MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2012

Big Hole Grazing Association Beaverhead County, Montana

Prepared for:

Prepared by:

December 2012

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2012

Big Hole Grazing Association Beaverhead County, Montana

MDT Project Number STPX-0001(45) Control Number 4668

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

P.O. Box 1133
Bozeman, MT 59771

December 2012

CCI Project No: MDT.004

"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228, TTY at 800-335-7592, or Montana Relay at 711."

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	METHODS	3
2.1	l. Hydrology	3
2.2	2. Vegetation	4
2.3	3. Soil	4
2.4	4. Wetland Delineation	4
2.5	5. Wildlife	5
2.6	S. Functional Assessment	5
2.7	7. Photo Documentation	6
2.8	3. GPS Data	6
2.9	9. Maintenance Needs	6
3.	RESULTS	6
3.1	I. Hydrology	6
3.2		
3.3	3. Soil	14
3.4	4. Wetland Delineation	15
3.5	5. Wildlife	15
3.6	S. Functional Assessment	17
3.7	7. Photo Documentation	19
3.8	B. Maintenance Needs	19
3.9	O. Current Credit Summary	19
4	REFERENCES	21

TABLES

Table 1. Groundwater depths measured in wells MW-1 through MW-8 from 2010 to 2012 at the BGHS Wetland Mitigation Site	7
Table 2. Vegetation species observed from 2008 to 2012 at the BHGA Wetland Mitigation Site.	
Table 3. Data summary for Transect 1 from 2008 to 2012 at the BHGA Wetland Mitigation Site.	
Table 4. Wetland acreages delineated in 2008 to 2012 at the BHGA Wetland Mitigation Site.	15
Table 5. Wildlife species observed within the BHGA Wetland Mitigation Site from 2008 to 2012.	16
Table 6. Summary of 2009 through 2012 wetland function/value ratings and functional points at the BHGA Wetland Mitigation Site	18
Table 7. Summary of wetland credits from 2008 to 2012 at the BHGS Wetland Mitigation Site.	20
CHARTS Chart 1. Transect map showing community types on Transect 1 from beginning (0 feet) to end (1,247 feet) from 2008 to 2012 at the BHGS Wetland Mitigation Site. Chart 2. Length of habitat types within Transect 1 from 2008 to 2012 at the BHGS Wetland Mitigation Site.	
FIGURES Figure 1. Project location of the BHGA Wetland Mitigation Site Figure 2. Monitoring Activity Locations – Appendix A Figure 3. Mapped Site Features – Appendix A	2
APPENDICES Appendix A Project Area Maps – Figures 2 and 3 Appendix B 2012 MDT Wetland Mitigation Site Monitoring Form	B-1
Appendix C Project Area PhotographsAppendix D Project Plan Sheet	

Cover: Woodduck box in *Carex* wetland (Community 3) near west boundary of the Big Hole Grazing Association wetland mitigation site.

1. INTRODUCTION

The Big Hole Grazing Association (BHGA) Wetland Mitigation 2012 Monitoring Report documents the fifth year of monitoring at the Big Hole mitigation site. The BHGA wetland mitigation project was constructed in fall 2007 by the Montana Department of Transportation (MDT). The purpose of the project was to restore approximately 45 acres of wetland habitat within a 96-acre easement area owned by the BHGA. The project provided a wetland mitigation reserve in Watershed 6 – Upper Missouri River Basin.

The mitigation site is located approximately seven miles southwest of Wisdom and approximately four miles west of Secondary Route 278 (Figure 1). The property is situated in the northwest quarter of Section 2, Township 4 South and Range 16 West in Beaverhead County. Figures 2 and 3 (Appendix A) show the Mapped Site Features and Monitoring Activity Locations, respectively. Appendix B contains the MDT Wetland Mitigation Site Monitoring Form, the US Army Corps of Engineers (USACE) Routine Wetland Determination Data Forms (Environmental Laboratory 1987), and the MDT Montana Wetland Assessment Forms (Berglund and McEldowney 2008). Appendix C contains photographs of the project site and Appendix D includes the project design plan sheet.

Prior to project initiation, the BHGA used the project area for grazing and haying operations. The site was historically drained through a system of constructed ditches. The project area exhibits a naturally high groundwater table. Additional water sources include springs located on the hillside north of the site and Rock Creek, a perennial tributary to the Big Hole River that flows through the southern portion of the easement area.

The primary drainage ditch that formerly flowed northwest to southeast through the easement area was completely filled and reclaimed with the goal of restoring the natural hydrology and wetlands within the easement area. A secondary ditch that flows north to south across the west half of the site was plugged in three locations to reduce drainage from the site and to restore the wetland hydrology by raising groundwater levels at the site.

Prior to project implementation, MDT documented approximately 31 acres of degraded and relic emergent and scrub/shrub wetland across the 96-acre easement area, noting that some wetland areas were likely much larger prior to construction of drainage ditches across the site in the 1960's. The intent of the project was to restore the natural hydrology to the site in an attempt to restore wetlands within the easement area. According to project files, the goal is to generate 45.8 acres of USACE approved credit through the restoration of 42.3 acres of wetland credited at a 1:1 ratio and preservation of 14.0 acres of wetland credited at a 4:1 ratio (3.5 acres of credit).

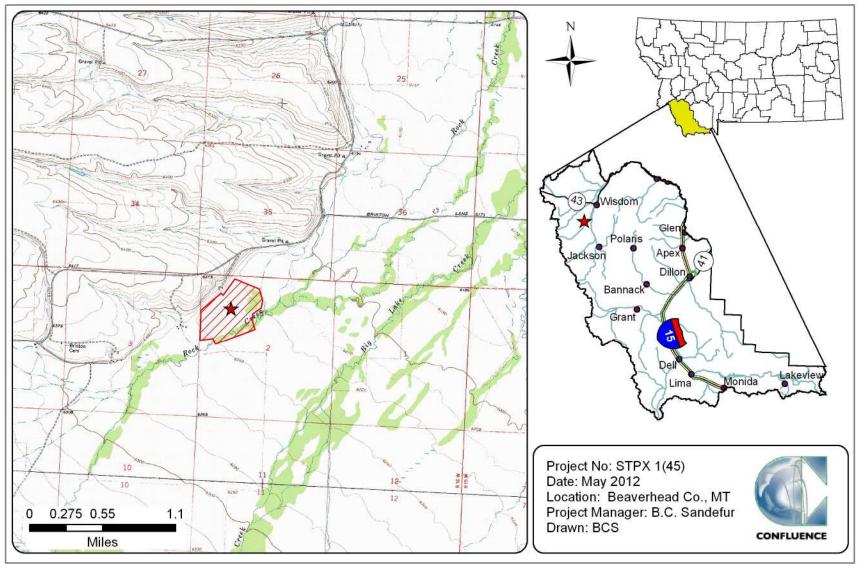


Figure 1. Project location of the BHGA Wetland Mitigation Site.

2. METHODS

A monitoring site visit was performed on July 12, 2012. Information contained on the Mitigation Monitoring Form and the Wetland Determination Data Forms was entered electronically in the field on a personal digital assistant (PDA) palmtop computer (Appendix B). Monitoring activity sites were located using a global positioning system (GPS) (Figure 2 Appendix A). Information collected included: a wetland delineation; vegetation community mapping; vegetation transect monitoring; soil data collection; hydrology data collection; bird and wildlife use documentation; photographic documentation; and a non-engineering examination of the infrastructure established within the mitigation project area.

2.1. Hydrology

Technical criteria for wetland hydrology guidelines have been established as "permanent or periodic inundation, or soil saturation within 12 inches of the ground surface for a significant period, usually 14 days or more or 12.5 percent during the growing season" (Environmental Laboratory 1987). Systems with continuous inundation or saturation for greater than 12.5 percent of the growing season are considered wetlands. The growing season is defined for purposes of determining wetland hydrology as the number of days when there is a 50 percent probability that the minimum daily temperature is greater than or equal to 28 degrees Fahrenheit (Environmental Laboratory 1987). Temperature data recorded for the meteorological station at Wisdom, Montana (249067) has a probability range of 17 to 79 days for temperatures above 28 degrees Fahrenheit. The median (5 years in 10) growing season is 48 days. (USDA 2010). Areas defined as wetlands would require at least 6 days of inundation or saturation within 12 inches of the ground surface to meet the hydrology criteria.

When present, hydrological indicators as outlined on the Wetland Determination Data Form were documented at three data points established within the project area (Figure 2, Appendix A). Hydrologic indicators were evaluated according to features observed during the site visit. The data were recorded on electronic field data sheets (Appendix B). Hydrologic assessments allow evaluation of mitigation goals addressing inundation/saturation requirements.

Eight groundwater monitoring wells at the site were routinely monitored by the US Geological Service (USGS) until 2009. The USGS discontinued monitoring of the wells at the request of MDT and the monitoring wells were not measured during the 2009 site visit. Groundwater depths in wells MW-1 through MW-8 were measured by the Confluence team from 2010 to 2012 during the annual site visits (Section 3.1). Soil pits excavated during the wetland delineation were also used to evaluate groundwater levels within 18 inches of the ground surface. The data were recorded electronically on the Wetland Determination Data Form (Appendix B).

2.2. Vegetation

The boundaries of dominant, species-based vegetation communities were determined in the field during the active growing season and subsequently delineated on the 2012 aerial photograph. Percent cover of dominant species within a community type was estimated and recorded using the following values: 0 (less than 1 percent), 1 (1 to 5 percent), 2 (6 to 10 percent), 3 (11 to 20 percent), 4 (21 to 50 percent), and 5 (less than 50 percent) (Appendix B).

Temporal changes in vegetation were evaluated through annual assessments of a static belt transect (Figure 2, Appendix A). Vegetation composition was assessed and recorded along one vegetation belt transect approximately 10 feet wide and 1,247 feet long (Figure 2, Appendix A). The transect location was recorded with a GPS unit. Spatial changes in the dominant vegetation communities were recorded along the stationed transect. Percent cover of each vegetation species within the belt was estimated using the same values and cover ranges listed for the community polygon data on the aerial photograph (Appendix A). Photographs were taken at the endpoints of the transect during the monitoring event (Page C-22 and C-23, Appendix C).

The location of noxious weeds was noted in the field and mapped on the aerial photo (Figure 3, Appendix A). The noxious weed species identified are color-coded. The locations are denoted with the symbol "x", "▲", or "■" representing 0 to 0.1 acre, 0.1 to 1.0 acre, or greater than 1.0 acre in extent, respectively. Cover classes are represented by T, L, M, or H, for less than 1 percent, 1 to 5 percent, 2 to 25 percent, and 25 to 100 percent, respectively, as listed on Figure 3 (Appendix A).

Woody species were planted in clusters across the site in May 2008. The clusters were examined for plant survival in 2012.

2.3. Soil

Soil information was obtained from the Soil Survey for *Beaverhead County Area Soil Survey* (USDA 2010) and in situ soil descriptions. Soil cores were excavated using a hand auger and evaluated according to procedures outlined in the 1987 Corps of Engineers Wetland Delineation Manual (Environmental Laboratory 1987). A description of the soil profile, including hydric indicators when present, was recorded on the Wetland Determination Data Form for each profile (Appendix B).

2.4. Wetland Delineation

Waters of the US including jurisdictional wetlands and other special aquatic sites were delineated throughout the project area in accordance with criteria established in the 1987 USACE delineation manual. In order to delineate a representative area as wetland, the technical criteria for hydrophytic vegetation, hydric soil, and wetland hydrology must be satisfied. The name and indicator status of plant species was derived from the Draft 2012 National Wetland Plant List (NWPL) (Lichvar and Kartesz. 2009). Previous years' reports used the 1988

National List of Plant Species that Occur in Wetlands: Northwest Region 9 (Reed 1988). The 2012 NWPL scientific plant names were used in this report. Many common names used in the 2012 NWPL appear incomplete or erroneous. When used in this report, 2012 NWPL common names that appear to be incomplete or erroneous are provided with parenthetical clarification. For example, the common given name for the plant *Agrostis exarata* in the 2012 NWPL is "spiked bent". As this is likely an error, this species' common name would be reported here as "spiked bent (grass)". A Routine Level-2 Onsite Determination Method (Environmental Laboratory 1987) was used to delineate wetland areas within the project boundaries. The information was recorded electronically on the USACE Wetland Determination Data Form (Appendix B).

The USACE determined that the 1987 Wetland Manual should continue to be used at MDT mitigation sites where baseline wetland conditions had been established prior to 2008. Consequently, the use of the 2010 Regional Supplement to the USACE of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (USACE 2010) was not required.

The wetland boundary was determined in the field based on changes in plant communities and/or hydrology, and changes in soil characteristics. Topographic relief boundaries within the project area were also examined and cross referenced with soil and vegetation communities as supportive information for this delineation. Vegetation composition, soil characteristics, and hydrology were assessed at likely wetland and adjacent upland locations. If all three parameters met the criteria, the area was designated as wetland and mapped by vegetation community type. If any one of the parameters did not exhibit positive wetland indicators, the area was determined to be upland unless the site was classified as an atypical situation, potential problem area, or special aquatic site, i.e., mudflat. The wetland boundary was demarcated on the aerial photograph. Wetland areas were estimated using geographic information system (GIS) methods.

2.5. Wildlife

Observations and other positive indicators of use of mammal, reptile, amphibian, and bird species were recorded on the monitoring form during the site visit. Indirect use indicators, including tracks, scat, burrow, eggshells, skins, and bones, were also recorded. These signs were recorded while traversing the site for other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used. A comprehensive wildlife species list for the monitoring period to date was compiled.

2.6. Functional Assessment

The 1999 MDT Montana Wetland Assessment Method (MWAM) (Berglund 1999) was employed to complete functional assessments of the site in 2001. The 2008 MWAM (Berglund and McEldowney 2008) was used to evaluate functions and values on the site from 2009 to 2012. This method provides an objective means of assigning wetlands an overall rating and provides regulators a means of

assessing mitigation success based on wetland functions. Functions are self-sustaining properties of a wetland ecosystem that exist in the absence of society and relate to ecological significance without regard to subjective human values. The 2008 revision refines ratings for some wetland functions, land management, and fish and wildlife habitat.

Field data for this assessment were collected during the site visit. A Wetland Assessment Form was completed for each wetland or group of wetlands (Assessment Areas). The forms are located in Appendix B.

2.7. Photo Documentation

Monitoring at photo points provides supplemental information documenting wetland and upland conditions within the monitored area, site trends, current land uses surrounding the site, and the vegetation transects. Photographs were taken at established photo points and transect end points throughout the mitigation site during the site visit (Appendix C). Photo point locations were recorded with a resource grade GPS unit (Figure 2, Appendix A).

2.8. GPS Data

Site features and survey points were collected with a resource grade Thales Pro Mark III GPS unit during the 2012 monitoring season. Points were collected using WAAS-enabled differential correction satellites, typically improving resolution to sub-meter accuracy. The collected data were then transferred to a personal computer, imported into GIS, and presented in Montana State Plane Single Zone NAD 83 meters. Site features and survey points that were located with GPS included fence boundaries, photograph points, transect endpoints, and wetland data points.

2.9. Maintenance Needs

Channels, fencing, and other features were examined during the site visit for obvious signs of breaching, damage, or other problems. This was a cursory examination that did not constitute an engineering-level structural inspection. The BHGA mitigation site is sourced by groundwater and does not encompass any manmade diversions, water level control structures, or other structures that might need periodic maintenance.

3. RESULTS

3.1. Hydrology

The Wisdom station, Montana (249067), located within 10 miles of the project site in the same valley, recorded an average total annual precipitation rate of 11.89 inches from January 1923 to December 2011 (WRCC 2011). Annual precipitation was 14.51 inches in 2010 and 11.98 inches in 2011. Long-term precipitation data recorded for January through August was 8.63 inches. These values were 11.41 inches, 8.7 inches and 7.58 inches for 2010, 2011, and 2012, respectively. Overall, 2010 was wetter than average, 2011 was very near average, and 2012 was slightly drier than average.

Eight groundwater monitoring wells installed in 2001 were monitored annually by the USGS through 2008. Well locations are shown on Figure 2 (Appendix A). One of the primary goals of the project was to raise groundwater levels across the easement area by plugging two drainage ditches across the site. Groundwater levels measured in 2008 following site construction were higher than in 2007, reflecting a positive response in wetland hydrology to mitigation efforts. Water levels in 2009 were above the ground surface at wells MW-6, MW-7. and MW-8. Saturation and inundation levels observed in several wet meadows in 2008 and 2009 indicated that the groundwater levels were similar, reflecting a positive trend toward the development of wetland hydrology. Groundwater levels measured in 2010 were less than one foot below the ground surface (bgs) in wells MW-1, and M-4 through MW-8. Depths in MW-7 and MW-8 were within 0.1 foot of the ground surface. Groundwater levels measured in 2011 (Table 1) showed that, with the exception of MW-1, all wells exhibited water levels within one foot of the ground surface. Water levels in three wells, MW-2, MW-4, and MW-5, were above the ground surface supporting the observation of extensive areas of inundation during the 2011 monitoring event.

Groundwater levels increased from 2011 to 2012 in MW-1, MW-3, MW-6 and MW-8. Groundwater levels decreased in wells MW-2, MW-4, and MW-5 in 2012 where ponded surface water had been observed in 2011. The groundwater elevations in these wells were within one foot of the ground surface in 2012. The groundwater level data collected from pre- and post-construction have documented a site-wide increase in the groundwater table following modifications to the drainage ditches.

Table 1. Groundwater depths measured in wells MW-1 through MW-8 from 2010 to 2012 at the BGHS Wetland Mitigation Site.

Well Number	*2001 Water Surface	*2002 Water Surface	*2003 Water Surface	*2004 Water Surface	*2005 Water Surface	*2006 Water Surface	*2007 Water Surface	*2008 Water Surface	2010 Water Surface	2011 Water Surface	2012 Water Surface
MW-1	-0.9	-0.7	-0.8	-0.2	-0.4	-0.3	-0.6	-0.4	-0.9	-1.3	-0.2
MW-2	-1.4	-0.5	-0.2	-1.6	-0.6	-0.9	-1.4	-0.6	-1.4	0.3	-0.3
MW-3	-4	-2.2	-1.7	-3	-2.9	-3.5	-2.7	-1.4	-1.4	-1	-0.9
MW-4	-0.3	-0.7	-1.3	-1.7	-1.9	-1.1	-1.4	-0.3	-0.4	0.1	-0.1
MW-5	-2	-1.5	-1.5	-1.8	-1.3	-1.7	-1.5	-0.4	-0.4	0.2	-0.0
MW-6	-0.9	-1.2	-0.6	-0.8	-1.3	-1.4	-0.6	0.1	-0.6	-0.4	-0.0
MW-7	-1.6	-1.4	-1.3	-1.6	-1.8	-1.1	-1.4	-0.2	-0.1	-0.0	-0.4
MW-8	-0.9	-0.9	-0.7	-0.8	-0.9	-1.0	-0.3	-0	-0.1	-1.0	-0.3

*Values estimated from Chart 1 in 2008 Big Hole Grazing Association Wetland Mitigation Monitoring Report.

