.29109	0.49184	0.61903	1.7624	
		5	0.5348	0.51377	0.5967	0.62919	2.2745	
		7	0.55826	0.55303	0.64449	0.53696	2.2927	
		9	0.52545	0.50167	0.68184	0.53604	2.245	
		10	0.496635	0.678916	0.794926	0.268258	2.23874	
		11	0.418593	0.572719	0.701098	0.46374	2.15615	
		15	0.598835	0.71187	0.555566	0.230823	2.09709	
		20	0.725063	0.77158	0.73916	0.619315	2.85512	
		25	0.627074	0.654556	0.669841	0.568576	2.52005	
		30	0.606464	0.688037	0.586968	0.531775	2.41324	
inp	=		2	3	5	6		
•				PeakDownPress	RotationTorqu	MovingSpe	SpecificE	nergyf
>	Input(s)		=	urepsi	elbft	edfth	tlbft3	
	HL		no.	all	train	val	test	Sum
MeanR	=							
		2	0.28107	0.33008	0.2791	0.19978		
		3	0.33701	0.39338	0.31402	0.219		
		5	0.35596	0.4124	0.35484	0.23478		
		7	0.36294	0.4335	0.31541	0.27967		
		9	0.39004	0.49251	0.29301	0.24258		
		10	0.388888	0.517771	0.324743	0.224151		
		11	0.404463	0.534624	0.271494	0.214121		
		15	0.42189	0.575639	0.292419	0.196941		
		20	0.379817	0.546087	0.254771	0.216337		
		25	0.412553	0.621526	0.266848	0.20059		
		30	0.408044	0.597742	0.256034	0.20581		
BestR	=							
		2	0.55839	0.56164	0.7492	0.53815	2.4074	
		3	0.5655	0.68331	0.76402	0.16705	2.1799	
		5	0.57484	0.64146	0.824	0.25827	2.2986	
		7	0.57702	0.55949	0.58746	0.71615	2.4401	
		9	0.56241	0.58639	0.777	0.34486	2.2707	
		10	0.663276	0.707382	0.639098	0.642145	2.6519	
		11	0.691045	0.77489	0.569525	0.389317	2.42478	
		15	0.656798	0.712167	0.797553	0.224438	2.39096	
		20	0.602329	0.785058	0.627518	0.576475	2.59138	
		25	0.634393	0.703913	0.747585	0.303678	2.38957	
		30	0.685594	0.806519	0.789885	0.712658	2.99466	
inp	=		2	4	5	6		
				PeakDownPress	RotationSpeedr	MovingSpe	SpecificE	nergyf
>	Input(s)		=	urepsi	evmin	edfth	tlbft3	
	HL		no.	all	train	val	test	Sum
MeanR	=							
		2	0.22052	0.25224	0.24726	0.17195		

Montana Technological University
0.27763 0.3374 0.27947 0.3791 0.29441 0.3998 0.29013 0.38667 310219 0.4367 333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5919 0.53071 0.5573	8 0.30912 0.1578 3 0.24611 0.17031 2 0.21828 0.16842 2 0.229181 0.154725 9 0.222555 0.169587 9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
0.27947 0.3791 0.29441 0.3998 0.29013 0.38667 310219 0.4367 333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5919 0.53071 0.5573	3 0.24611 0.17031 2 0.21828 0.16842 2 0.229181 0.154725 9 0.222555 0.169587 9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
0.29441 0.3998 0.29013 0.38667 310219 0.4367 333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5915 0.53071 0.5573	2 0.21828 0.16842 2 0.229181 0.154725 9 0.222555 0.169587 9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
0.29013 0.38667 310219 0.4367 333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5919 0.53071 0.5573	2 0.229181 0.154725 9 0.222555 0.169587 9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
310219 0.4367 333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5915 0.53071 0.5573	9 0.222555 0.169587 9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
333731 0.48983 307227 0.51006 301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5919 0.53071 0.5573	9 0.252539 0.146798 5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
307227 0.51006 301239 0.52905 327275 0.58305).48884 0.5146).55422 0.5919).53071 0.5573	5 0.193574 0.154642 2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
301239 0.52905 327275 0.58305 0.48884 0.5146 0.55422 0.5915 0.53071 0.5573	2 0.196975 0.147009 8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
327275 0.58305).48884 0.5146).55422 0.5919).53071 0.5573	8 0.188517 0.125177 2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
).48884 0.5146).55422 0.5919).53071 0.5573	2 0.75968 0.37029 2.1334 7 0.60211 0.47876 2.2271	
0.48884 0.5146 0.55422 0.5919 0.53071 0.5573	20.759680.370292.133470.602110.478762.2271	
0.55422 0.5919 0.53071 0.5573	7 0.60211 0.47876 2.2271	
).53071 0.5573		
	7 0.8888 0.23207 2.2089	
).49537 0.4120	5 0.71483 0.63351 2.2558	
).67638 0.7767	5 0.60543 0.44511 2.5037	
548596 0.61917	3 0.402624 0.534647 2.10504	
601691 0.698	2 0.588494 0.397873 2.28626	
670379 0.76528	4 0.311241 0.500204 2.24711	
556653 0.86122	2 0.669703 0.048837 2.13642	
731169 0.88819	8 0.569004 0.638239 2.82661	
695765 0.81914	2 0.597166 0.452253 2.56433	
	3 minutes.	
92.768		
92.768		6
92.768	2 3 4 5	
92.768 1 onTorq RotationSpeed	2 3 4 5 r MovingSpeedft	
92.768 1 onTorq RotationSpeed evmin	2 3 4 5 r MovingSpeedft h SpecificEnergyftlbft3	
92.768 1 onTorq RotationSpeed evmin	2 3 4 5 r MovingSpeedft h SpecificEnergyftlbft3	
ic	1 ionTorq RotationSpeed	evmin h SpecificEnergyftlbft3

Appendix F – NN Modeling for Unit Weight: Mean R^2 and Best R^2 from 100 Iterations for Seven Best Models

The inset text on each plot shows the training input number code, the training target, input file name (for reference) and the number of modeling iterations (trials). The legend on the plots is color coded for the data sets: blue for training, green for validation, red for testing and black for all.

Appendix F-1 – Plots of Mean and Best R² Values for Unit Weight

Results for NN modeling of Unit weight. Six pairs of plots are shown for the seven best models listed in Table 14.

Appendix F-2 – Mean and Best R² Results in Text Form for Unit Weight

Results for NN modelling of Unit weight showing results for the seven best NN models. inp = 1 2 3

шр			-	2	PeakDownPr			
>	Innut(s)		=	Denthfeet	essurensi	RotationTorg	elhft	
-	HI		- no	all	train	val	test	Sum
								Juin
Mean								
R	=							
		2	0 33491	0 35044	0 37796	0 26945		
		3	0 39385	0 42556	0 40152	0 31366		
		5	0.33303	0.42356	0.43306	0 3238		
		7	0.4742	0.53812	0.46818	0 35568		
		, q	0 51543	0.58451	0.40010	0 36312		
		10	0 522798	0 607014	0.459239	0 346755		
		11	0.522790	0 587805	0.456551	0 37558		
		15	0.56082	0.656951	0.499778	0 381714		
		20	0 556045	0.664231	0 467391	0 377174		
		25	0.556763	0.692946	0 434527	0 389848		
		30	0.536679	0.750393	0.439845	0.377812		
BestR	=	50	0.500075	0.750555	0.433043	0.577012		
Destri	_	2	0 57172	0 45344	0 73999	0 82232	2 5875	
		2	0.58869	0.45544	0.79697	0.66042	2.5075	
		5	0.56605	0.69477	0.79398	0.50583	2.5520	
		7	0.76311	0.86711	0.64587	0.62446	2,0001	
		, q	0 7045	0.00711	0.63656	0.62825	2.5000	
		10	0.7043	0.757521	0.551672	0.02023	2.7113	
		11	0.811664	0.909211	0.737489	0.64583	3 10419	
		15	0.814322	0.916456	0.607903	0.848142	3 18682	
		20	0.014322	0.935659	0.856899	0.539647	3 14145	
		25	0.809247	0.96414	0.730662	0.838524	3 43305	
		30	0.846484	0.947291	0.815294	0.572523	3 18159	
inn	=	50	1	3	6.013234	0.572525	5.10155	
шр	_		1	5	RotationTor			
>	Input(s)		=	Depthfeet	quelbft	SpecificEnergy	/ftlbft3	
	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.35194	0.37626	0.37843	0.29699		
		3	0.40205	0.4463	0.43053	0.30244		
		5	0.48371	0.54635	0.47146	0.35008		
		7	0.491	0.55782	0.46152	0.37768		
		9	0.5007	0.57104	0.44489	0.4035		
		10	0.487081	0.583324	0.461002	0.337877		
		11	0.533875	0.625933	0.437568	0.392465		
		15	0.515778	0.627953	0.443187	0.369831		