Surface water depths on the site in 2012 ranged from 0.0 to 3.0 feet with an average depth site wide of 0.2 feet. Approximately 60 percent of the site was inundated, a slight decrease of approximately 5 percent from 2011. Two data points, BH-1 and BH-3, were located within wetlands (Figure 2, Appendix A). Hydrologic indicators included local soil survey data, the FAC-Neutral Test, dry season water table, saturation within the upper 12 inches of the soil profile, drift lines, and sediment deposits.

3.2. Vegetation

The 100 plant species identified at the mitigation site from 2008 to 2012 are listed in Table 2. Vegetation community types were identified based on dominance and plant composition. There were six vegetation communities identified in 2012, one upland community and five wetland communities (Figure 3, Appendix A; Monitoring Form, Appendix B). The 2012communities were upland Type 1 – *Poa pratensis/Phleum pratense*, wetland Type 3 – *Carex* species (spp.), wetland Type 4 – *Salix* spp./ *Carex* spp., wetland Type 5 – *Juncus* spp./*Agrostis gingantea* (called *Agrostis alba* on 1988 list) wetland Type 7 – *Carex* spp./*Juncus* spp., and wetland Type 8 – *Juncus arcticus* (called *J. balticus* on 1988 list). The community types correlated to those identified in 2011.

The northwest corner of the project contains a sedge-dominated fen (community 3) that had not been impacted by historic ditching activities. This area receives abundant hydrology from the natural spring located at the base of the hillside in the northwest area of the site. After years of dewatering and grazing, the northeast side of the easement area transitioned from a willow community to upland and wet meadow habitat. Since 2009, the area has shown evidence of reverting to historical conditions with the restoration of site hydrology and natural regeneration of willows (Community 6, Figure 3, Appendix A).

Upland vegetation community Type 1 – *Poa pratensis/Phleum pratense* was identified on 6.6 acres located at the south boundary and in isolated islands within the site. Community type 1 was dominated by herbaceous species that included in descending order of abundance Kentucky bluegrass (*Poa pratensis*), common timothy (*Phleum pratense*), field meadow-foxtail (*Alopecurus pratensis*), pale-yellow Indian-paintbrush (*Castilleja occidentalis*), common yarrow (*Achillea millefolium*), creeping wildrye (*Elymus repens*, called *Agropyron repens* on 1988 list), and arctic rush (*Juncus arcticus*). The areal extent of this community has shown a steady decrease since 2008 as a result of the increase in saturation and inundation levels.

Wetland community Type 3 - Carex spp. extended across 23.9 acres in the northwest quarter and center of the site. The community was predominantly vegetated by Northwest Territory sedge (Carex utriculata) with less cover of leafy tussock sedge (Carex aquatilis), slender-beak sedge (Carex athrostachya), and Other hydrophytic species in this Nebraska sedge (Carex nebrascensis). community included field meadow-foxtail. large-leaf avens (Geum macrophyllum), arctic rush, yellow willow (Salix lutea), American sloughgrass (Beckmania syzigachne), black bent grass (Agrostis gigantea), and fowl manna grass (Glyceria striata).

0 : (")		WMVC Indicator
Scientific Names	Common Names	Status ¹
Achillea millefolium	Common Yarrow	FACU
Aconitum columbianum	Columbian Monkshood	FACW
Agrostis gigantea	Black Bent	FAC
Agrostis stolonifera	Spreading Bent	FAC
Allium geyeri	Geyer's Onion	FACU
Alnus incana	Speckled Alder	FACW
Alopecurus aequalis	Short-Awn Meadow-Foxtail	OBL
Alopecurus pratensis	Field Meadow-Foxtail	FAC
Arnica lanceolata	Lance-Leaf Leopardbane	FACW
Aster sp.	Aster	NL
Bassia scoparia	Mexican-Fireweed	FAC
Beckmannia syzigachne	American Slough Grass	OBL
Betula pumila	Bog Birch	OBL
Bromus inermis	Smooth Brome	FAC
Calamagrostis canadensis	Bluejoint	FACW
Calamagrostis scopulorum	Ditch Reed Grass	FAC
Carex aquatilis	Leafy Tussock Sedge	OBL
Carex athrostachya	Slender-Beak Sedge	FACW
Carex nebrascensis	Nebraska Sedge	OBL
Carex praegracilis	Clustered Field Sedge	FACW
Carex utriculata	Northwest Territory Sedge	OBL
Castilleja miniata	Great Red Indian-Paintbrush	FAC
Castilleja occidentalis	Pale-Yellow Indian-Paintbrush	FAC
Centaurea maculosa	Spotted Knapweed	UPL
Cirsium arvense	Canadian Thistle	FAC
Cirsium scariosum	Meadow Thistle	FAC
Cornus alba	Red Osier	FACW
Crataegus douglasii	Black Hawthorn	FAC
Crepis capillaris	Smooth Hawk's-Beard	FACU
Dasiphora fruticosa	Golden-Hardhack	FAC
Deschampsia cespitosa	Tufted Hairgrass	FACW
Eleocharis palustris	Common Spike-Rush	OBL
Eleocharis quinqueflora	Few-Flower Spike-Rush	OBL
Elymus repens	Creeping Wild Rye	FAC
Elymus trachycaulus	Slender Wild Rye	FAC
Epilobium ciliatum	Fringed Willowherb	FACW
Equisetum arvense	Field Horsetail	FAC
Eriophorum gracile	Slender Cotton-Grass	OBL
Geum aleppicum	Yellow Avens	FACW
Geum macrophyllum	Large-Leaf Avens	FAC
Glyceria elata	Tall Manna Grass	FACW
Glyceria striata	Fowl Manna Grass	OBL

¹Draft 2012 NWPL.

New species identified in 2012 are bolded.

Table 2. (Continued). Vegetation species observed from 2008 to 2012 at the BHGA Wetland Mitigation Site.

Onland Ca Names	O-man Nama	WMVC Indicator
Scientific Names	Common Names	Status ¹
Glycyrrhiza lepidota	American Licorice	FAC
Gnaphalium palustre	Western Marsh Cudweed	FACW
Hippuris vulgaris	Common Mare's-Tail	OBL
Hordeum brachyantherum	Meadow Barley	FACW
Hordeum jubatum	Fox-Tail Barley	FAC
Iris missouriensis	Rocky Mountain Iris	FACW
Juncus arcticus	Arctic Rush	FACW
Juncus effusus	Lamp Rush	FACW
Juncus ensifolius	Dagger-Leaf Rush	FACW
Juncus longistylis	Long-Style Rush	FACW
Juncus tenuis	Lesser Poverty Rush	FAC
Juncus torreyi	Torrey's Rush	FACW
Lemna minor	Common Duckweed	OBL
Lupinus polyphyllus	Blue-Pod Lupine	FAC
Lupinus wyethii	Wyeth's Lupine	UPL
Mentha arvensis	American Wild Mint	FACW
Mimulus guttatus	Seep Monkey-Flower	OBL
Myosotis scorpioides	True Forget-Me-Not	FACW
Myriophyllum hippuroides	Western Water-Milfoil	OBL
Pedicularis groenlandica	Bull Elephant's-Head	OBL
Penstemon procerus	Pincushion Beardtongue	FAC
Persicaria amphibia	Water Smartweed	OBL
Phleum pratense	Common Timothy	FAC
Poa palustris	Fowl Blue Grass	FAC
Poa pratensis	Kentucky Blue Grass	FAC
Poa secunda	Curly Blue Grass	FACU
Polemonium acutiflorum	Sticky Tall Jacob's-Ladder	UPL
Polemonium occidentale	Western Jacob's-Ladder	FACW
Populus tremuloides	Quaking Aspen	FACU
Potentilla glandulosa	Sticky Cinquefoil	FAC
Potentilla gracilis	Graceful Cinquefoil	FAC
Ranunculus repens	Creeping Buttercup	FAC
Ranunculus sp.	Buttercup	NL
Ribes lacustre	Bristly Black Gooseberry	FAC
Rosa woodsii	Woods' Rose	FACU
Rumex crispus	Curly Dock	FAC
Salix bebbiana	Gray Willow	FACW
Salix drummondiana	Drummond's Willow	FACW
Salix exigua	Narrow-Leaf Willow	FACW
Salix lemmonii	Lemmon's Willow	FACW
Salix lutea	Yellow Willow	OBL
Schoenoplectus acutus	Hard-Stem Club-Rush	OBL

¹Draft 2012 NWPL.

New species identified in 2012 are bolded.

Table 2. (Continued). Vegetation species observed from 2008 to 2012 at the BHGA Wetland Mitigation Site.

Scientific Names	Common Names	WMVC Indicator Status ¹
Scutellaria galericulata	Hooded Skullcap	OBL
Senecio sphaerocephalus	Mountain-Marsh Ragwort	FACW
Sisymbrium altissimum	Tall Hedge-Mustard	FACU
Sisyrinchium montanum	Strict Blue-Eyed-Grass	FAC
Sonchus arvensis	Field Sow-Thistle	FACU
Sparganium emersum	European Burr-Reed	OBL
Stellaria longifolia	Long-Leaf Starwort	FACW
Symphyotrichum lanceolatum	White Panicled American-Aster	OBL
Taraxacum officinale	Common Dandelion	FACU
Thlaspi arvense	Field Penny-Cress	UPL
Toxicoscordion venenosum	Meadow Poison Camas	FACU
Trifolium pratense	Red Clover	FACU
Trifolium repens	White Clover	FAC
Triglochin maritima	Seaside Arrow-Grass	OBL
Triglochin palustris	Marsh Arrow-Grass	OBL
Typha latifolia	Broad-Leaf Cat-Tail	OBL

¹Draft 2012 NWPL.

New species identified in 2012 are bolded

Wetland community Type 4 – *Salix* spp./ *Carex* spp. was located on 18.8 acres of the Rock Creek corridor and along the east half and southwest corner of the project area. This community was dominated primarily by woody species including narrow-leaf willow (*Salix exigua*), gray willow (*Salix bebbiana*), and Lemmon's willow (*Salix lemmonii*). Northwest Territory sedge, clustered field sedge (*Carex praegracilis*), and arctic rush dominated the herbaceous species. Shoots of graceful cinquefoil (*Potentilla gracilis*) and quaking aspen (*Populus tremuloides*) were also present within the community.

The dominant species in the 12.9-acre wetland community Type 5 – *Juncus spp./Agrostis gigantea* were arctic rush, black bent grass, Northwest Territory sedge, Western Jacob's-ladder (*Poleminium occidentale*), field meadow foxtail, lamp rush (*Juncus effusus*), dagger-leaf rush (*Juncus ensifolius*), clustered field sedge, Rocky Mountain iris (*Iris missouriensis*), and graceful cinquefoil. The community developed on drier moisture regimes in the northeast corner and center of the site. The community is expected to transition from Type 5 to Type 4 as willows continue to proliferate.

Wetland community Type 7 – *Carex* spp./*Juncus* spp. covered 31.7 acres in the west half and central region of the site. This community has expanded since 2010 replacing areas of community 1 as a result of the increased wetland hydrology at the site. Northwest Territory sedge, field clustered sedge, slender-beak sedge, arctic rush, lesser poverty rush (*Juncus tenuis*), meadow fox-tail, and 24 other species contributed to the diverse cover in this community.

Wetland community Type 8 – *Juncus arcticus* replaced a small area mapped as community 6 (Type 6 – *Carex* spp./*Alopecurus pratensis*) in 2010. The community was slightly drier than the adjacent wetland communities. It was dominated by arctic rush, black bent grass, graceful cinquefoil, common yarrow, meadow barley (*Hordeum brachyantherum*), Kentucky bluegrass (*Poa pratensis*), curly dock (*Rumex crispus*), field penny-cress (*Thlaspi arvense*), fringed willowherb (*Epilobium ciliatum*), common dandelion (*Taraxacum officinale*), and white clover (*Trifolium repens*).

Overall plant composition was quantified on the 1,247-foot vegetation transect during the 2012 monitoring event. Transect data are summarized in Table 3 and Charts 1 and 2 and on the monitoring form (Appendix B). The transect was established south to north through the center of the mitigation area, beginning at well MW-3 and ending at MW-6 (Figure 2, Appendix A).

The transect intercepted community 7 – Carex spp./Juncus spp., community 5 – Juncus spp./Agrostis gigantea, and community 3 – Carex spp. Hydrophytic communities dominated 100 percent of the transect in 2011 and 2012, an increase of 34.2 percent from 2010 and an increase of 45 percent since 2009. The data reflect the steady increase in wetland hydrology, development of hydrophytic vegetation, and expansion of wetland acreage within the BHGA mitigation site since construction. Photographs of the transect end points from 2009 to 2012 are shown on pages C-22 and C-23 of Appendix C.

Table 3. Data summary for Transect 1 from 2008 to 2012 at the BHGA Wetland Mitigation Site.

Monitoring Year	2008	2009	2010	2011	2012
Transect Length (feet)	1247	1247	1247	1247	1247
Vegetation Community Transitions along Transect	7	7	7	5	5
Vegetation Communities along Transect	3	3	4	3	3
Hydrophytic Vegetation Communities along Transect	2	2	3	3	3
Total Vegetative Species	22	22	31	30	30
Total Hydrophytic Species	13	14	26	23	26
Total Upland Species	9	8	5	7	4
Estimated % Total Vegetative Cover	75	80	90	100	100
% Transect Length Comprising Hydrophytic Vegetation Communities	45	55	65.8	100	100
% Transect Length Comprising Upland Vegetation Communities	55	45	34.2	0.0	0.0
% Transect Length Comprising Unvegetated Open Water	0	0	0.0	0.0	0.0
% Transect Length Comprising Bare Substrate	0	0	0.0	0.0	0.0

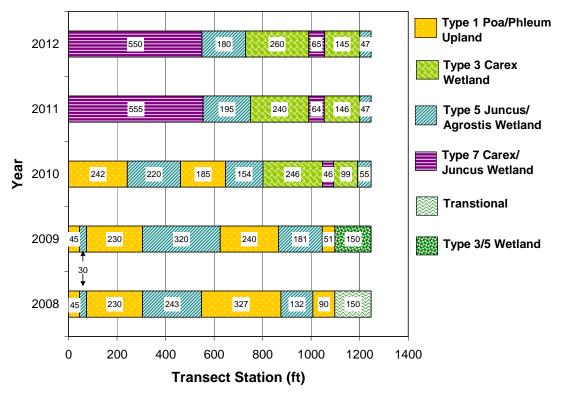


Chart 1. Transect map showing community types on Transect 1 from beginning (0 feet) to end (1,247 feet) from 2008 to 2012 at the BHGS Wetland Mitigation Site.

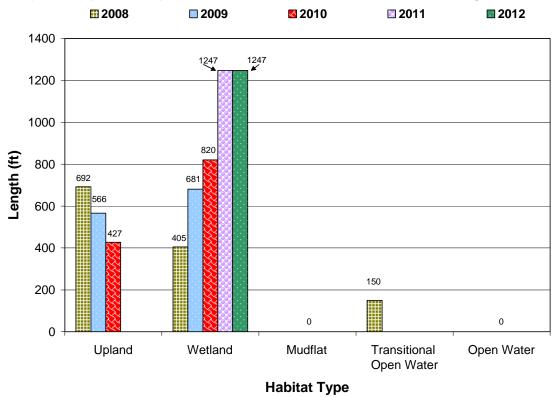


Chart 2. Length of habitat types within Transect 1 from 2008 to 2012 at the BHGS Wetland Mitigation Site.

Canadian thistle (*Cirsium arvense*), a Priority 2B noxious weed, was identified in two areas on the northwest mitigation boundary near the home site (Figure 3, Appendix A). The infestation size ranged between less than 0.1 to 1.0 acre with cover ranging between 1 to 5 percent and 5 to 25 percent.

Woody vegetation planted in May 2008 consisted of 45 plant clusters placed along the filled drainage ditch and the secondary ditch plugged in three locations. Plant species included bog birch (Betula pumila), speckled alder (Alnus incana). and red-osier dogwood (Cornus alba, called C. stolonifera on 1988 list). Approximately 961 plants were inspected during 2008 monitoring. Approximately 79 percent (756 stems) survived the first growing season. Survival decreased dramatically to 35 percent in 2009 (339 stems). Speckled alder exhibited the least mortality in 2009 at 45 percent survival. Mortality in 2009 for red-osier dogwood and bog birch was approximately 70 percent and 98 percent, The high mortality of red-osier dogwood and bog birch containerized species was potentially the result of excessively wet conditions and competition from forbs and grasses. Fifty out of 246 red-osier dogwood planted (20 percent) were alive in 2010. Approximately 200 speckled alder saplings were alive out of the 470 planted (43 percent survival). No live bog birch saplings were noted in 2010. Similar survival rates were noted in 2011, with roughly 200 speckled alders, 50 red-osier dogwoods, and no live bog birch observations recorded.

There were no live stems of red-osier dogwood or bog birch observed in 2012. One hundred fifty (150) speckled alder were alive in 2012. Numerous volunteer willows and shrubby cinquefoil were observed throughout community Type 4 indicating the natural establishment of a scrub/shrub overstory.

3.3. Soil

Two soil units were mapped within the easement area, the Mooseflat Loam, 0 to 4 percent slopes, located along the Rock Creek corridor and the Foxgulch-Copperbasin-Wisdom complex, 0 to 2 percent slopes, that encompasses the remaining study area (USDA 2010). The Mooseflat series is classified as a Typic Cryaquoll. The Foxgulch series is a Fluvaquentic Haplocryolls. The Wisdom series is a superactive Oxyaquic Haplocryolls and the Copperbasin is classified as an Aquic Haplocryolls. All four of these series are listed on the Montana Hydric Soils list.

Data points BH-1 and BH-3 were located in areas that met the wetland criteria. The soil profile at BH-1 revealed a black clay loam (10 YR 2/1) soil with dark yellowish brown (10 YR 4/4) mottles. The soil at BH-3 was identified as a clay loam (10 YR 3/1) with redoximorphic concentrations (10 YR 4/4) in the matrix. Hydric soil indicators were the low-chroma colors. The soil profile at BH-2 revealed a sandy clay (10YR 4/2) without redox features. The test pit soils generally correlated with the soil map units.

3.4. Wetland Delineation

The site was delineated by MDT in June 2001. At that time, approximately 31 acres of degraded wetland habitat were delineated within the project boundaries. Table 4 shows a consistent increase in wetland acreage from 2008 to 2011, a reflection of abundant surface water and groundwater inflow to the site and of the maximization of water availability across the site via the plugged historic drain ditches. This total wetland acreage included 14 acres of pre-existing wetlands targeted for preservation located in the Rock Creek corridor and the northwest corner of the site.

The wetland boundaries delineated in 2012 are mapped on Figure 3 (Appendix A). Table 4 summarizes the wetland acreages delineated from 2008 to 2012. Approximately 88.26 acres of wetland were delineated in 2012. This represented an increase of 7.03 in total wetland acres from 2010. From 2008 to 2012, the plant habitat near the center of the site transitioned from upland community Type 1 to wetland community Type 7. Uplands encompassed 6.60 acres within the project area in 2012. The wetland acreage remained consistent from 2011 to 2012 and is not expected to increase significantly based on the topography of the site.

Table 4. Wetland acreages delineated in 2008 to 2012 at the BHGA Wetland Mitigation Site.

Habitat Type	2008	2009	2010	2011	2012
	Acreage	Acreage	Acreage	Acreage	Acreage
Wetland	49.81	56.76	81.23	88.26	88.26

3.5. Wildlife

Direct and indirect observations of wildlife species from 2008 to 2012 are listed in Table 5 and Appendix B. Multiple individuals of fourteen bird species were observed during the 2012 survey. The mountain bluebird (*Sialia currucoides*) and yellow-headed blackbird (*Xanthocephalus xanthocephalus*) were observed for the first time in 2012. Thirty-four bird species have been identified within the site to date.

The landowner observed a fox den and five kits in 2012. He also observed a cow moose (*Alces americanus*) giving birth to a calf on site the day before Memorial Day of 2012. A red fox (*Vulpes vulpes*) and tracks of a beaver (*Caster canadensis*), deer (*Odocoileus* sp.), elk (*Cervus canadensis*), and moose were observed during the 2012 site visit. Elk use the site extensively. The landowner has also observed solitary gray wolves (*Canus lupus*) and grizzly bears (*Ursus arctos horribilis*) traversing the site. Indications of beaver browse and dam construction were observed along Rock Creek.

Table 5. Wildlife species observed within the BHGA Wetland Mitigation Site from 2008 to 2012.

COMMON NAME	SCIENTIFIC NAME					
AMPH	HIBIAN					
Columbia Spotted Frog	Rana luteiventris					
	RD					
American Crow	Corvus brachyrhynchos					
American Kestrel	Falco sparverius					
American Robin	Turdus migratorius					
Bank Swallow	Riparia riparia					
Barn Swallow	Hirundo rustica					
Black-billed Magpie	Pica hudsonia					
Black-capped Chickadee	Poecile atricapillus					
Bobolink	Dolichonyx oryzivorus					
Cliff Swallow	Petrochelidon pyrrhonota					
Common Raven	Corvus corax					
Great Blue Heron	Ardea herodias					
Great Horned Owl	Bubo virginianus					
House Wren	Troglodytes aedon					
Killdeer	Charadrius vociferus					
Mallard	Anas platyrhynchos					
Mountain Bluebird	Sialia currucoides					
Northern Harrier	Circus cyaneus					
Northern Shrike	Lanius excubitor					
Red-tailed Hawk	Buteo jamaicensis					
Red-winged Blackbird	Agelaius phoeniceus					
Rock Pigeon	Columba livia					
Rough-legged Hawk	Buteo lagopus					
Sandhill Crane	Grus canadensis					
Song Sparrow	Melospiza melodia					
Spotted Sandpiper	Actitis macularius					
Tree Swallow	Tachycineta bicolor					
Violet-green Swallow	Tachycineta thalassina					
Western Bluebird	Sialia mexicana					
Western Meadowlark	Sturnella neglecta					
Wilson's Phalarope	Phalaropus tricolor					
Wilson's Snipe	Gallinago delicata					
Yellow Warbler	Dendroica petechia					
Yellow-headed Blackbird	Xanthocephalus xanthocephalus					
Yellow-rumped Warbler	Dendroica coronata					
MAN	IMAL					
Badger	Taxidea taxus					
Beaver	Castor canadensis					
Coyote	Canis latrans					
Deer Sp.						

Bolded species were observed in 2012.

Table 5. (continued). Wildlife species observed within the BHGA Wetland Mitigation Site from 2008 to 2012.

COMMON NAME	SCIENTIFIC NAME					
MAN	MAL .					
Elk or Wapiti	Cervus canadensis					
Gray Wolf	Canus Lupus					
Grizzly Bear	Ursus arctos horribilis					
Meadow Vole	Microtus pennsylvanicus					
Moose	Alces americanus					
Muskrat	Ondatra zibethicus					
Raccoon	Procyon lotor					
Red Fox	Vulpes vulpes					
Richardson's Ground Squirrel	Spermophilus richardsonii					
Striped Skunk	Mephitis mephitis					
White-tailed Deer	Odocoileus virginianus					

Bolded species were observed in 2012

3.6. Functional Assessment

The 2001 baseline functional assessment by MDT rated the wetlands that occurred along the Rock Creek corridor and in the northwest corner (fen area) as Category II wetlands and the remaining wetlands on the site as Category III using the 1999 MDT MWAM (Berglund 1999). The 2009 through 2011 wetland conditions were assessed using the 2008 MWAM (Berglund and McEldowney 2008). The 2009 through 2012 assessment results are shown in Table 6. Two assessment areas (AA) were evaluated within the BHGA wetland mitigation site (Functional Assessment Forms, Appendix B). The Rock Creek corridor AA encompassed 10 acres. The remaining wetlands on the site were included in the second 78.26-acre AA. The difference in acreages of the AAs between years is the result of continued wetland development at the site.

All wetlands within the BHGA mitigation area were rated as Category I wetlands in 2011 and 2012, an improvement from Category II wetlands in 2010 (Table 6). The Rock Creek corridor (AA-1) rated excellent for general wildlife habitat, general fish habitat, and production export/food chain support and rated high for attenuation. short and long term surface water storage. sediment/nutrient/toxicant removal, sediment/shoreline stabilization, groundwater discharge/recharge. The rating for uniqueness increased by 0.2 points in 2012 based on the rating of aquatic bed habitat in the creek. This AA also gained 0.2 points due to increased ratings for short and long term surface water storage. The ratings for the remaining wetland functions were the same between 2011 and 2012. Wetlands outside the Rock Creek corridor (AA-2) received an excellent rating for general wildlife habitat, and high ratings for short and long term surface water storage, sediment/nutrient, toxicant removal, production export/food chain support, groundwater discharge/recharge, and uniqueness. The AA-2 encompasses an historic fen located in the northwest corner of the site.

Table 6. Summary of 2009 through 2012 wetland function/value ratings and functional points at the BHGA Wetland Mitigation Site.

Function and Value Parameters 2008 MDT Montana Wetland Assessment Method	2009 AA 1 (Rock Creek Wetlands)	2009 AA 2 (Remaining Wetlands)	2010 AA 1 (Rock Creek Wetlands)	2010 AA 2 (Remaining Wetlands)	2011 AA 1 (Rock Creek Wetlands)	2011 AA 2 (Remaining Wetlands)	2012 AA 1 (Rock Creek Wetlands)	2012 AA 2 (Remaining Wetlands)
Listed/Proposed T&E Species Habitat	Low (0.0)	Low (0.0)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)
MTNHP Species Habitat	Low (0.2)	Low (0.2)	Low (0.2)	Low (0.2)	Mod (0.6)	Mod (0.6)	Mod (0.6)	Mod (0.6)
General Wildlife Habitat	High (0.9)	Mod (0.7)	High (0.9)	Mod (0.7)	Exc. (1.0)	Exc. (1.0)	Exc. (1.0)	Exc. (1.0)
General Fish/Aquatic Habitat	High (0.8)	NA	High (0.8)	NA	Exc. (1.0)	NA	Exc. (1.0)	NA
Flood Attenuation	High (0.8)	NA	High (0.8)	NA	High (0.9)	NA	High (0.9)	NA
Short and Long Term Surface Water Storage	High (0.8)	High (1.0)	High (0.8)	High (1.0)	High (0.8)	High (1.0)	High (1.0)	High (1.0)
Sediment/Nutrient/Toxicant Removal	High (0.9)	High (1.0)						
Sediment/Shoreline Stabilization	High (1.0)	NA						
Production Export/Food Chain Support	High (1.0)	Mod (0.6)	High (1.0)	Mod (0.6)	Exc. (1.0)	High (0.8)	Exc. (1.0)	High (0.8)
Groundwater Discharge/Recharge	High (1.0)	High (1.0)						
Uniqueness	Mod (0.4)	High (0.9)	Mod (0.4)	High (0.9)	Mod (0.4)	High (0.9)	Mod (0.6)	High (0.9)
Recreation/Education Potential	Low (0.05)	Low (0.05)	Low (0.05)	Low (0.05)	Mod (0.1)	Mod (0.1)	Mod (0.1)	Mod (0.1)
Actual Points / Possible Points	7.85 / 11	5.45 / 8	8.15 / 11	5.75 / 8	9/11	6.7 / 8	9.4 / 11	6.7 / 8
% of Possible Score Achieved	71%	68%	74.1%	71.9%	81.8%	83.8%	85.5%	83.8%
Overall Category	=	II	II	II	I	I	I	I
Total Acreage of Assessed Wetlands within Site Boundaries (ac)	10	39.81	10	71.23	10	78.26	10	78.26
Functional Units (acreage x actual points)	78.50	217	81.50	409.6	90.00	524.3	94.0	524.3

3.7. Photo Documentation

Representative photographs were taken from photo points one to seven (PP1 to PP7) and of the transect end points (Appendix C). Photos of PP1 to PP7 taken between 2009 and 2012 are presented on pages C-1 to C-21 of Appendix C. Photos of transect end points shot between 2009 and 2012 are shown on C-22 and 23 of Appendix C. Photographs of the three wetland data points are shown on C-24. The 2012 aerial photograph was used as a base for Figures 2 and 3 (Appendix A).

3.8. Maintenance Needs

There are no man-made water control features on the site. The wooden fence surrounding the perimeter was in good condition in 2012. All man-made bird nesting structures installed in 2008 by MDT were in good condition, although two of the wood duck boxes were tilted from frost-heave in 2011 and 2012 and may require maintenance to promote continued bird usage.

Containerized plant survival declined significantly from 2008 to 2010. Mortality may be related to excessively saturated soil conditions. Survival appeared to stabilize in 2011 potentially reflecting suitable micro-habitats within the inundated/saturated wetlands. No supplemental planting is recommended for the BHGA site based on the natural regeneration of numerous willows.

Canadian thistle (*Cirsium arvense*), a Priority 2B noxious weed, was identified in two areas on the northwest mitigation boundary near the home site (Figure 3, Appendix A). The infestation size ranged between less than 0.1 to 1.0 acre with the percent cover ranging between 1 to 5 and 5 to 25. The MDT has an ongoing weed control program.

3.9. Current Credit Summary

The mitigation goal for the Big Hole project was to provide 45.8 acres of Corpsapproved mitigation credit within the 96-acre easement area. Credit was to be obtained for 42.3 acres of wetland restoration at a ratio of 1:1, and 3.5 acres of credit was to be obtained for preservation of 14.0 acres at a ratio of 4:1. The 14.0 acres of preservation applies to the Rock Creek corridor and fen area in northwest corner of the site – neither of which was impacted by the filling of the ditches. These areas did however benefit from the removal of cattle grazing from the site. This project was established prior to the adoption of the 2008 USACE mitigation guidelines requiring the development of success criteria, therefore success was based on achieving wetland criteria defined by the 1987 Manual.

As of 2012, 74.26 acres of restored/created wetland habitat and 14.0 acres of preserved wetlands were delineated within the BHGA mitigation site. These acreages and the applicable credit ratios are summarized in Table 7. The total accumulated credit acres based on the 2012 monitoring results are 77.76. The ratings of the two AAs increased from Category II to Category I wetlands in 2011 and continued through 2012, reflecting the successful restoration and preservation of highly functioning wetlands within the Upper Missouri watershed.

Numerous stands of willow and shrubby cinquefoil have established voluntarily within the site. No additional woody plantings are recommended. The current hydrological conditions should continue to support high quality wetland habitat for plants and wildlife for the long term.

Table 7. Summary of wetland credits from 2008 to 2012 at the BHGS Wetland Mitigation Site.

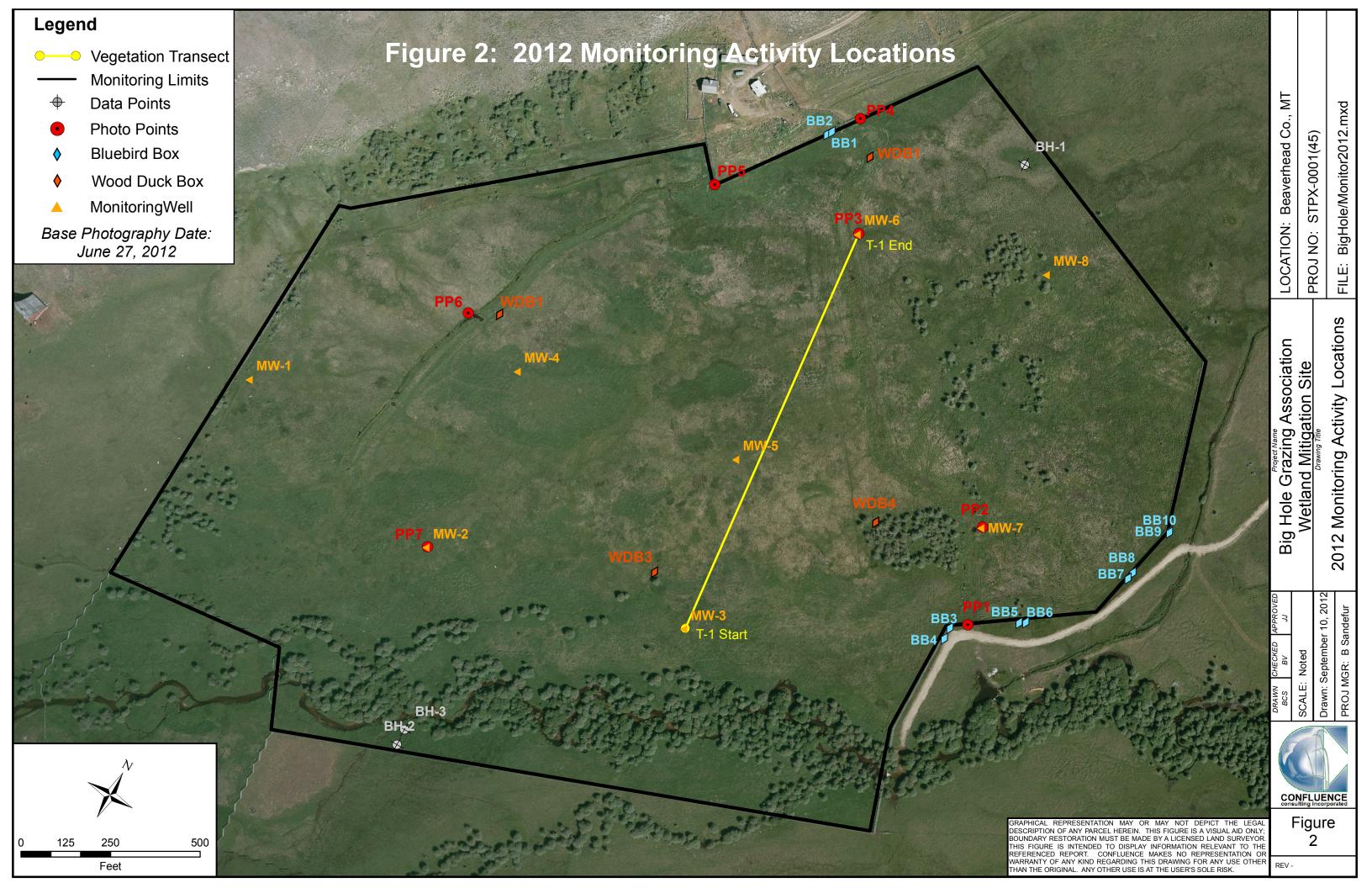
Mitigation Type	Credit Ratios	2008 Acreage	2008 Credit Acres	2009 Acreage	2009 Credit Acres	2010 Acreage	2010 Credit Acres	2011 Acreage	2011 Credit Acres	2012 Acreage	2012 Credit Acres
Wetland Restoration	1:1	35.81	35.81	42.76	42.76	67.23	67.23	74.26	74.26	74.26	74.26
Wetland Preservation (pre-existing)	4:1	14.00	3.50	14.00	3.50	14.00	3.50	14.00	3.50	14.00	3.50
TOTAL		49.81	39.31	56.76	46.26	81.23	70.73	88.26	77.76	88.26	77.76

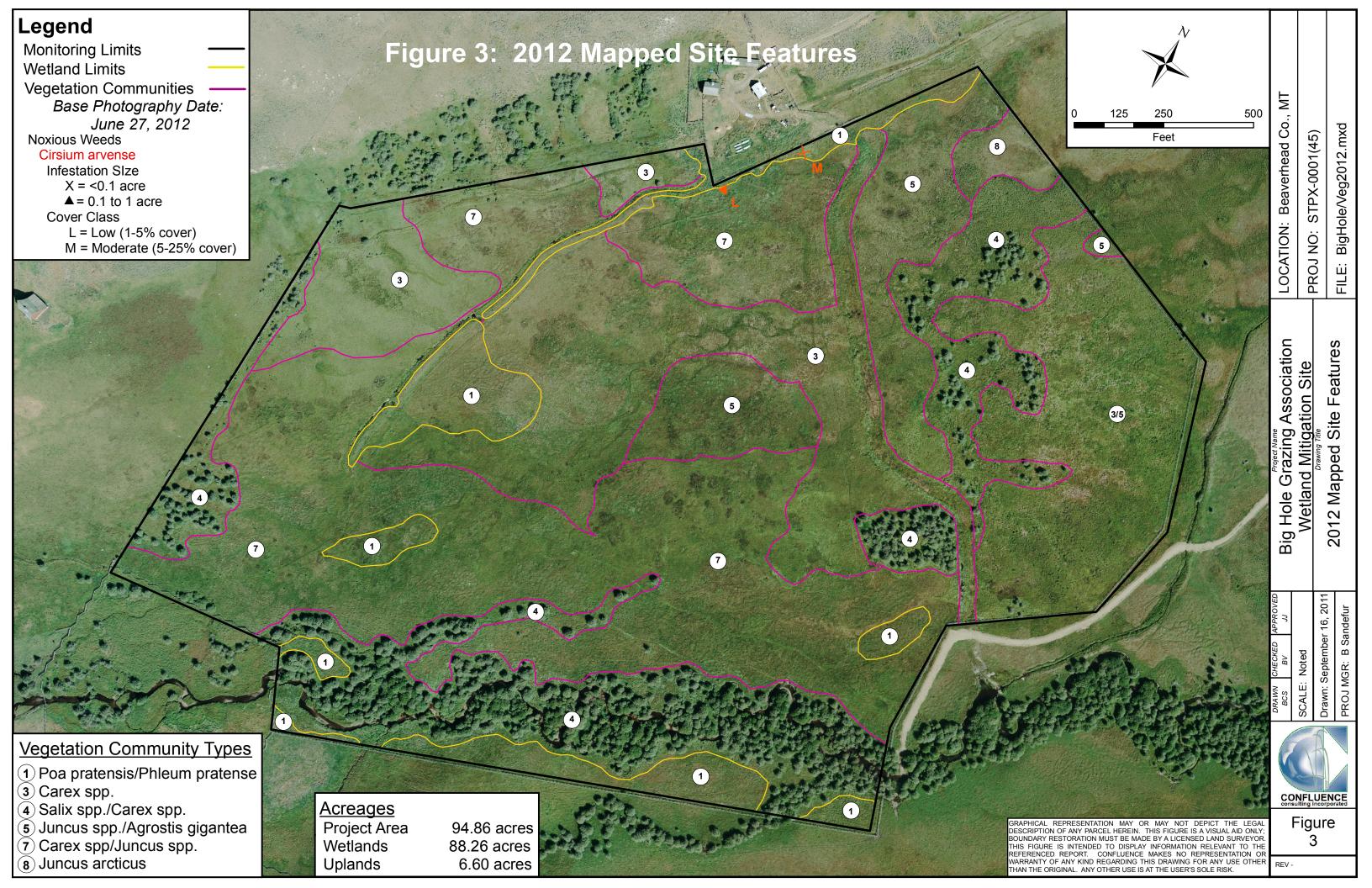
4. REFERENCES

- Berglund, J. 1999. *MDT Montana Wetland Assessment Method*. Prepared for Montana Department of Transportation and Morrison-Maierle, Inc. Prepared by Western EcoTech. Helena, Montana. 18pp.
- Berglund, J. and R. McEldowney. 2008. *MDT Montana Wetland Assessment Method*. Prepared for Montana Department of Transportation, Helena, Montana. Post, Buckley, Schuh, & Jernigan, Helena, Montana. 42pp.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. US Army Corps of Engineers. Washington, DC.
- Lichvar, Robert W. and Kartesz, John T. 2009. North American Digital Flora: National Wetland Plant List, version 2.4.0 (https://wetland_plants.usace.army.mil). U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH, and BONAP, Chapel Hill, NC. Downloaded from National Wetland Plant List website 5/9/12. Effective June 1, 2012.
- Reed, P.B. 1988. *National list of plant species that occur in wetlands: North West (Region 9)*. Biological Report 88(26.9), May 1988. US Fish and Wildlife Service, Washington, DC.
- US Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3.Vicksburg, MS: US Army Engineer Research and Development Center.