		20	0.523846	0.708357	0.423123	0.318077		
		25	0.502425	0.684657	0.416861	0.322592		
		30	0.487976	0.696068	0.383965	0.287991		
BestR	=							
		2	0.58604	0.55625	0.50812	0.84507	2.4955	
		3	0.65662	0.64912	0.73022	0.63263	2.6686	
		5	0.70225	0.74059	0.64756	0.7682	2.8586	
		7	0.83668	0.85293	0.94376	0.5677	3.2011	
		9	0.76812	0.78433	0.8446	0.76273	3.1598	
		10	0.646847	0.634175	0.809587	0.682459	2.77307	
		11	0.748859	0.837168	0.690605	0.575045	2.85168	
		15	0.731159	0.802731	0.737569	0.65182	2.92328	
		20	0.84366	0.928059	0.787175	0.629643	3.18854	
		25	0.84706	0.958907	0.726187	0.789453	3.32161	
		30	0.784532	0.983571	0.624153	0.690435	3.08269	
inp	=		1	2	3	5		
					PeakDownPr	RotationTor		
>	Input(s)		=	Depthfeet	essurepsi	quelbft	MovingSpeed	fth
	HL		no.	all	train	val	test	Sum
Mean								
R	=							
		2	0.43079	0.4649	0.45754	0.30805		
		3	0.47135	0.51663	0.46949	0.32073		
		5	0.51394	0.56014	0.50023	0.42474		
		7	0.55399	0.62785	0.47692	0.39077		
		9	0.55226	0.64226	0.47483	0.36505		
		10	0.533887	0.620873	0.452474	0.369766		
		11	0.540181	0.635299	0.438378	0.36571		
		15	0.565939	0.697019	0.449206	0.345577		
		20	0.568397	0.713236	0.433048	0.364819		
		25	0.547363	0.72777	0.404874	0.319317		
		30	0.503788	0.692961	0.33993	0.279737		
BestR	=							
		2	0.6821	0.6507	0.80265	0.81006	2.9455	
		3	0.7644	0.80156	0.73208	0.6659	2.9639	
		5	0.80571	0.78606	0.85205	0.90697	3.3508	
		7	0.84264	0.86427	0.89585	0.70633	3.3091	
		9	0.76052	0.79939	0.84355	0.61461	3.0181	
		10	0.810695	0.888103	0.455599	0.896888	3.05129	
		11	0.786281	0.876718	0.511804	0.69647	2.87127	
		15	0.806641	0.892763	0.747211	0.659577	3.10619	
		20	0.799676	0.959785	0.835024	0.595404	3.18989	
		25	0.807344	0.92132	0.693934	0.72529	3.14789	
		30	0.769304	0.934165	0.718265	0.611597	3.03333	
inp	=		1	3	4	6		
					RotationTor	RotationSpe	a	6. H. C
>	Input(s)		=	Depthfeet	quelbtt	edrevmin	SpecificEnergy	yttlbft3

Montana Technological University

	HL		no.	all	train	val	test	Sum
iviean	_							
к	=	C	0 26525	0 40296	0 20429	0 20007		
		2	0.30355	0.40260	0.39438	0.20007		
		5	0.40550	0.43937	0.44024	0.29515		
		7	0.49090	0.50353	0.4437	0.30313		
		, 0	0.49001	0.5682	0.43183	0.31707		
		9 10	0.333	0.0413	0.4634	0.34001		
		10	0.319377	0.030030	0.400200	0.336231		
		15	0.492207	0.004130	0.414537	0.310303		
		20	0.529702	0.000808	0.432179	0.328318		
		20	0.515550	0.712055	0.306432	0.299107		
		20	0.526155	0.7251	0.365621	0.323901		
Poct P	_	50	0.521765	0.725954	0.560419	0.295089		
DESIR	-	2	0 62771	0 61296	0 60154	0 65050	2 5027	
		2	0.66033	0.01380	0.09134	0.05053	2.3837	
		5	0.000000	0.01230	0.04001	0.0022	3 2064	
		7	0.76252	0.70488	0.0075	0.70172	3 2371	
		, 0	0.85017	0.30330	0.92930	0.34133	2 1527	
		10	0.79045	0.79291	0.77037	0.79894	2 02257	
		11	0.799340	0.071490	0.789230	0.302487	2 02267	
		15	0.030932	0.937218	0.604333	0.421980	2 09/19	
		10	0.827914	0.927894	0.596201	0.750407	3.06446	
		20	0.851243	0.921801	0.754552	0.820176	3.34755	
		25	0.802296	0.888845	0.433802	0.80420	2.9892	
inn	_	50	0.657925	0.950515	0.550421	0.779902	5.15070	
mp	=		Z	5 Dook Down Dr	4 RotationTor	D		
>	Input(s)		_	essurensi	quelbft	edreymin	SpecificEpergy	ftlbft2
	прицз) ні		-	all	train	val	tost	Sum
						vai		Jum
Mean								
R	=							
		2	0.28043	0.312	0.36477	0.19984		
		3	0.34389	0.38797	0.35405	0.25686		
		5	0.43117	0.51841	0.38278	0.31907		
		7	0.48049	0.57539	0.46134	0.32847		
		9	0.48167	0.58662	0.39573	0.31848		
		10	0.452503	0.571806	0.380914	0.293566		
		11	0.50499	0.629527	0.45539	0.313526		
		15	0.479909	0.640908	0.398469	0.272552		
		20	0.507391	0.649963	0.376966	0.301776		
		25	0.472916	0.666065	0.373653	0.297397		
		30	0.476545	0.695948	0.331376	0.269457		
BestR	=							
		2	0.5663	0.57311	0.64682	0.53744	2.3237	
		3	0.57453	0.51352	0.79182	0.60072	2,4806	
		5	5.57 455	0.01002	0.79102	0.00072	2.1000	