Websites:

- United States Department of Agriculture-Natural Resource Conservation Service. Web Soil Survey for Beaverhead County, Montana. 2010. Accessed September 2010 at: http://websoilsurvey.nrcs.usda.gov/app/.
- Western Regional Climate Center. United States Historical Climatology Network. Reno, Nevada. 2011. Accessed June 2011 at: http://www.wrcc.dri.edu/CLIMATEDATA.html.




Big Hole Grazing Association 2012 Wetland Mitigation Monitoring Report
--

Appendix A

Project Area Maps – Figures 2 and 3

2012 MDT Wetland Mitigation Monitoring Big Hole Grazing Association Beaverhead County, Montana

Big Hole Grazing Association 2012 Wetland Mitigation Monitoring Report

Appendix B

2012 Wetland Mitigation Site Monitoring Form 2012 USACE Wetland Delineation Data Form 2012 MDT Functional Assessment Form

2012 MDT Wetland Mitigation Monitoring Big Hole Grazing Association Beaverhead County, Montana

MDT WETLAND MITIGATION SITE MONITORING FORM

Project Site: _	<u>Big Hole Gra</u>	ızing	Asses	sment Date/Time	7/12	<u>/2012 9:18:36</u> AM
Person(s) con	ducting the a	assessment: <u>B Sa</u>	ndefur, E S	andefur		
Weather: Sun	iny & warm i	n am, hot in pm	Location:	10 miles southwes	t of Wisdom	n, MT
MDT District:_	Butte	N	Milepost:			
Legal Descrip	tion: T <u>4S</u>	R <u>16W</u> Section(s	s) <u>2</u>		-	
Initial Evaluati	ion Date: 8/6	<u>i/2008</u> Moni	toring Year:	<u>5_</u> #Visits in Year: <u>1</u>		
Size of Evalua	ation Area:	95 (acres)				
Land use surr Rangeland, a		and: nayland), riparian	, rural resid	ential		
		НҮ	DROLOGY			
Surface Water So	urce: Rock	Creek, precipitati	ion, springs	, high water table		
Inundation:	<u>v</u> A	verage Depth:	0.2 (ft)	Range of Depths:	0-3	(ft)
Percent of assess	ment area ur	nder inundation:	60 <u>%</u>			
Depth at emergen	t vegetation-	open water bound	ary:	2 (ft)		
If assessment are	a is not inund	dated then are the	soils satura	ted within 12 inches	of surface: _	Yes
Other evidence of	hydrology or	n the site (ex. – dri	ft lines, eros	ion, stained vegeta	tion, etc <u>:</u>	
Surface water, hi drain patterns th	_		ls, sedimer	t and drift deposits	along Rock	Creek,
Groundwater	Monitoring	Wells				
Record depth of	of water surfa	ace below ground	d surface, ii	feet.		
Well ID	Water	Surface Depth (ft)				
MW-7	0.4					
MW-8	0.3					
MW-4	0.1					
MW-1	0.2					
MW-2	0.3					
MW-3	0.9					
MW-6	0	(at ground surfa	ice)			
MW-5	0	(at ground surfa	ice)			

Additi	ional Activities Checklist:				
✓	Map emergent vegetation-open water boundary on aerial photograph.				
\checkmark	Observe extent of surface water during each site visit and look for evidence of past surface water				
eleva	tions (drift lines, erosion, vegetation staining, etc.)				
✓	Use GPS to survey groundwater monitoring well locations, if present.				
Hydrology Notes:					

Site is a slight bit drier in 2012 than in 2010 and 2011 with a reduction in inundation. Extensive areas of saturation sustained by perennially high water table.

VEGETATION COMMUNITIES

Site Big Hole Grazing

(Cover Class Codes $\mathbf{0} = < 1\%$, $\mathbf{1} = 1.5\%$, $\mathbf{2} = 6.10\%$, $\mathbf{3} = 11.20\%$, $\mathbf{4} = 21.50\%$, $\mathbf{5} = >50\%$)

Community # 1 Community Type: Poa pratensis / Phleum pratense Acres: 6.6

Species	Cover class	Species	Cover class
Achillea millefolium	2	Alopecurus pratensis	3
Castilleja occidentalis	2	Cirsium arvense	1
Elymus repens	2	Hordeum jubatum	1
Iris missouriensis	0	Juncus arcticus	2
Phleum pratense	3	Poa pratensis	4
Potentilla gracilis	1	Ranunculus repens	1
Rumex crispus	0	Sisymbrium altissimum	0
Taraxacum officinale	1	Thlaspi arvense	0
Toxicoscordion venenosum	1		

Comments:

Community # 3 Community Type: Carex spp. / Acres: 23.89

Species	Cover class	Species	Cover class
Achillea millefolium	0	Agrostis gigantea	1
Alopecurus pratensis	1	Aster sp.	0
Beckmannia syzigachne	0	Calamagrostis scopulorum	0
Carex aquatilis	2	Carex athrostachya	0
Carex nebrascensis	2	Carex utriculata	5
Deschampsia cespitosa	2	Epilobium ciliatum	0
Geum macrophyllum	1	Glyceria striata	2
Hordeum brachyantherum	0	Hordeum jubatum	1
Juncus arcticus	1	Juncus tenuis	0
Lemna minor	0	Mentha arvensis	1
Mimulus guttatus	0	Pedicularis groenlandica	1
Polemonium occidentale	2	Potentilla gracilis	0
Rumex crispus	0	Salix drummondiana	0
Salix lutea	1	Scutellaria galericulata	0
Sisyrinchium montanum	0	Sonchus arvensis	0

Comments:

^{*} Indicates accepted spp name not on '88 list.

Community # 4 Community Type: Salix spp. / Carex spp. Acres: 18.76

Species	Cover class	Species	Cover class
Allium geyeri	1	Alopecurus aequalis	0
Alopecurus pratensis	1	Aster sp.	0
Beckmannia syzigachne	0	Carex athrostachya	1
Carex praegracilis	2	Carex utriculata	3
Castilleja miniata	0	Dasiphora fruticosa	1
Epilobium ciliatum	1	Equisetum arvense	0
Geum macrophyllum	1	Juncus arcticus	2
Myosotis scorpioides	0	Pedicularis groenlandica	0
Populus tremuloides	0	Potentilla gracilis	0
Ribes lacustre	1	Rumex crispus	1
Salix bebbiana	3	Salix exigua	3
Salix lemmonii	3	Salix lutea	1
Senecio sphaerocephalus	0		

Comments:

Community # 5 Community Type: Juncus spp. / Agrostis gigantea Acres: 12.93

Species	Cover class	Species	Cover class
Achillea millefolium	0	Agrostis gigantea	3
Allium geyeri	0	Alnus incana	0
Alopecurus pratensis	1	Carex praegracilis	1
Carex utriculata	2	Cirsium scariosum	0
Dasiphora fruticosa	1	Epilobium ciliatum	0
Glyceria striata	0	Iris missouriensis	1
Juncus arcticus	3	Juncus effusus	1
Juncus ensifolius	0	Poa palustris	0
Polemonium occidentale	2	Potentilla gracilis	1
Salix exigua	0	Salix lutea	0
Taraxacum officinale	0		

Comments:

Community # 7 Community Type: Carex spp. / Juncus sp. Acres: 31.71

Species	Cover class	Species	Cover class
Achillea millefolium	0	Agrostis gigantea	0
Allium geyeri	1	Alopecurus pratensis	3
Arnica lanceolata	0	Beckmannia syzigachne	0
Calamagrostis scopulorum	1	Carex athrostachya	0
Carex praegracilis	1	Carex utriculata	4
Castilleja occidentalis	0	Cirsium scariosum	0
Eleocharis palustris	0	Epilobium ciliatum	0
Geum macrophyllum	0	Glyceria striata	3
Juncus arcticus	3	Lupinus polyphyllus	0
Pedicularis groenlandica	0	Poa palustris	0
Potentilla gracilis	0	Ranunculus repens	0
Rumex crispus	0	Senecio sphaerocephalus	1
Senecio sphaerocephalus	2	Sisyrinchium montanum	0
Taraxacum officinale	0	Toxicoscordion venenosum	1
Trifolium pratense	0	Trifolium repens	2

Comments:

Community # 8 Community Type: Juncus arcticus / Acres: 0.97

Species	Cover class	Species	Cover class
Achillea millefolium	1	Agrostis gigantea	2
Aster sp.	0	Epilobium ciliatum	1
Hordeum brachyantherum	1	Juncus arcticus	4
Poa pratensis	1	Potentilla gracilis	2
Rumex crispus	1	Taraxacum officinale	1
Thlaspi arvense	1	Trifolium repens	1

Comments:

Total Vegetation Community Acreage 94.86

(Note: some area within the project bounds may be open water or other non-vegetative ground cover.

VEGETATION TRANSECTS

Big Hole Grazing		Da	te:	:18:36 AM
Transect Number: 1		_ Compass Di	rection from Start:	<u>5</u>
Interval Data:				
Ending Station	550	Community Type:	Carex spp. / Juncus spp.	
Species		Cover class	Species	Cover class
Achillea millefolium		0	Allium geyeri	1
Alopecurus pratensis		1	Aster sp.	1
Calamagrostis scopulorum	l	0	Carex athrostachya	2
Carex utriculata		2	Eleocharis palustris	1
Glyceria striata		3	Juncus arcticus	4
Phleum pratense		1	Poa palustris	1
Ranunculus repens		1	Rumex crispus	1
Salix exigua		0	Senecio sphaerocephalus	1
Toxicoscordion venenosun	n	0	Trifolium repens	1
Ending Station	730	Community Type:	Juncus spp. / Agrostis gigan	tea
Species		Cover class	Species	Cover class
Achillea millefolium		0	Agrostis gigantea	3
Allium geyeri		0	Alopecurus pratensis	1
Carex praegracilis		1	Carex utriculata	2
Epilobium ciliatum		0	Glyceria striata	0
Juncus arcticus		5	Poa palustris	0
Potentilla gracilis		0	Ranunculus repens	0
Senecio sphaerocephalus		1		
Ending Station	990	Community Type:	Carex spp. /	
Species		Cover class	Species	Cover class
Achillea millefolium		0	Agrostis gigantea	1
Allium geyeri		0	Alopecurus pratensis	2
Carex aquatilis		1	Carex athrostachya	0
Carex utriculata		5	Epilobium ciliatum	0
Geum macrophyllum		0	Juncus arcticus	2
Potentilla gracilis		0	Ranunculus repens	0
Ending Station 1	055	Community Type:	Carex spp. / Juncus spp.	
Species		Cover class	Species	Cover class
Agrostis gigantea		1	Carex athrostachya	0
Carex praegracilis		0	Epilobium ciliatum	0
Hordeum brachyantherum		0	Juncus arcticus	5
Potentilla gracilis		0		

Ending Station 1200 Community Type: Carex spp. /

Species	Cover class	Species	Cover class
Agrostis gigantea	0	Alopecurus aequalis	0
Alopecurus pratensis	1	Beckmannia syzigachne	1
Calamagrostis scopulorum	0	Carex aquatilis	1
Carex nebrascensis	1	Carex praegracilis	2
Carex utriculata	5	Epilobium ciliatum	0
Glyceria striata	0	Lemna minor	0

Ending Station 1247 Community Type: Juncus spp. / Agrostis gigantea

Species	Cover class	Species	Cover class
Agrostis gigantea	3	Alopecurus pratensis	3
Carex praegracilis	2	Carex utriculata	3
Epilobium ciliatum	0	Juncus arcticus	2
Juncus effusus	1	Lemna minor	0

Transect Notes:

PLANTED WOODY VEGETATION SURVIVAL

Big Hole Grazing

Planting Type	#Planted	#Alive Notes
Red-osier Dogwood	246	0 No live stems observed
Thin-leaf Alder	470	150 Potential alder recruitment at site
Water Birch	245	0 No live stems observed

Comments

Site is too wet for survival of red-oiser dogwood and water birch. Grazing in 2011 may have resulted in the loss of the dogwoods that had remained through 2011 monitoring. These species may also have also been outcompeted by herbaceous forbs and grasses or just not well suited for the cold environment of the Big Hole Valley. Willow recruitment continues along Rock Creek corridor and within comm 4.

Big Hole Grazing

WILDLIFE

Bir	ds
-----	----

Were man-made nesting structures installed	? <u>Yes</u>
If yes, type of structure: 10 BB; 4 WDB	
How many?14	
Are the nesting structures being used?	Yes
Do the nesting structures need repairs?	Yes

Nesting Structure Comments:

The wood duck boxes that are leaning from frost heave should be leveled.

Species	#Observed	Behavior	Habitat
American Kestrel	2	FO	UP, WM
American Robin	1	F, L	UP, WM
Great Blue Heron	4	FO	OW, SS, UP, WM
Mallard	1	F	OW
Mountain Bluebird	2	F, N	OW, SS, UP, WM
Red-tailed Hawk	1	FO	UP, WM
Red-winged Blackbird	10	L	OW, SS, WM
Sandhill Crane	2	F, N	WM
Song Sparrow	1	L	UP, WM
Tree Swallow	30	F, FO, N	OW, SS, UP, WM
Western Meadowlark	4	L	OW, SS, UP, WM
Wilson's Snipe	2	FO	OW, SS, UP, WM
Yellow Warbler	2	L	SS, WM
Yellow-headed Blackbird	2	L	SS, UP, WM
Bird Comments			

BEHAVIOR CODES

BP = One of a <u>breeding pair **BD** = Breeding display **F** = Foraging **FO** = Flyover **L** = Loafing **N** = Nesting</u>

HABITAT CODES

AB = Aquatic bed SS = Scrub/Shrub FO = Forested UP = Upland buffer I = Island

WM = Wet meadow **MA** = Marsh **US** = Unconsolidated shore **MF** = Mud Flat **OW** = Open Water

Mammals and Herptiles

Species	# Observed Tracks Scat	Burrows Comments
---------	------------------------	-------------------------

Beaver		Yes	No	No	signs of forage
Deer Sp.		Yes	No	No	
Elk or Wapiti		Yes	Yes	No	
Moose		Yes	Yes	No	
Red Fox	1	No	No	Yes	

Wildlife Comments:

Fox den located along northern boundary of site, raised 5 kits in 2012 (landowner sighting). Landowner also observed a mother moose give birth to a calf in the center of the mitigation site the day before Memorial Day. Site is also used extensively by elk.

PHOTOGRAPHS

Take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

Photograph Checklist:

- ✓ One photograph for each of the four cardinal directions surrounding the wetland.
- At least one photograph showing upland use surrounding the wetland. If more than one upland exists then take additional photographs.
- At least one photograph showing the buffer surrounding the wetland.
- ☑ One photograph from each end of the vegetation transect, showing the transect.

Photo #	Latitude	Longitude	Bearing	Description
9410	45.518528	-113.545311	270	PP-1, photo 2
9411	45.518528	-113.545311	0	PP-1, photo 1
9412	45.518528	-113.545311	90	PP-1, photo 3
9413	45.519218	-113.545784	360	PP-2, photo 1
9414	45.519218	-113.545784	270	PP-2, photo 2
9415	45.519218	-113.545784	90	PP-2, photo 3
9417	45.521358	-113.549263	145	PP-4, photo 1
9418	45.521358	-113.549263	120	PP-4, photo 2
9419	45.521358	-113.549263	260	PP-4, photo 3
9420	45.520237	-113.550194	90	PP-5, photo 1
9421	45.520237	-113.550194	160	PP-5, photo 2
9422	45.520237	-113.550194	270	PP-5, photo 3
9426	45.518433	-113.551643	180	PP-6, photo 2
9427	45.518433	-113.551643	315	PP-6, photo 3
9428	45.518433	-113.551643	135	PP-6, photo 1
9432	45.517132	-113.550613	90	PP-7, photo 1
9433	45.517132	-113.550613	270	PP-7, photo 2
9434	45.517132	-113.550613	180	PP-7, photo 3
9437	45.517292	-113.547882	5	Veg tran 1, start
9438	45.520527	-113.548622	185	Veg tran 1, end
9439	45.520527	-113.548622	135	PP-3, photo 1
9440	45.520527	-113.548622	270	PP-3, photo 2
9441	45.520527	-113.548622	320	PP-3, photo 3
9447	45.5217067	-113.547475	45	BH-1
9455	45.51555167	-113.5495816667	' 165 B-11	BH-2

9456 45.515655 -113.5497233333 195 BH-3

Comments:

ADDITIONAL ITEMS CHECKLIST

Hydrology
 ✓ Map emergent vegetation/open water boundary on aerial photos. ✓ Observe extent of surface water. Look for evidence of past surface water elevations (e.g. drift lines, vegetation staining, erosion, etc).
Photos
 ✓ One photo from the wetland toward each of the four cardinal directions ✓ One photo showing upland use surrounding the wetland. ✓ One photo showing the buffer around the wetland ✓ One photo from each end of each vegetation transect, toward the transect
Vegetation
✓ Map vegetation community boundaries
✓ Complete Vegetation Transects
Soils
✓ Assess soils
Wetland Delineations
Delineate wetlands according to applicable USACE protocol (1987 form or
Supplement) Delineate wetland – upland boundary onto aerial photograph.
Wetland Delineation Comments
Functional Assessments
Complete and attach full MDT Montana Wetland Assessment Method field orms.
Functional Assessment Comments:

Maintenance

Were man-made nesting structure installed at this site?

If yes, do they need to be repaired? Yes
If yes, describe the problems below and indicate if any actions were taken to remedy the problems
Were man-made structures built or installed to impound water or control water flow
into or out of the wetland? No
If yes, are the structures in need of repair?
If yes, describe the problems below.
The wood duck boxes that are leaning from frost heave should be leveled.

WETLAND DETERMINATION DATA FORM - Routine Weltand Delineation, 1987 COE Protocol

Project/Site: Big Hole Grazing			City/Count	_{y:} Beaverhe	ead		Samplin	g Date:	7/12/	/2012
Applicant/Owner: MDT			State: MT Sampling Point:					a Point:Bl	- 1-1	
••			Section, Township, Range: S 2 T 4S R 16W						<i></i>	
Landform (hillslope, terrace, etc.): Lowl							 ting	Slop	e (%).	
			4	5.5217067	Long:	-	113.54747			
Soil Map Unit Name: Foxgulch-Coppe	 erbasin-Wisdor	n complex			_ Long			Datun		
Do Normal Circumstances Exist on this		Yes_				-				
Is the site significantly disturbed (Atypi		Yes \square								
Is the area a potential Problem Area?	cai Situation)?	Yes								
is the area a potential i roblem / trea!		163 <u>—</u>								
SUMMARY OF FINDINGS - A	ttach site ma	p showing	sampliı	ng point le	ocations	s, transec	ts, impor	tant fea	itures	s, etc
Hydrophytic Vegetation Present?	Yes 🔽	No _								
Hydric Soil Present?	Yes	No		he Sampled		v	ā			
Wetland Hydrology Present?	Yes	No	wit	hin a Wetlan	nd?	Yes <u></u>	No			
Remarks:										
Data point in veg com 8.										
VEGETATION - Use scientific	names of pl	ants.								
		Absolute	Dominar	nt Indicator	Domina	nce Test wo	orksheet:			
Tree Stratum (Plot size:)		Species	Status_	Number	of Dominant	Species		4	
1		_			That Are	OBL, FACV	V, or FAC:		- 4	(A)
2		•			Total Nu	mber of Don	ninant		4	
3		0			Species	Across All S	trata:		4	(B)
4		<u> </u>				of Dominant			1	
Sapling/Shrub Stratum (Plot size:)		_ = Total C	over	That Are	OBL, FACV	V, or FAC:			(A/B)
1		0			Dominar	nce Test is >	50% ✓			
2		_								
3										
4										
5										
Herb Stratum (Plot size: 5ft)	0	_ = Total C	over						
1 Poa palustris	/	20	✓	FAC						
2. Potentilla gracilis		25	V	FAC						
3. Juncus arcticus		40	V	FACW						
4. Carex praegracilis		20	V	FACW						
5. Thlaspi arvense		15		UPL						
6. Trifolium repens		10		FAC						
7. Hordeum brachyantherum		5		FACW						
8		0	- 📙							
9										
10		$\frac{0}{0}$	- 							
11		<u> </u>								
Woody Vine Stratum (Plot size:)	135	_= Total Co	over						
1		0			Hydroph	ovtic				
2.		0			Vegetati	ion			_	
	0	0	_= Total Co	over	Present	? '	Yes✔	No _		
% Bare Ground in Herb Stratum										
Remarks:										

SOIL										Sampling Point: BH-1
Profile Desc	ription:	(Describe t	o the dep	th neede	d to docur	nent the i	ndicator	or confi	rm the absence	
Depth		Matrix	•			x Feature				,
(inches)	Colo	r (moist)	%	Color	(moist)	%	_Type ¹	_Loc ²	Texture	Remarks
0-4	10YR	3/2	100						Peat	
4-20	10YR	2/1	100						Clay Loam	Soil color black
20-24	10YR	3/1	95	10YR	4/4	5	С	М	Sandy Clay Loar	m
									_	
	-									-
¹ Type: C=Co	oncentrat	ion, D=Depl	etion, RM=	Reduced	Matrix, CS	S=Covered	d or Coate	ed Sand	Grains. ² Loc	cation: PL=Pore Lining, M=Matrix.
Hydric Soil		s:								
Histosol									ce Layer in San	dy Soils
Histic Ep						rganic Str			oils	
Sulfidic					_	sted on Lo				
Reducing	oisture R					sted on N				
✓ Gleyed o			s			ther (expla	ain in rem	narks)		
Concretic			-							
Taxonomy Su	ıbgroup:	Fluvaquei	ntic Haple	ocryolls						
Confirm Mapp	ped Type	?: 📙							Hydric Soil	Present? Yes No
Remarks:										
HYDROLO										
Wetland Hy		ndicators:								
Primary India	cators			Sec	ondary Ind	icators (2	or more	required)		
Innunda	ited				Oxidized F			Living R	oots	
☐ Saturate	ed in uppe	er 12 inches		ᆜ	Water-Sta	ined Leav	es			
Water M	larks				Local Soil		ata			
Drift Line	es			_	FAC-Neut	ral Test				
Sedime	nt Deposi	its		_	Other (Exp	olain in Re	marks)			
Drainage	e pattern:	s in wetland	s							
Field Obser	vations:									
Surface Water		nt? Ye	es 🗌	No 🔽	Depth (in	ches):				
Water Table				No 🔽		ches):		I .		
Saturation P				No 🔽		ches):			atland Hydrolog	gy Present? Yes 🗸 No 🔲
(includes car			,5	10	Deptii (iii	Ciles)		— ** *	etiana riyarolog	gy riesent: Tes <u>v</u> No <u>r</u>
			surface,	high ear	ly season	water ta	ıble. We	tland se	asonally endo	-saturated.
		-	,	_	-				•	
1										

WETLAND DETERMINATION DATA FORM - Routine Weltand Delineation, 1987 COE Protocol

Project/Site: Big Hole Grazing		City/County: Beaverhead Sampling Date:7/12/201						012	
Applicant/Owner: MDT		State: MT Sampling Point: BH-2							
Investigator(s): B Sandefur		Section, Township, Range: S 2 T 4S R 16W							
Landform (hillslope, terrace, etc.): Terrace							Slone	(%)	0
	Lat:								
Soil Map Unit Name: Wisdom-Shewag complex	Lat			_ Long			_ Datum.		
Do Normal Circumstances Exist on this site?	Yes_								
Is the site significantly disturbed (Atypical Situation)?	Yes 🗆								
Is the area a potential Problem Area?	Yes								
·									4
SUMMARY OF FINDINGS – Attach site m		samplin	g point l	ocations,	transects	s, import	ant feat	ures,	etc.
Hydrophytic Vegetation Present? Yes		le th	e Sampled	Δrea					
Hydric Soil Present? Wetland Hydrology Present? Yes	No 🔽		in a Wetlan		Yes _	No_	✓		
Remarks:	NO <u> </u>								
DP on upland side of wetland boundary.									
VEGETATION – Use scientific names of p		<u> </u>	1 2 1						
Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?			e Test worl				
1	0				f Dominant S DBL, FACW,			2 ((A)
2	0			Total Num	ber of Domi	nant			
3					cross All Str			2 ((B)
4				Percent of	Dominant S	pecies			
Sapling/Shrub Stratum (Plot size:)	0	_ = Total Co	ver		BL, FACW,			1 ((A/B)
1	0			Dominano	e Test is >5	0% 🗸			
2	0								
3	0								
4	_								
5	0								
Str. Str. Str.	0	_ = Total Co	ver						
Herb Stratum (Plot size: 5ft) 1 Phleum pratense	45	~	FAC						
Poa pratensis	35	· — 🔽	FAC						
3. Achillea millefolium			FACU						
4 Taraxacum officinale			FACU						
5. Potentilla gracilis	10		FAC						
6. Thlaspi arvense	5		UPL						
7. Trifolium repens	5		FAC						
8	0								
9	0								
10									
11	0								
Woody Vine Stratum (Plot size:)	110	_= Total Cov	/er						
1	0			Hydrophy	tic				
2.	0			Vegetatio	n	_	_		
0	0	_= Total Cov	ver	Present?	Ye	es _ V	No	_	
% Bare Ground in Herb Stratum									
Remarks: Hydrophytic vegetation community present base	d on FAC ind	icator statu	s for timo	thy and KY	bluegrass.				
,, ,,				•	9				

SOIL							Sampling Point	t: _BH-2
Profile Desc	ription: (Describe	to the depth ne	eded to document	the indicator or o	onfirm	the absence of		
Depth	Matrix	•	Redox Fea	atures			•	
(inches)	Color (moist)	%C		%Type ¹ L	oc ²	Texture	Remarks	
0-6	10YR 2/2	100				Clay Loam		
6-10	10YR 3/2	100				Clay Loam		_
10-15	10YR 4/2	100				Sandy Clay		-
10-13	10110 4/2					Januy Clay		
1Type: C=C	oncentration, D=Depl	etion RM=Red	uced Matrix, CS=Co	vered or Coated S	and Gr	rains ² l ocati	ion: PL=Pore Lining, I	M=Matriy
Hydric Soil		etion, rawi–raec	dced Matrix, CO-CO	vered or Coaled S	and Gr	allis. Locati	ion. FL-Fore Lilling, i	VI-IVIALITA.
Histosol			High Or	ganic Content in S	Surface	Laver in Sandy S	Soils	
Histic Ep				c Streaking in San				
Sulfidic	Odor			on Local Soils List				
	oisture Regime		_	on National Soils I				
	g Conditions		Other (explain in remarks	s)			
1 = -	or Low-Chroma Color	S		•				
Concreti	ons							
Taxonomy Su	ıbgroup: Oxyaquic	Hapiocryolis						
Confirm Mapp	ped Type?:					Hydric Soil Pr	resent? Yes	No
Remarks:						Tryuno con Tr		
	atures identified w	ithin soil prof	lo.					
140 redox re	atures identified w	itilii 30ii pioi	ю.					
HYDROLO	GY							
0.00 00	drology Indicators:							
_			On an advantage	(2	.!			
Primary India			Secondary Indicator					
Innunda				spheres along Livi	ng Roo	ots		
l —	ed in upper 12 inches	3	Water-Stained					
Water M			Local Soil Surv	-				
Drift Lin			FAC-Neutral Te					
	nt Deposits		U Other (Explain i	n Remarks)				
Drainage	e patterns in wetland	s						
Field Obser	vations:							
Surface Wat		es 🔲 No 🛚	✓ Denth (inches)):				
Water Table		es No):				
					14/-41	and Distantance	D	NoZ
Saturation P (includes car		es No _	Depth (inches)):	vveti	and Hydrology i	Present? Yes	No 🔽
	nt along upper terra	ace of Rock C	creek no signs of	surface hydro				
''	it along apper terre	doc of Rook C	recit, no signs or	surface riyaro.				
1								

WETLAND DETERMINATION DATA FORM - Routine Weltand Delineation, 1987 COE Protocol

Project/Site: Big Hole Grazing		City/County	: Beaverhe	ead	Sa	mpling D	oate: 7/	12/2012
Applicant/Owner: MDT		, ,		State:	MT Sai	mplina P	oint: BH-3	
D. Condotius		Section To	wnship Rar	nge: S		1S	R 10	
Landform (hillslope, terrace, etc.): Floodplain							_ Slope (%	_{%)} . 0
	Lat:		15.515655	Long:	-113.5			
Soil Map Unit Name: Wisdom-Shewag complex	Lat			Long.			Datum	
Do Normal Circumstances Exist on this site?	Yes_							
Is the site significantly disturbed (Atypical Situation								
Is the area a potential Problem Area?	Yes							
to the area a potential i repletii viea.	163							
SUMMARY OF FINDINGS - Attach site	map showing	g samplin	g point lo	ocations,	transects, in	nporta	nt featu	res, etc.
Hydrophytic Vegetation Present? Yes	No							
Hydric Soil Present? Yes			e Sampled		v - 🗖	F	\neg	
Wetland Hydrology Present? Yes	No	with	in a Wetlan	10?	Yes 🔽	No		
Remarks: DP in veg com 4 along Rock Creek corridor.								
DP III veg com 4 along Rock Creek comdor.								
VEGETATION – Use scientific names o	of plants.							
	Absolute	Dominant	Indicator	Dominanc	e Test workshe	et:		
Tree Stratum (Plot size:)		Species?			Dominant Speci		4	
1				That Are O	BL, FACW, or F.	AC: _	4	(A)
2	_			Total Numb	ber of Dominant		4	
3				Species Ac	cross All Strata:	_		(B)
4					Dominant Speci		1	
Sapling/Shrub Stratum (Plot size: 15ft)_ = Total Co	ver	That Are O	BL, FACW, or F.	AC:		(A/B)
1. Salix bebbiana	15		FACW	Dominance	e Test is >50%	\checkmark		
2. Salix exigua	30		FACW					
3. Salix lemmonii			FACW					
4								
5								
Herb Stratum (Plot size: 5ft)		_ = Total Co	ver					
1. Alopecurus pratensis	35	✓	FAC					
2. Mentha arvensis	5		FACW					
3. Rumex crispus	5		FAC					
4. Carex utriculata	40		OBL					
5. Mimulus guttatus	5		OBL					
6. Alopecurus aequalis			OBL					
7								
8								
9								
10 11.		-						
· · · ·	95	_ = Total Co	ver					
Woody Vine Stratum (Plot size:)							
1				Hydrophyt				
2			-	Vegetation Present?	n Yes	V	No	
% Bare Ground in Herb Stratum		_= Total Co	ver					-
Remarks:				1				

SOIL									Sar	npling Point:	BH-3
Profile Des	cription: (Describe	to the dep	th neede	d to docu	ment the ir	ndicator	or confi	m the absence			
Depth	Matrix		-	Redo	ox Features			_			
(inches)	Color (moist)	%		(moist)	%	Type ¹	_Loc ²	Texture		Remarks	
0-9	10YR 2/1	95	10YR	4/4	5	C	M	Clay Loam			
9-13	10YR 3/1	95	10YR	4/4	5	С	М	Clay Loam			
			-								
	-						-				
	-		r -								
	-										
¹ Type: C=C	oncentration, D=Dep	letion, RM:	=Reduced	d Matrix, C	S=Covered	or Coat	ed Sand (Grains. ² Loc	ation: PL=P	ore Lining, M:	=Matrix.
Hydric Soil	Indicators:										
L Histoso					-			ce Layer in Sand	y Soils		
	pipedon				rganic Stre			oils			
Sulfidic				_	isted on Lo						
	loisture Regime g Conditions			_	isted on Na						
	or Low-Chroma Colo	ırs			ther (expla	in in rem	narks)				
Concreti											
	10113										
Taxonomy Si	ubgroup: Oxyaquio	Haplocry	olls/								
0											
	ped Type?:							Hydric Soil	Present?	Yes	No
Remarks:											
HYDROLO)GV										
	drology Indicators:	•									
Primary Indi		•	Coo	بما بمماممه	diantora (O .		لام میانید ما				
					dicators (2 d						
Innunda			믐		Rhizospher	-	Living R	oots			
	ed in upper 12 inche	S	<u> </u>		ained Leave						
Water N			\		Survey Da	ıta					
Drift Lin			<u>~</u>	FAC-Neu							
	ent Deposits			Other (Ex	plain in Rer	marks)					
Drainag	e patterns in wetlan	ds									
Field Obser	rvations:										
Surface Wa	ter Present? Y	′es	No 🔽	_ Depth (ir	nches):						
Water Table	Present? Y	′es	No 🔽	Depth (in	nches):						
Saturation F	Present? Y	es 🔽	No	_ Depth (ir	nches):	1	0_ \ we	tland Hydrology	Present?	Yes 🗸	No
	pillary fringe)										
Remarks:											

MDT Montana Wetland Assessment Form (revised March 2008)

. Project name	Big Hole Gra	azing Assoc.	2	. MDT pro	oject#	ST	PX 1(45)		Con	trol#	CN 4668
. Evaluation Date	7/12/2012	4. Evaluators	B Sande	efur	5.	Wetl	and/Site# (s)	All wetlar	nds outsid	de Rocl	Creek AA
Wetland Location(s): T	4S R 1	6W	Sec1 2		Т	R		Sec2		
pprox Stationing or											
atershed 1002	0004	Wa	atershe	d/County	Upper	Misso	ouri Watershed	l/Beaverhe	ad Count	iy .	
Evaluating Agency	Confl	uence for MDT					8. Wetland	size acres			78.26
Purpose of Evaluati	on						How assess	ed:	Measure	ed e.g.	by GPS
☐ Wetlands potent	ially affected	by MDT project					9. Assesssn	nent area			78.26
☐ Mitigation Wetla	nds: pre-con	struction					(AA) size (ac	•			
✓ Mitigation Wetla	-						How assess	ed:	Measure	d e.g. l	by GPS
Other	•										
0. Classification of	Wetland and	d Aquatic Habitats	in AA								
HGM Class (Brinsor	n) Cla	ss (Cowardin)		Modifier (Cowardi	in)	Water Re	egime		% of A	A
epressional	Eme	rgent Wetland					Permanent/F	Perennial			50
epressional	Scru	b-Shrub Wetland					Seasonal/Int	termittant			20
epressional	Eme	rgent Wetland					Seasonal/Int	termittant			30
General Condition i. Disturbance: (use aquatic nuisance vegace) Condition Con	matrix below to		Manage natural s hayed, I converte roads or	ed in predomin state; is not gr logged, or oth- ed; does not c r buildings; an	Predo antly razed, erwise ontain d noxious	Land mode select subject	conditions adjacent I not cultivated, but erately grazed or ha- ctively logged; or ha- ect to minor clearing roads or buildings; r d or ANVS cover is	to (within 500 may be ayed or as been g; contains noxious	Land cul- or logged placement hydrolog building	tivated or d; subject nt, gradin ical altera	heavily grazed to substantial fill g, clearing, or ition; high road o r noxious weed >=30%.
AA occurs and is managed ir grazed, hayed, logged, or oth roads or occupied buildings; <=15%.	nerwise converted;	does not contain	low	v disturba	nce		low disturba	ince	mode	erate d	isturbance
AA not cultivated, but may be selectively logged; or has be blacement, or hydrological alloxious weed or ANVS cover	en subject to relati teration; contains	ively minor clearing, fill	r	moderate		mo	oderate distu	rbance	hiç	gh dist	urbance
AA cultivated or heavily graz substantial fill placement, gra sigh road or building density =30%.	ading, clearing, or	hydrological alteration;	high	n disturba	nce		high disturba	ance	hiç	gh dist	urbance
omments: (types of rea managed in cons		•		dentified w	ithin AA.	Abur	idant willow/wo	ody regen	eration w	ithin A	٨.
Prominent noxious	-	sance, other exot	ic speci	ies:							
anada thistle (Cirsiur	n arvensis)										
. Provide brief desc	riptive sumn	nary of AA and su	ırroundi	ing land u	se/habit	at					

AA is a large wet meadow, emergent marsh, and shrub/scrub wetland created/restored by plugging man-made drain ditches. AA does not include Rock Creek channel or corridor. All disturbed areas have revegetated. Wetland acreage within AA has continued to increase with increase water table elevation. A majority of the site was inundated during the site investigation. AA is not grazed or hayed. Land surrounding AA moderately grazed with horses and cattle observed adjacent to AA. Moose and Elk common within AA.