		5 7	0.71514 0.72324	0.73861 0.771	0.8898 0.92363	0.678 0.51192	3.0215 2.9298	
		9	0.82455	0.85414	0.83427	0.83728	3.3502	
		10	0.708391	0.728953	0.67328	0.670004	2.78063	
		11	0.865724	0.937498	0.637614	0.642025	3.08286	
		15	0.805442	0.959059	0.643858	0.46429	2.87265	
		20	0.760081	0.8707	0.61603	0.626351	2.87316	
		25	0.745572	0.761514	0.72903	0.734042	2.97016	
		30	0.784146	0.900885	0.575438	0.758615	3.01908	
inp	=		1	2	3	4	6	
					PeakDownPr	RotationTor	RotationSpe	SpecificEne
>	Input(s)		=	Depthfeet	essurepsi	quelbft	edrevmin	rgyftlbft3
	HL		no.	all	train	val	test	Sum
Mean	_							
ĸ	=	ъ	0 24225	0 20425	0 26472	0 25022		
		2	0.34225	0.38435	0.36473	0.25032		
		5	0.39937	0.40748	0.40632	0.20438		
		כ ד	0.45767	0.53493	0.43810	0.31238		
		/	0.46922	0.57517	0.45950	0.31017		
		9 10	0.49042	0.01055	0.41099	0.30603		
		10	0.511008	0.622906	0.45140	0.331202		
		11	0.520701	0.044625	0.416500	0.340923		
		20	0.49324	0.648547	0.410541	0.285133		
		20	0.490117	0.669505	0.371371	0.283178		
		25	0.481794	0.00149	0.350881	0.301818		
PoctP	_	50	0.479729	0.720106	0.524606	0.259271		
DESIR	-	2	0 61457	0 56202	0 70/72	0 50567	2 5690	
		2	0.01457	0.50592	0.79472	0.59507	2.5069	
		5	0.82352	0.90528	0.92921	0.5204	2.9604	
		5 7	0.70301	0.83829	0.73048	0.30337	2.9332	
		0	0.75195	0.00202	0.81023	0.71002	2 2206	
		9 10	0.85459	0.92013	0.70439	0.77373	2 88182	
		10	0.741047	0.828848	0.601222	0.0000000000000000000000000000000000000	2.00102	
		15	0.78303	0.873975	0.001222	0.504482	2.78805	
		20	0.700748	0.873373	0.880941	0.558/02	3.03033	
		20	0.799391	0.882332	0.780617	0.538432	3.03833	
		20	0.750707	0.803252	0.750017	0.603177	3 0200	
Flans		30	0.80939	0.893232	0.715077	0.003177	5.0209	
ed	time		is	108.575	minutes.			
Traini								
ng	INPUTS:		1	2	3	4	5	6
Dept	PeakDow	nPr	RotationTo	RotationSpe	MovingSpee			
hfeet	essurepsi		rquelbft	edrevmin	dfth	SpecificEnergy	/ftlbft3	

9

Traini ng TARGETS: UnitWeightpcf

This public document was published in electronic format at no cost for printing and distribution.