13. Structural Diversity: (based on number of "Cowardin" vegetated classes present [do not include unvegetated classes], see #10 Initial Is current management preventing (passive) Modified Existing # of "Cowardin" Vegetated Classes in AA Rating existence of additional vegetated classes? R ating NA NΑ >=3 (or 2 if 1 is forested) classes Н 2 (or 1 if forested) classes NA NΑ NA Μ 1 dass, but not a monoculture Μ <NO YES> L 1 class, monoculture (1 species comprises>=90% of total cover) NA NΑ NA Comments: Woody regeneration within AA along established willow stands. SECTION PERTAINING to FUNCTIONS VALUES ASSESSMENT 14A. Habitat for Federally Listed or Proposed Threatened or Endangered Plants or Animals: i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions): Primary or critical habitat (list species) D S D S Secondary habitat (list Species) Incidental habitat (list species) ● D ○ S Grizzly bear S No usable habitat ii. Rating (use the condusions from i above and the matrix below to arrive at [check] the functional points and rating) Highest Habitat Level doc/primary sus/primary doc/secondary sus/secondary doc/incidental sus/incidental None Functional Points and .9H .8H 0L 1H .7M .3L .1L Rating US F&WS, ranch manager on-site widlf observations. Sources for documented use 14B. Habitat for plant or animals rated S1, S2, or S3 by the Montana Natural Heritage Program: (not including species listed in14A above) i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions): Primary or critical habitat (list species) D S Great Blue Heron (S3) Secondary habitat (list Species) \bigcirc D \bigcirc S Incidental habitat (list species) S No usable habitat ii. Rating (use the conclusions from i above and the matrix below to arrive at [check] the functional points and rating) Highest Habitat Level doc/primary sus/primary doc/secondary sus/secondary doc/incidental sus/incidental None S1 Species: Functional Points and .7M 1H .8H .6M .2L .1L 0L Rating S2 and S3 Species: Functional Points and .9H .7M .6M .5M .2L 0L .1L Rating MTNHP, animals observed on-site Sources for

documented use

																			Subs	stant	ial	
bstantial (base	d on an	of the	followin	g [che	ck]):						Minii	mal (b	ased or	n any of	the foll	owing	[check])	:				
observations	of abun	dant wil	dlife #s	or hig	h specie	es dive	rsity (dui	ring an	y period	d)	fe	w or n	o wildlif	e obser	vations	during	peak u	se per	iods			
abundant wild	llife sigr	such a	s scat,	tracks	, nest st	ructure	s, game	trails,	etc.		lit	tle to r	no wildli	fe sign								
presence of e	xtremel	y limitin	g habita	t featu	ures not	availal	ole in the	e surro	unding	area	s	oarse a	adjacen	t upland	d food s	ources	i					
] interviews wit	h local l	oiologist	ts with k	nowle	dge of t	he AA					in	terviev	vs with	local bio	ologists	with kı	nowledg	je of th	e AA			
oderate (based	on any o	of the fo	llowing	[check	k]):																	
observations	of scatte	ered wil	dlife gro	ups o	r individ	uals or	relative	ly few	species	during	peak pe	eriods										
common occi	urrence	of wildli	fe sign s	such a	s scat,	tracks,	nest str	uctures	s, game	trails, e	etc.											
adequate adja	acent up	land fo	od sour	ces																		
interviews wit	h local l	oiologist	ts with k	nowle	dge of t	he AA																
i. Wildlife hab rom #13. For other in terms of permanent/per perms]) ctructural	class of of their	over to perce	be con	positi al/into	ered ever ion of the ermitte	enly o	listribut (see #	ted, th ‡10).	ne mos Abbrev	t and I viations	east po s for su	revale urface \ = ab	ent veg water sent [s	jetate durati	d class ons are	es mu e as fo	ust be sollows:	within P/P = r defir	20% o	of each		
liversity (see ±13)				Hi	gh							Mode	erate					L	ow			
Class cover distribution (all regetated classes)		Eve	en			Une	ven			Eve	en			Une	ven			E	/en			
Duration of surface water in ≥ 10% of AA	P/P	S/I	T/E	Α	P/P	S/I	T/E	А	P/P	S/I	T/E	А	P/P	S/I	T/E	А	P/P	S/I	T/E	Α		
.ow disturbance at AA (see #12i)	Е	Е	Е	Н	Е	Е	Н	Н	Е	Н	Н	М	Е	Н	М	М	Е	Н	М	М		
loderate isturbance at AA see #12i)	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	М	М	Н	М	М	L	н	М	L	L		
ligh disturbance t AA (see #12i)	М	М	М	L	М	М	L	L	М	М	L	L	М	L	L	Г	L	L	L	L		
iii. Rating (Evidence of v							above_	and t	the ma	V	Vildlife				ratin	g (ii)		point	s and	rating		
Substantial				t	xcep	tional		-		High	1				IVIO	derat	<u>e</u>				Low	_
JUDSIAIIIIAI					1E					.91	Н					.8H					.7M	
Moderate					.9H	1				.71	М					5M					.3L	
Vinimal					.6N	1				.41	И					.2L					.1L	
4D. General I build be used istorable due Z NA here	F ish F by fish	labita i [i.e.,	t Rati fish u	ng: (se is ints,	(Asses	ss this	s funct	tion if	the A	A is u	sed b	y fish parrie	or the	e exis	ting si	tuati o	on is "o	∞rre I by f	ctable'	" such	e is not	e AA
Habitat Qu	ality a	nd Kno	own / S	uspe	cted F	ish S _l	pec ie s	in AA	(usen	natrix t	o arrive	e at [c	heck tl	ne fund	ctional	<u>poi</u> nts	and ra	ating)				
Duration of surfac	e water			_		/ D:						Cr	!!!	. 4							./ =====	
														to moitte					Ton	norori		rol
<u>in AA</u> Aquatic hiding / re escape cover	sting/		Optim		ermanei A	dequat		Po	or	Or	otimal	Seas	onal / Ir Adeq			Poor		Opti			// Epheme equate	P

i. Habitat Quality and	Known	/Suspec	ted Fish	Specie	es in A	A (usen	natrix to	arrive a	t [c he ck	the funct	ional po	ints and	rating)					
Duration of surface water in AA		Pe	manent / I	Perennial	ļ			Se	asonal / I	Intermitten	t			Tem	porary/	Epheme	ral	
Aquatic hiding / resting / escape cover	Ор	timal	Adeq	uate	Po	oor	Opti	mal	Ade	quate	Po	or	Opti	mal	Adeo	quate	Po	oor
Thermal cover optimal/ suboptimal	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S
FWP Tier I fish species	1E	.9Н	.8H	.7M	.6M	.5M	.9H	.8H	.7M	.6M	.5M	.4M	.7M	.6M	.5M	.4M	.3L	.3L
FWP Tier II or Native Game fish species	.9H	.8H	.7M	.6M	.5M	.5M	.8H	.7M	.6M	.5M	.4M	.4M	.6M	.5M	.4M	.3L	.2L	.2L
FWP Tier III or Introduced Game fish	.8H	.7M	.6M	.5M	.5M	.4M	.7M	.6M	.5M	.4M	.4M	.3L	.5M	.4M	.3L	.2L	.2L	.1L
FWP Non-Game Tier IV or No fish species	.5M	.5M	.5M	.4M	.4M	.3L	.4M	.4M	.4M	.3L	.3L	.2L	.2L	.2L	.2L	.1L	.1L	.1L

Sources used for identifying fish sp. potentially found in AA:

ii. Modified Rating (NOTE: Modified score ca a) Is fish use of the AA significantly reduced by a current final MDEQ list of waterbodies in need of fishery or aquatic life support, or do aquatic nuis yes, reduce score in i above by 0.1: Modified	a culvert, o f TMDL de ance plan	dike, or other evelopment w	man-made s	bable Imp	aired Ú	Jses" includ	ling cold or v	varm water	ne If	
b) Does the AA contain a documented spawning comments) for native fish or introduced game fis		ther critical h			he adju	isted score	ing area, etc in i or iia ab			
iii. Final Score and Rating: 0 NA	Comme	ents:								
14E. Flood Attenuation: (Applies only to wetle channel or overbank flow, click ✓ NA here	ands subje e and prod	ect to flooding ceed to 14F.)	g via in-chanr	nel or overl	oank flo	ow. If wetla	nds in AA aı	re not floode	d from in-	
 i. Rating (working from top to bottom, use the Estimated or Calculated Entrenchment (Rosger 1994, 1996) 		ow to arrive a tly entrenche stream typ	d - C, D, E	Moderat		renched – E	_	ched-A, F, G types	stream	
% of flooded wetland classified as forested and/or scrub/shrub	75%	25-75%	6 <25%	75%	25-7	75% <25%	% 75%	25-75%	<25%	
AA contains no outlet or restricted outlet	1H	.9H	.6M	.8H	.71	.5M	.4M	.3L	.2L	
AA contains unrestricted outlet	.9H	.8H	.5M	.7M	.61	.4N	.3L	.2L	.1L	
Slightly Entrenched			ly Entrenched				Entrenched			
ER = >2.2 C stream type D stream type E stream	tvpe		1.41 – 2.2 eam type	As	stream ty		F stream typ		stream type	-
	<u>.</u>	7			<u> </u>					
2 x Bankfull Do	1	Bankfull	Depth		Ý Y I	Bankfull W	rone Width idth			
ii. Are ≥10 acres of wetland in the AA subject to within 0.5 mile downstream of the AA (check)? Comments:	wid	th	n-made featui	es which r	may be	ratio		by floods loc	ated	
14F. Short and Long Term Surface Wa upland surface flow, or groundwater flow. 14G.) i. Rating (Working from top to bottom, u water durations are as follows: P/P = pern further definitions of these terms].) Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding	If no we	tlands in the	e AA are su to arrive at I = seasona	oject to flo check] th	e func	orpondin ctional poir	ng, dick [nts and ration	NA here	e and proce	eed to surface ctions for
Duration of surface water at wetlands within the AA	P/P	S/I	T/E	P/F	·	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years	1H	.9Н	.8H	.8	Н	.6M	.5M	.4M	.3L	.2L
Wathads in AA flood or pand a 5 out of 10 years	.9H	.8H	.7M	.71	м	.5M	.4M	.3L	.2L	.1L

Comments:

AA appeared to store greater than 5 acre feet during investigation as 80-acre site was largely inundated. Site with the potential to store a large quantity of water during spring run-off.

i. Rating (working from top to bot	tom, use th	ne matrix l	pelow to	arrive at [check] th	ne functional	points and ra	ting [H	= high, N	M = mo	derate, o
= low]) Sediment, nutrient, and toxicant input levels within AA	to de compour not sub	ives or surro eliver levels nds at levels stantially im es of nutrie eutrop	of sedime s such tha paired. M	ents, nutrien it other fund in or sedime cants, or si	its, or ctions are entation,	devel nutrients with pote compound	ody on MDEQ opment for "prol , or toxicants or ential to deliver ds such that oth limentation, sou of eutr	oable ca AA rece nigh leve er function rces of r	uses" rela eives or su els of sedir ons are su	ted to se urroundir ments, n ibstantia ir toxicar	diment, g land use utrients, or lly impaire
% cover of wetland vegetation in AA Evidence of flooding / ponding in AA	≥ 7 Yes	'0% No	Yes	< 70%	No	Yes	≥ 70% No)	Yes	< 70%	No
AA contains no or restricted outlet	1H	.8H	.7M		.5M	.5M			.3L		.2L
AA contains unrestricted outlet	.9Н	.7M	.6M		.4M	.4M	.3	L	.2L		.1L
Comments: Large site with cons			·								
14H Sediment/Shoreline Stabilization drainage, or on the shoreline of a stand proceed to 14I.) i. Rating (working from top to bottom,	ling water bo	ody which is	s subject to arrive at	o wave act	ion. If 14	H does not ap	ply, click rating)	ural or r		e	
% Cover of <u>wetland</u> streambank or shoreline by species with stability ratings of ≥6 (see Appendix F).	Permane	ent / Perennia			nal / Interm	nt to rooted veg	Temporary	/ Epheme	ral		
≥ 65%		1H			.9H		.7	M			
35-64%		.7M			.6M			5М			
< 35%		.3L			.2L			1L			
14I. Production Export/Food Chai i. Level of Biological Activity (synt					eck])						
	eneral wild	М	t Kaung (140.111.) L							
Rating (14D.iii.) E/H	3			М							
E/H H		Н		_							
E/H H H		М		М							
E/H H H H L M				_							
E/H M H L N/A M H ii. Rating (Working from top to bottom wetland component in the AA; Factor B subsurface outlet; the final three rows p	= level of bi ertain to dur	M M M M M M M M M M M M M M M M M M M	tivity rating	M L L at [check] tl	ve (14l.i.);	Factor C = w	hether or not th	e AA co	ntains a s	surface o	r
E/H M L M N/A H II. Rating (Working from top to bottom wetland component in the AA; Factor B subsurface outlet; the final three rows p (see instructions for further definitions component of A Vegetated component of B High Moderate	= level of bi pertain to dur of these term acres	M M M M M M M M M M M M M M M M M M M	tivity rating face wate Vege High	M L L at [check] ti g from abo er in the AA tated compone	ve (14l.i.); A, where P	Factor C = w /P, S/I, and T	hether or not the /E are as previo	e AA co ously def etated com Mod	ntains a s ined, and ponent <1 a erate	surface of A = "ab	or sent"
E/H M L M N/A H III. Rating (Working from top to bottom wetland component in the AA; Factor B subsurface outlet; the final three rows p [see instructions for further definitions of A Vegetated component >5 (B High Moderate C Yes No Yes No Yes No	s = level of bi pertain to dur of these term acres Low Yes N	M M M M M M M M M M M M M M M M M M M	tivity rating face water Veger No	M L L at [check] ti g from abo er in the AA tated compone Moderat Yes	ve (14l.i.); A, where P ent 1-5 acres te No Ye	Factor C = w /P, S/I, and T	hether or not the American Hether or not the American Veg High Yes No	e AA co pusly def etated com Mod Yes	ntains a sined, and	surface (A = "ab	or sent"
E/H M L N/A ii. Rating (Working from top to bottom wetland component in the AA; Factor B subsurface outlet; the final three rows p [see instructions for further definitions of A Vegetated component >5:8 High Moderate C Yes No Yes No P/P 1E 7H 8H 5M	e level of bi pertain to dur of these term acres Low Yes N .6M .4	M M M M M M M M M M M M M M M M M M M	tivity rating face wate Vege High	M L L at [check] ti g from abo er in the AA tated compone Moderat Yes .7H	ve (14I.i.); A, where P ent 1-5 acres te No Ye 4M	Factor C = w /P, S/I, and T	hether or not the /E are as previo	e AA co ously def etated com Mod	ntains a sined, and	surface of A = "ab	or sent"
E/H M L N/A ii. Rating (Working from top to bottom wetland component in the AA; Factor B subsurface outlet; the final three rows p [see instructions for further definitions of A	= level of bi pertain to duri of these term acres Low Yes N 6M 4 .5M .3	M M M M M M M M M M M M M M M M M M M	Veger No6M	M L L at [check] ti g from abo er in the AA tated compone Moderal Yes .7H .6M	ve (14I.i.); A, where P ent 1-5 acres te No Ye 4M	Factor C = w //P, S/I, and T	hether or not the Eare as previous Veg High Yes No	e AA co busly def etated com Mod Yes	ntains a sined, and	surface (A = "ab	or sent"

14J. Groundwater Discharge/Recharge: (check the appropriate indicators in i & ii below) i. Discharge Indicators ii. Recharge Indicators The AA is a slope wetland Permeable substrate present without underlying impeding layer Springs or seeps are known or observed Wetland contains inlet but no outlet Vegetation growing during domant season/drought Stream is a known 'losing' stream; discharge volume decreases ✓ Wetland occurs at the toe of a natural slope Other Seeps are present at the wetland edge AA permanently flooded during drought periods Wetland contains an outlet, but no inlet Shallow water table and the site is saturated to the surface Other: iii. Rating (use the information from i and ii above and the table below to arrive at [check] the functional points and rating) Duration of saturation at AA Wetlands FROM GROUNDWATER DISCHARGE OR WITH WATER THAT IS RECHARGING THE GROUNDWATER SYSTEM Criteria P/P S/I т None Groundwater Discharge or Recharge 1H .7M .4M .1L Insufficient Data/Information NA Comments: Known springs along boundary of AA in northwest corner of site. 14K. Uniqueness: i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating) AA does not contain previously cited rare types and structural AA contains fen, bog, warm springs AA does not contain previously Replacement potential or mature (>80 yr-old) forested diversity (#13) is high or contains cited rare types or associations wetland or plant association listed plant association listed as "S2" by and structural diversity (#13) is as "S1" by the MTNHP the MTNHP low-moderate Estimated relative commo abundant abundant abundant rare common rare common rare abundance (#11) n Low disturbance at AA 1H .9H .8H .8H .6M .5M .5M .4M .3L (#12i) Moderate disturbance at .8H .9H .7M .4M .4M .7M .5M .3L .2L AA (#12i) High disturbance at AA .8H .7H .6M .6M .4M .3L .3L .2L .1L (#12i) Comments: Organic accumulation at soil surface within Carex wetland near spring source. 14L. Recreation/Education Potential: (affords "bonus" points if AA provides recreation or education opportunity) i. Is the AA a known or potential rec./ed. site: (check) Y $N\bigcirc$ (if 'Yes' continue with the evaluation; if 'No' then click NA here and proceed to the overall summary and rating page) Check categories that apply to the AA: Educational/scientific study; Consumptive rec.; Non-consumptive rec.; ___Other iii. Rating (use the matrix below to arrive at [check] the functional points and rating) Known or Potential Recreation or Education Area Known Potential Public ownership or public easement with general public access (no permission required) 2H 15H Private ownership with general public access (no permission required) .15H .1M Private or public ownership without general public access, or requiring permission for public access .1M .05L Comments: Permission required to access property. **General Site Notes** Substantial increase in ratings and FU since 2010 due to abundant hydrologic input, improved wildlife habitat, and an increase in wetland acreage.

Function & Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units: (Actual Points x Estimated AA Acreage)	Indicate the four most prominent functions with an asterisk (*)
A. Listed/Proposed T&E Species Habitat	L	.3	1	23.478	
B. MT Natural Heritage Program Species Habitat	М	.6	1	46.956	
C. General Wildlife Habitat	E	1	1	78.26	V
D. General Fish Habitat	NA	0	0	0	
E. Flood Attenuation	NA	0	0	0	
F. Short and Long Term Surface Water Storage	Н	1	1	78.26	✓
G. Sediment/Nutrient/Toxicant Removal	Н	1	1	78.26	✓
H. Sediment/Shoreline Stabilization	NA	0	0	0	
Production Export/Food Chain Support	Н	.8	1	62.608	
J. Groundwater Discharge/Recharge	Н	1	1	78.26	V
K. Uniqueness	Н	.9	1	70.434	
L. Recreation/Education Potential (bonus points)	М	.1	NA	7.826	
Totals:		6.7	8	524.342	
Percent of Possible Score			83.75 %		<u>u</u>

Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II) Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or Score of 1 functional point for Uniqueness; or Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or Percent of possible score > 80% (round to nearest whole #).
Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or Score of .9 or 1 functional point for General Wildlife Habitat; or Score of .9 or 1 functional point for General Fish Habitat; or "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or Score of .9 functional point for Uniqueness; or Percent of possible score > 65% (round to nearest whole #).
Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)
Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; otherwise go to Category III) "Low" rating for Uniqueness; and Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and Percent of possible score < 35% (round to nearest whole #).

OVERALL ANALYSIS AREA RATING: (check appropriate category based on the criteria outlined

I	II	III	IV

MDT Montana Wetland Assessment Form (revised March 2008)

1. Project name Big H	Hole Grazing Assoc.		2. MDT	project#	ST	PX 1(45)		Contr	ol#	CN 4668
3. Evaluation Date 7/12/	/2012 4. Evaluators	B San	defur	5	. Wetl	and/Site# (s)	Rock Cre	eek corrido	r-AA1	
6. Wetland Location(s): 1	Γ 4S R 1	6W	Sec1	2	Т	R		Sec2		
Approx Stationing or Milep	oosts									
Watershed 10020004	W	atersh	ed/Coun	ty Uppe	r Misso	ouri Watershed	/Beaverhe	ead County		
7. Evaluating Agency	Confluence for MDT					8. Wetland s	size acres	s .		10
Purpose of Evaluation						How assesse	ed:	Measured	l e.g. l	y GPS
☐ Wetlands potentially a	ffected by MDT project					9. Assesssn (AA) size (ac				10
☐ Mitigation Wetlands: p	ore-construction					How assesse	-	Measured	e.a. b	v GPS
Mitigation Wetlands: p	oost construction								- 5	,
Other										
10. Classification of Wetla	and and Aquatic Habitats	s in A	A							
HGM Class (Brinson)	Class (Cowardin)		Modifie	er (Coward	lin)	Water Re	gime	9/	% of A	A
Riverine	Rock Bottom					Permanent/F	Perennial			5
Riverine	Emergent Wetland					Permanent/F	Perennial			20
Riverine	Scrub-Shrub Wetland					Permanent/F	Perennial			40
Riverine	Scrub-Shrub Wetland					Seasonal/Int	ermittant			30
Riverine	Aquatic Bed					Permanent/F	Perennial			5
11. Estimated Relative Abu	ındance Common									
 General Condition of A Disturbance: (use matrix	below to determine [circle] a	ıppropri	ate respon	se – see in	struction	ns for Montana-li	sted noxiou	ıs weed and		
		Mana	and in produ		-	conditions adjacent	•		rated or	neavily grazed
Conditions v	vithin AA	natur hayed conve roads		ot grazed, otherwise	mode select subject few r	erately grazed or ha ctively logged; or ha ect to minor clearing roads or buildings; r d or ANVS cover is	yed or is been i; contains noxious	or logged; placement, hydrologica	subject , grading al altera ensity; or	o substantial fill , clearing, or ion; high road or noxious weed
AA occurs and is managed in predon grazed, hayed, logged, or otherwise roads or occupied buildings; and nox <=15%.	converted; does not contain	lo	ow distur	bance		low disturba	nce	moder	ate d	sturbance
AA not cultivated, but may be modera selectively logged; or has been subje placement, or hydrological alteration; noxious weed or ANVS cover is <=30	ect to relatively minor clearing, fill ; contains few roads or buildings;		modera	ate	mo	oderate distu	rbance	high	n distu	ırbance
AA cultivated or heavily grazed or log substantial fill placement, grading, cle high road or building density; or noxi >=30%.	earing, or hydrological alteration;	hi	gh distur	bance		high disturba	ince	high	n distu	ırbance
Comments: (types of distur Natural disturbance within AA				g. No huma	an or liv	vestock disturb	ance iden	tified during	g site	evaluation.
ii. Prominent noxious, aqua Canada thistle (Cirsium arve	<u> </u>	tic spe	cies:							
iii. Provide brief descriptiv		ırroun	ding land	d use/hab	tat					
AA includes Rock Creek char rangeland.						AA includes un	disturbed	wetland, pa	asture	, and

13. Structural Diversity: (based on number of "Cowardin" vegetated classes present [do not include unvegetated classes], see #10 Initial Is current management preventing (passive) Modified Existing # of "Cowardin" Vegetated Classes in AA Rating existence of additional vegetated classes? R ating NA NΑ >=3 (or 2 if 1 is forested) classes Н 2 (or 1 if forested) classes NA NΑ NA Μ 1 dass, but not a monoculture М <NO YES> L 1 class, monoculture (1 species comprises>=90% of total cover) NA NΑ NA Comments: Established willow corridor along creek, regeneration along margins of community. S/S, Emergent, and AB comm. SECTION PERTAINING to FUNCTIONS VALUES ASSESSMENT 14A. Habitat for Federally Listed or Proposed Threatened or Endangered Plants or Animals: i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions): Primary or critical habitat (list species) D S D S Secondary habitat (list Species) Incidental habitat (list species) ● D ○ S Grizzly bear S No usable habitat ii. Rating (use the condusions from i above and the matrix below to arrive at [check] the functional points and rating) Highest Habitat Level doc/primary sus/primary doc/secondary sus/secondary doc/incidental sus/incidental None Functional Points and .9H .8H 0L 1H .7M .3L .1L Rating US F&WS, ranch manager on-site widlf observations. Sources for documented use 14B. Habitat for plant or animals rated S1, S2, or S3 by the Montana Natural Heritage Program: (not including species listed in14A above) i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions): Primary or critical habitat (list species) D S Great blue heron (S3) Secondary habitat (list Species) Arctic grayling (S1), westslope cutthroat (S2) Incidental habitat (list species) ● D ○ S S No usable habitat ii. Rating (use the conclusions from i above and the matrix below to arrive at [check] the functional points and rating) Highest Habitat Level doc/primary sus/primary doc/secondary sus/secondary doc/incidental sus/incidental None S1 Species: Functional Points and .7M 1H .8H .6M .2L .1L 0L Rating S2 and S3 Species: Functional Points and .9H .7M .5M .2L 0L .6M .1L

documented use

MTNHP, MFWP-MFISH, animals observed on-site

Rating

Sources for

																			Subs	stanti	ial	
bstantial (base observations														•	f the follo		-					
observations							• •			(b						during	ا peak	use peri	ods			
abundant wild	•												no wildlif	•								
presence of e			•				le in the	e surro	Junding	area	= :		•		d food so							
interviews wit	th local t	Diologist	is with k	nowle	dge of t	he AA					int int	terview	s with I	ocal bio	ologists	with kr	nowled	dge of the	e AA			
oderate (based of observations	•		٠.	-		duals or	rolative	alv few	checies	during	neak ne	oriods										
common occi			•					•	•			-Hou.										
adequate adja					30.	auc.	100.	10	3, 9-	tiu.	710.											
interviews wit		•			∍dge of t	the AA																
ii. Wildlife hab																						
from #13. For	r class c	cover to	to be co	onside	ered ev	venly d	distribut	ited, th	he mos	st and le	least pr	revale	ent veg	getated	d class	ses mu	ust be	e within	20% of			
other in terms of permanent/per								,												of thes	se	
terms])			.00.	u., .	311	114,		P-	y, ~,	,,,,,	,		30				16.	31 C.	Itio.	Ji	-	
Structural diversity (see				H	ligh					_	_	Mode	erate	_	_	/		L	.ow			
#13) Class cover					1				₩			—	· ·								4	
distribution (all		Eve	ren .			Une	even		1	Eve	⁄en	,	1	Unev	-ven	!		E١	ven			
vegetated classes) Duration of			1				1		<u> </u>		л. Т			τ	T						4	
surface water in ≥ 10% of AA	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	Α	P/P	S/I	T/E	А	P/P	S/I	T/E	А		
Low disturbance at AA (see #12i)	Е	Е	Е	Н	Е	Е	Н	Н	E	Н	Н	М	Е	Н	М	М	Е	н	M	М		
Moderate disturbance at AA (see #12i)	Н	Н	Н	Н	Н	н	Н	М	Н	Н	М	М	Н	М	М	L	Н	М	L	L		
High disturbance at AA (see #12i)	М	М	М	Ŀ	М	М	L	L	М	М	L	L	М	L	L	L	L	L	L	L		
iii. Rating (and t	the ma	V	Wildlife				s rating	g (ii)		l point:	s and	rating		
Substantial		—	+	ij	Except			\vdash		High						derate	e		4		Low	_
					1E			4_		.91	Н					.8H			4		.7M	
Moderate					.9⊦	1		4_		.71	М					.5M			4		.3L	4
Minimal					.6N	1		L		.41	М					.2L					.1L	
Comments	Sev	r≙ral s	necies	of v	vildlife	ohse	rved v	vithin	ΔA. jr	ncludi	na mo	ose.	_lk a	nd nu	meroi	ıs bir	rds S	- -andhi	il crane	≏s su	spected	l to
Olimic.		t within	•	О.	IIu	U.	٧٠٠	Ita	Fu .,	IO.	19.	JC.,	Jii.,	Ι	ilic.	· · ·	uc.	unc	i Oraș	50 .	sper.	10
	•, ,		a1	-		4. :			,				4.		_			-		-	41	- 1
4D. General I could be used																						e Aa
estorable due																						c
NA here						d Wat			<u></u>	ice .	10,	,,,,	U.	,00.	ac		10 ₁ ,	Ju		J, -	n C	
. Habitat Qu	ualit <u>y</u> a	nd K <u>n</u>	own <u>/ </u> 5	Suspr	ected_F	Fish S	necie <u>s</u>	in <u>A</u> /	A(us <u>e</u> r	matri <u>x</u> '	to arr <u>iv</u>	e at <u>[</u> c	heck t	he fu <u>n</u>	ction <u>al</u>	po in <u>t</u> s	s and_	rating)	_	_		
Duration of surfac					Permaner								onal / In				Ì		Ten	norary	y/Epheme	oral
Aquatic hiding / re escape cover	esting/		Optima			Adequate		Pod	or	0	Optimal	Ĭ	Adequ			Poor		Optin			lequate	Po
				-		$\overline{}$	$\overline{}$	$\overline{}$	-	-	$\overline{}$	$\overline{}$	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$		$\overline{}$			

i. Habitat Quality and	Known	/Suspec	ted Fish	Specie	es in A	A (usen	natrix to	arrive a	t [c he ck	the funct	ional po	ints and	rating)						
Duration of surface water in AA		Permanent / Perennial						Seasonal / Intermittent						Temporary / Ephemeral					
Aquatic hiding / resting / escape cover	Ор	timal	Adeq	uate	Po	oor	Opti	mal	Ade	quate	Po	or	Opti	mal	Adeo	quate	Po	oor	
Thermal cover optimal/ suboptimal	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S	
FWP Tier I fish species	1E	.9Н	.8H	.7M	.6M	.5M	.9H	.8H	.7M	.6M	.5M	.4M	.7M	.6M	.5M	.4M	.3L	.3L	
FWP Tier II or Native Game fish species	.9H	.8H	.7M	.6M	.5M	.5M	.8H	.7M	.6M	.5M	.4M	.4M	.6M	.5M	.4M	.3L	.2L	.2L	
FWP Tier III or Introduced Game fish	.8H	.7M	.6M	.5M	.5M	.4M	.7M	.6M	.5M	.4M	.4M	.3L	.5M	.4M	.3L	.2L	.2L	.1L	
FWP Non-Game Tier IV or No fish species	.5M	.5M	.5M	.4M	.4M	.3L	.4M	.4M	.4M	.3L	.3L	.2L	.2L	.2L	.2L	.1L	.1L	.1L	

Sources used for identifying fish sp. potentially four	nd in AA:									
ii. Modified Rating (NOTE: Modified score canna) Is fish use of the AA significantly reduced by a current final MDEQ list of waterbodies in need of Ti fishery or aquatic life support, or do aquatic nuisanyes, reduce score in i above by 0.1: Modified R	ulvert, dike, MDL develd ce plant or	, or other m opment with	an-made s listed "Pr	obable Impa	aired Úses"	including	cold or w	arm water	he If	
b) Does the AA contain a documented spawning ar comments) for native fish or introduced game fish?		critical hab			he adjusted					
iii. Final Score and Rating: 1 E	Comments	Downst	ream irri	abundar gation st	ructure so	and und ometime	ercut ba es inhib	anks alon its fish pa	g stream. assage. Gr	ayling
,	ind proceed	d to 14F.)					s in AA are	e not floode	d from in-	
i. Rating (working from top to bottom, use the ma Estimated or Calculated Entrenchment (Rosgen		to arrive at [ntrenched -			points and a		Entrench	ned-A, F, G	stream	
1994, 1996) stream types stream type types										
% of flooded wetland classified as forested and/or scrub/shrub 25-75% 25-75% 25-75% 25-75% 25-75% 25-75%								25-75%	<25%	
AA contains no outlet or restricted outlet 1H .9H .6M .8H .7M .5M .4M .3L .2L										
AA contains unrestricted outlet	.9H	.8H	.5M	.7M	.6M	.4M	.3L	.2L	.1L	
Slightly Entrenched		Moderately I	- ntrop ob od			F	trenched		<u> </u>	7
ER = >2.2		ER = 1.4	1 – 2.2			ER	= 1.0 - 1.4			
C stream type D stream type E stream typ	oe	B stream	n type	As	tream type	F	stream type		stream type	
2 x Bankfull Dept		Bankfull De	epth		State St. le d	ood-pron full Widtl				
Floodrpone 74 width	/ Bankfu width	II			24 =	Entrenc ratio	hment	3.0833	3333333333	3
ii. Are ≥10 acres of wetland in the AA subject to flowithin 0.5 mile downstream of the AA (check)? Comments: D-type channel (numerous cl	ooding AND Y	N •							ated	

14F. Short and Long Term Surface Water Storage: (Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, dick NA here and proceed to 14G.)

i. Rating (Working from top to bottom, use the matrix below to arrive at [check] the functional points and rating. Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; and T/E = temporary/ephemeral [see instructions for further definitions of these terms].)

turtner definitions of these terms].)									
Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding		>5 acre feet		1.1	I to 5 acre feet	≤1 acre foot			
Duration of surface water at wetlands within the AA	P/P	S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years	1H	.9Н	.8Н	.8Н	.6M	.5M	.4M	.3L	.2L
Wetlands in AA flood or pond < 5 out of 10 years	.9H	.8H	.7M	.7M	.5M	.4M	.3L	.2L	.1L

Comments:

Beaver dams/debris jams observed along channel increase water storage within creek.

Sediment nutrient and tovicantinnut	ottom, use	the matrix	below to	o arrive a	at [chec	k] the fu		•		0.			
ediment, nutrient, and toxicant input evels within AA	to compo not s	ceives or sur deliver levels ounds at leve ubstantially ir urces of nutri	Waterbody on MDEQ list of waterbodies in need of TMD development for "probable causes" related to sediment nutrients, or toxicants or AA receives or surrounding land with potential to deliver high levels of sediments, nutrients compounds such that other functions are substantially impa Major sedimentation, sources of nutrients or toxicants, or sof eutrophication present.										
6 cover of wetland vegetation in AA		eutrop ≥ 70%	hication	present.)%			≥ 70°		ophication	on presen	t. < 70	%
A contains no or restricted outlet	Yes	No	Ye	es	No	_	Yes		No) I	Yes	+	No
	1H	.8H	.7	M	.5M		.5M		.41	M	.3L		.2L
A contains unrestricted outlet	.9Н	.7M	.6	М	.4M		.4M		.3	L	.2L		.1L
Abundant willows,	sedges, a	nd rush alo	ng bank	s of Roc	ck Creek	ζ.							
4H Sediment/Shoreline Stabilization rainage, or on the shoreline of a standard to 14l.)										ural or r		е	
Rating (working from top to bottom Cover of wetland streambank or	n, use the n	natrix below t		at [check] on of surfac									
horeline by species with stability ratings f ≥6 (see Appendix F).	Perma	nent / Perenni	al	Sea	asonal / In	termittent		Te	mporary /	/ Epheme	ral		
65%		1H			.91	1			.7	M			
5-64%		.7M			.61	1			؛	5M			
35%		.3L			.21	-				1L			
omments:				,	J 0010.2	iisiieu d	along str	Саниа	iiiko.				
numents: 14I. Production Export/Food Cha i. Level of Biological Activity (sy	nthesis of v	vildlife and fis		t ratings [check])		aiong su	Саппра	iiino.				
numents: 14I. Production Export/Food Cha i. Level of Biological Activity (sy	nthesis of v			t ratings [check])		along Sti	Сапра	illing.				
14I. Production Export/Food Cha i. Level of Biological Activity (syl	nthesis of v	vildlife and fis		t ratings [a	check])		along str	еапра	ilino.				
i. Level of Biological Activity (sylingeral Fish Habitat Rating (14D.iii.)	nthesis of v	vildlife and fis ildlife Habita M		t ratings [i	check])) L	ilistieu d	along Sti	еапра	iliks.				
i. Level of Biological Activity (syr General Fish Habitat Rating (14D.iii.) E/H M L	nthesis of v	vildlife and fis ildlife Habita M H M		t ratings [check])) L M L		aiong Sir	еаппра	iliks.				
i. Level of Biological Activity (syling Rating (14D.iii.) E/H M H H H H H H H H H H H H	nthesis of v	vildlife and fis ildlife Habita M H		t ratings [check])) L		aiong Sir	еаппра	iliko.				
i. Level of Biological Activity (syr General Fish Habitat Rating (14D.iii.) E/H H M L M	m, use the B = level of pertain to co	wildlife and fisildlife Habita M H M M matrix below	at Rating to arrive	t ratings [g (14C.iii.) l e at [checking from a	check])) L M L L s] the fun	ctional p	points and	d rating. √hether	Factor /	e AA co	ntains a s	surface	or
i. Level of Biological Activity (syr General Fish Habitat Rating (14D.iii.) E/H M L N/A Rating (Working from top to botto retland component in the AA; Factor ubsurface outlet; the final three rows the instructions for further definitions. Vegetated component set of the Moderate	m, use the B = level of these te 6 acres	matrix below	to arrive	e at [checking from a atter in the	check])) L M L L d) the fun	ctional public.); Facre P/P, Sacres	points and tor C = w S/I, and T	I rating. /hether /E are a	Factor / or not th as previc	e AA co ously def etated com Mod	ntains a s ined, and ponent <1 ac erate	surface I A = "a cre	or bsent"
i. Level of Biological Activity (syling General Fish Habitat Rating (14D.iii.) E/H M L M N/A Rating (Working from top to botto retland component in the AA; Factor ubsurface outlet; the final three rows see instructions for further definitions Vegetated component > 6 High Moderate Yes No Yes No No	m, use the B = level of these te acres	matrix below biological acturation of surms].)	to arrive to arrive third to arrive the total to arrive the trace was th	e at [checking from a teer in the getated comp Mod Yes	check])) L M M L L d) the fun above (14 AA, whe ponent 1-5 a lerate No	ctional public.); Facere P/P, sacres	points and to tor C = w S/I, and T	d rating. /hether /E are a	Factor / or not th as previo	e AA co ously def etated com Mod Yes	ntains a sined, and	surface I A = "a cre Lo	or bsent"
i. Level of Biological Activity (syling and provided in the pr	m, use the B = level of these tes acres	matrix below biological acduration of surms].)	to arrive to arrive third to arrive third to arrive third to arrive third to arrive the total to arrive the total to arrive the total total total to arrive the total to	e at [checking from a atter in the getated comy Mod Yes7H	check])) L M M L L d) the fun above (14 AA, whe ponent 1-5 a lerate No .4M	ctional prili.i.); Face re P/P, sacres	points and to tor C = w S/I, and T	d rating. whether of the are a	Factor / or not th as previo	e AA co busly def etated com Mod Yes	ntains a sined, and	surface I A = "a cre Yes .3L	or bsent"
i. Level of Biological Activity (syling General Fish Habitat Rating (14D.iii.) E/H M L M N/A Rating (Working from top to botto retland component in the AA; Factor ubsurface outlet; the final three rows see instructions for further definitions Vegetated component > 6 High Moderate Yes No Yes No No	m, use the B = level of these te acres	matrix below biological acturation of surms].)	to arrive to arrive third to arrive the total to arrive the trace was th	e at [checking from a teer in the getated comp Mod Yes	check])) L M M L L d) the fun above (14 AA, whe ponent 1-5 a lerate No	ctional public.); Facere P/P, sacres	points and to tor C = w S/I, and T	d rating. /hether /E are a	Factor / or not th as previo	e AA co ously def etated com Mod Yes	ntains a sined, and	surface I A = "a cre Lo	or bsent"

i. Discharge Ind The AA is a slope we Springs or seeps are Vegetation growing of Wetland occurs at the Seeps are present at AA permanently flood Wetland contains an Shallow water table a Other:	etland known or obsiduring dorman le toe of a natu t the wetland of ded during dro outlet, but no and the site is	nt season/dro ural slope edge ought periods i inlet s aturated to	s the surface	Wetl Stream Other	neable substr and contains am is a known r:	inlet but no o	ithout under utlet um; discharç	lying impeding layer ge volume decreases
n. Rating (use the illion)	nauon nom r			uration at AA		OM GROUND	VATER DISC	HARGE OR WITH WATER
Criteria			P/P		S/I		Т	None
Groundwater Discharge or R	lecharge		1H		.7M		.4M	.1L
nsufficient Data/Information	ı					NA		
AK. Uniqueness: Rating (working from to	op to bottom,	use the mat	rix below to arı	rive at [chec	k] the functio	nal points an	d rating)	
Replacement potential	or matur wetland or	ns fen, bog, v re (>80 yr-old r plant assoc S1" by the M	ciation listed	cited ra diversity	s not contain re types and (#13) is high ociation listed the MTNHF	structural or contains I as "S2" by	cited ra	is not contain previously re types or associations uctural diversity (#13) is low-moderate
Estimated relative abundance (#11)	rare	commo	abundant	rare	common	abundant	rare	common abundant
Low disturbance at AA	1H	.9H	.8H	.8H	.6M	.5M	.5M	.4M .3L
(#12i) Moderate disturbance at	.9H	.8H	.7M	.7M	.5M	.4M	.4M	.3L .2L
AA (#12i) High disturbance at AA (#12i)	.8H	.7H	.6M	.6M	.4M	.3L	.3L	.2L .1L
14L. Recreation/Education i. Is the AA a known or proceed to the control of the c	on Potential: otential rec./	(affords "bo	nus" points if Aneck) Y	AA provides	recreation or	education o	oportunity)	hin creek channel.
ii. Check categori Other iii. Rating (use the matrix					•	consumptive	rec.; _ V No	on-consumptive rec.;
Known or Potential Recreation			,	, unu	3 /		1 1	Known Potential
Public ownership or public e			c access (no pe	rmission req	uired)			.2H .15H
Private ownership with gene	ral public acce	ss (no permi	ssion required)				1	.15H .1M
Private or public ownership v	without genera	al public acce	ss, or requiring	permission 1	for public acce	ess	1	.1M .05L
omments:								<u> </u>
Fishing and hunting by p	permission.							

Function & Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units: (Actual Points x Estimated AA Acreage)	Indicate the four most prominent functions with an asterisk (*)
A. Listed/Proposed T&E Species Habitat	L	.3	1	3	
B. MT Natural Heritage Program Species Habitat	М	.6	1	6	
C. General Wildlife Habitat	Е	1	1	10	~
D. General Fish Habitat	E	1	1	10	✓
E. Flood Attenuation	Н	.9	1	9	
F. Short and Long Term Surface Water Storage	Н	1	1	10	
G. Sediment/Nutrient/Toxicant Removal	Н	.9	1	9	
H. Sediment/Shoreline Stabilization	Н	1	1	10	~
Production Export/Food Chain Support	Е	1	1	10	✓
J. Groundwater Discharge/Recharge	Н	1	1	10	
K. Uniqueness	М	.6	1	6	
L. Recreation/Education Potential (bonus points)	М	.1	NA	1	
Totals:		9.4	11	94	
Percent of Possible Score			85.45 %		

Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II) Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or Score of 1 functional point for Uniqueness; or Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or Percent of possible score > 80% (round to nearest whole #).
Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or Score of .9 or 1 functional point for General Wildlife Habitat; or Score of .9 or 1 functional point for General Fish Habitat; or "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or Score of .9 functional point for Uniqueness; or Percent of possible score > 65% (round to nearest whole #).
Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)
Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; otherwise go to Category III) "Low" rating for Uniqueness; and Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and Percent of possible score < 35% (round to nearest whole #).

OVERALL ANALYSIS AREA RATING: (check appropriate category based on the criteria outlined

I II III IV

٦i٥	Hole (Grazina	Association	2012	Wetland	Mitigation	Monitorina I	⊋enort
טוע	I IUIC I	Grazing	ASSOCIATION	2012	v v C lialiu	williadion	IVIOLIILOTTIA	(CDOIL

Appendix C

Project Area Photographs

2012 MDT Wetland Mitigation Monitoring Big Hole Grazing Association Beaverhead County, Montana

Photo Point 1 – Photo 1 Bearing: North

Location: Veg Com 3 Taken in 2009

Photo Point 1 – Photo 1 Bearing: North

Location: Veg Com 3 Taken in 2010

Photo Point 1 – Photo 1
Bearing: North

Location: Veg Com 3
Taken in 2011

Photo Point 1 – Photo 1 Bearing: North

Location: Veg Com 3
Taken in 2012

Photo Point 1 – Photo 2 Bearing: West

Location: Veg Com 5 Taken in 2009

Photo Point 1 – Photo 2 Bearing: West

Location: Veg Com 5 Taken in 2010

Photo Point 1 – Photo 2
Bearing: West

Location: Veg Com 5
Taken in 2011

Photo Point 1 – Photo 2 Bearing: West

Location: Veg Com 5 Taken in 2012

Photo Point 1 – Photo 3 Bearing: East

Location: Veg Com 6 Taken in 2009

Photo Point 1 – Photo 3 Bearing: East

Location: Veg Com 6 Taken in 2010

Photo Point 1 – Photo 3
Bearing: East

Location: Veg Com 6 Taken in 2011

Photo Point 1 – Photo 3 Bearing: East

Location: Veg Com 6
Taken in 2012

Photo Point 2 – Photo 1
Bearing: Northwest

Location: Veg Com 3 Taken in 2009

Photo Point 2 – Photo 1
Bearing: Northwest

Location: Veg Com 3
Taken in 2010

Photo Point 2 – Photo 1
Bearing: Northwest

Location: Veg Com 3
Taken in 2011

Photo Point 2 – Photo 1
Bearing: Northwest

Location: Veg Com 3
Taken in 2012

Photo Point 2 – Photo 2 Bearing: West

Location: Veg Com 4 Taken in 2009

Photo Point 2 – Photo 2 Bearing: West

Location: Veg Com 4 Taken in 2010

Photo Point 2 – Photo 2
Bearing: West

Location: Veg Com 4
Taken in 2011

Photo Point 2 – Photo 2
Bearing: West

Location: Veg Com 4
Taken in 2012

Photo Point 2 – Photo 3 Bearing: East

Location: Veg Com 6 Taken in 2009

Photo Point 2 – Photo 3 Bearing: East

Location: Veg Com 6 Taken in 2010

Photo Point 2 – Photo 3
Bearing: East

Location: Veg Com 6
Taken in 2011

Photo Point 2 – Photo 3
Bearing: East

Location: Veg Com 6 Taken in 2012

Photo Point 3 – Photo 1
Bearing: Southeast

Location: Veg Com 5 Taken in 2009

Photo Point 3 – Photo 1
Bearing: Southeast

Location: Veg Com 5
Taken in 2010

Photo Point 3 – Photo 1
Bearing: Southeast

Location: Veg Com 5 Taken in 2011

Photo Point 3 – Photo 1
Bearing: Southeast

Location: Veg Com 5
Taken in 2012

Photo Point 3 – Photo 2 Bearing: West

Location: Veg Com 3 Taken in 2009

Photo Point 3 – Photo 2
Bearing: West

Location: Veg Com 3
Taken in 2011

Photo Point 3 – Photo 2 Bearing: West

to 2 Location: Veg Com 3
Taken in 2010

Photo Point 3 – Photo 2 Bearing: West

Location: Veg Com 3
Taken in 2012

Photo Point 3 – Photo 3
Bearing: Northwest

Location: Veg Com 3 Taken in 2009

Photo Point 3 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2011

Photo Point 3 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2010

Photo Point 3 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2012

Photo Point 4 – Photo 1
Bearing: Southeast

Location: Veg Com 7 Taken in 2009

Photo Point 4 – Photo 1
Bearing: Southeast

Location: Veg Com 7 Taken in 2010

Photo Point 4 – Photo 1
Bearing: Southeast

Location: Veg Com 7
Taken in 2011

Photo Point 4 – Photo 1
Bearing: Southeast

Location: Veg Com 7
Taken in 2012

Photo Point 4 – Photo 2
Bearing: Southeast

Location: Veg Com 3 Taken in 2009

Photo Point 4 – Photo 2
Bearing: Southeast

Location: Veg Com 3 Taken in 2010

Photo Point 4 – Photo 2
Bearing: Southeast

Location: Veg Com 3
Taken in 2011

Photo Point 4 – Photo 2
Bearing: Southeast

Location: Veg Com 3
Taken in 2012

Photo Point 4 – Photo 3 Bearing: Southwest

Location: Veg Com 1 Taken in 2009

Photo Point 4 – Photo 3
Bearing: Southwest

Location: Veg Com 1 Taken in 2010

Photo Point 4 – Photo 3 Bearing: Southwest

Location: Veg Com 1 Taken in 2011

Photo Point 4 – Photo 3 Bearing: Southwest

Location: Veg Com 1 Taken in 2012

Photo Point 5 – Photo 1
Bearing: East

Location: Veg Com 7 Taken in 2009

Photo Point 5 – Photo 1
Bearing: East

Location: Veg Com 7
Taken in 2010

Photo Point 5 – Photo 1
Bearing: East

Location: Veg Com 7
Taken in 2011

Photo Point 5 – Photo 1
Bearing: East

Location: Veg Com 7 Taken in 2012

Photo Point 5 – Photo 2 Bearing: Southwest

Location: Veg Com 7 Taken in 2009

Photo Point 5 – Photo 2
Bearing: Southwest

Location: Veg Com 7
Taken in 2011

Photo Point 5 – Photo 2
Bearing: Southwest

Location: Veg Com 7
Taken in 2010

Photo Point 5 – Photo 2
Bearing: Southwest

Location: Veg Com 7
Taken in 2012

Photo Point 5 – Photo 3
Bearing: Northwest

Location: Veg Com 1 Taken in 2009

Photo Point 5 – Photo 3
Bearing: Northwest

Location: Veg Com 1 Taken in 2011

Photo Point 5 – Photo 3
Bearing: Northwest

Location: Veg Com 1
Taken in 2010

Photo Point 5 – Photo 3
Bearing: Northwest

Location: Veg Com 1
Taken in 2012

Photo Point 6 – Photo 1
Bearing: Southeast

Location: Veg Com 3 Taken in 2009

Photo Point 6 – Photo 1
Bearing: Southeast

Location: Veg Com 3
Taken in 2011

Photo Point 6 – Photo 1
Bearing: Southeast

Location: Veg Com 3
Taken in 2010

Photo Point 6 – Photo 1
Bearing: Southeast

Location: Veg Com 3
Taken in 2012

Photo Point 6 – Photo 2 Bearing: South

Location: Veg Com 3 Taken in 2009

Photo Point 6 – Photo 2 Bearing: South

Location: Veg Com 3 Taken in 2010

Photo Point 6 – Photo 2
Bearing: South

Location: Veg Com 3
Taken in 2011

Photo Point 6 – Photo 2 Bearing: South

Location: Veg Com 3 Taken in 2012

Photo Point 6 – Photo 3
Bearing: Northwest

Location: Veg Com 3 Taken in 2009

Photo Point 6 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2010

Photo Point 6 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2011

Photo Point 6 – Photo 3
Bearing: Northwest

Location: Veg Com 3
Taken in 2012

Photo Point 7 – Photo 1
Bearing: East

Location: Veg Com 7 Taken in 2009

Photo Point 7 – Photo 1 Bearing: East

Location: Veg Com 7
Taken in 2010

Photo Point 7 – Photo 1
Bearing: East

Location: Veg Com 7
Taken in 2011

Photo Point 7 – Photo 1
Bearing: East

Location: Veg Com 7
Taken in 2012

Photo Point 7 – Photo 2 Bearing: West

Location: Veg Com 1 Taken in 2009

Bearing: West

Photo Point 7 – Photo 2 Bearing: West

Location: Veg Com 1 Taken in 2011

Photo Point 7 – Photo 2 Bearing: West

Location: Veg Com 1 Taken in 2012

Photo Point 7 – Photo 3
Bearing: South

Location: Veg Com 7 Taken in 2009

Photo Point 7 – Photo 3
Bearing: South

Location: Veg Com 7
Taken in 2010

Photo Point 7 – Photo 3
Bearing: South

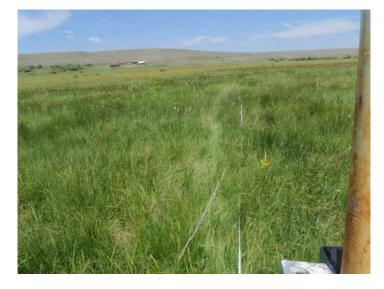
Location: Veg Com 7
Taken in 2011

Photo Point 7 – Photo 3
Bearing: South

Location: Veg Com 7
Taken in 2012

Transect 1 – Start Bearing: 5 deg

Location: Veg com 1 Taken in 2009


Transect 1 – Start Bearing: 5 deg

Location: Veg com 1 Taken in 2010

Transect 1 – Start Bearing: 5 deg

Location: Veg com 1 Taken in 2011

Transect 1 – Start Bearing: 5 deg

Location: Veg com 1
Taken in 2012

Transect 1- End Bearing: 185 deg

Location: Veg com 5 Taken in 2009

Transect 1- End Bearing: 185 deg

Location: Veg com 5 Taken in 2010

Transect 1- End Bearing: 185 deg

Location: Veg com 5 Taken in 2011

Transect 1- End Bearing: 185 deg

Location: Veg com 5
Taken in 2012

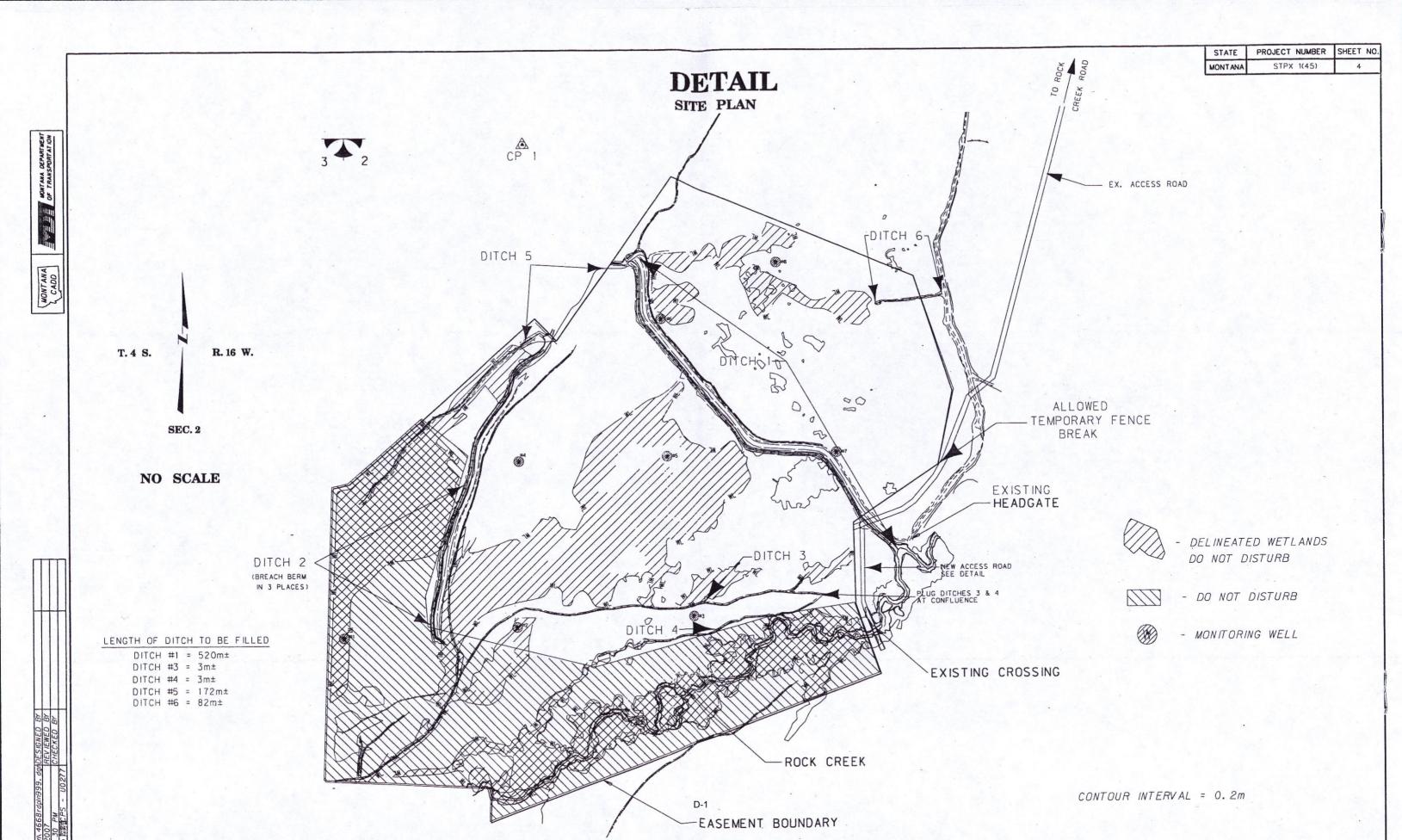
BH – 1 Bearing:

Location: North boundary Taken in 2012

BH – 2 Bearing:

Location: Southeast boundary Taken in 2012

BH – 3 Bearing:


Location: Southeast boundary **Taken in 2012**

₹	ia	н	വല	Grazina	Association	2012 Wetland	Mitigation	Monitoring Report	
ر	ıu		OIE	Giaziliu	Maauulallull	ZUIZ VVEIIAIIU	i iviiliualioi i	MOUNTAIN VEDOLE	

Appendix D

Project Plan Sheets

2012 MDT Wetland Mitigation Monitoring Big Hole Grazing Association Beaverhead County, Montana

