# MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2012

Dodson East Phillips County, Montana



Prepared for:



Prepared by:



PO Box 1133 Bozeman, MT 59771-1133

December 2012

# **MONTANA DEPARTMENT OF TRANSPORTATION**

## WETLAND MITIGATION MONITORING REPORT:

# YEAR 2012

Dodson East Phillips County, Montana

MDT Project Number: NH 1-8(15)454F Control Number: 1516

USACE: NWO-2004-90-518

Prepared for:

#### **MONTANA DEPARTMENT OF TRANSPORTATION**

2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

# Confluence Consulting, Inc.

P.O. Box 1133 Bozeman, MT 59771

December 2012

CCI Project No: MDT.004

"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228, TTY at 800-335-7592, or Montana Relay at 711."

# TABLE OF CONTENTS

| 1.                                                         | INTRODUCTION                                                                                                                                       | 1                                          |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 2.                                                         | METHODS                                                                                                                                            | 3                                          |
| 2.1.                                                       | Hydrology                                                                                                                                          | 3                                          |
| 2.2.                                                       | Vegetation                                                                                                                                         | 3                                          |
| 2.3.                                                       | Soil                                                                                                                                               | 4                                          |
| 2.4.                                                       | Wetland Delineation                                                                                                                                | 4                                          |
| 2.5.                                                       | Wildlife                                                                                                                                           | 5                                          |
| 2.6.                                                       | Functional Assessment                                                                                                                              | 5                                          |
| 2.7.                                                       | Photo Documentation                                                                                                                                | 5                                          |
| 2.8.                                                       | GPS Data                                                                                                                                           | 5                                          |
| 2.9.                                                       | Maintenance Needs                                                                                                                                  | 6                                          |
| 2.0.                                                       |                                                                                                                                                    |                                            |
| 3.                                                         | RESULTS                                                                                                                                            |                                            |
| -                                                          | RESULTS                                                                                                                                            | 6                                          |
| 3.                                                         | RESULTS                                                                                                                                            | 6                                          |
| 3.<br>3.1.                                                 | RESULTS<br>Hydrology<br>Vegetation                                                                                                                 | 6<br>6<br>6                                |
| 3.<br>3.1.<br>3.2.                                         | RESULTS<br>Hydrology<br>Vegetation<br>Soil                                                                                                         | 6<br>6<br>13                               |
| 3.<br>3.1.<br>3.2.<br>3.3.                                 | RESULTS<br>Hydrology<br>Vegetation<br>Soil<br>Wetland Delineation                                                                                  | 6<br>6<br>13<br>14                         |
| 3.<br>3.1.<br>3.2.<br>3.3.<br>3.4.                         | RESULTS<br>Hydrology<br>Vegetation<br>Soil<br>Wetland Delineation<br>Wildlife                                                                      | 6<br>6<br>13<br>14<br>14                   |
| 3.<br>3.1.<br>3.2.<br>3.3.<br>3.4.<br>3.5.                 | RESULTS<br>Hydrology<br>Vegetation<br>Soil<br>Wetland Delineation<br>Wildlife<br>Functional Assessment                                             | 6<br>6<br>13<br>14<br>14<br>14             |
| 3.<br>3.1.<br>3.2.<br>3.3.<br>3.4.<br>3.5.<br>3.6.         | RESULTS<br>Hydrology<br>Vegetation<br>Soil<br>Wetland Delineation<br>Wildlife<br>Functional Assessment<br>Photo Documentation                      | 6<br>6<br>13<br>14<br>14<br>14             |
| 3.<br>3.1.<br>3.2.<br>3.3.<br>3.4.<br>3.5.<br>3.6.<br>3.7. | RESULTS<br>Hydrology<br>Vegetation<br>Soil<br>Wetland Delineation<br>Wildlife<br>Functional Assessment<br>Photo Documentation<br>Maintenance Needs | 6<br>6<br>13<br>14<br>14<br>14<br>16<br>16 |



# TABLES

| Table 1. Vegetation species observed in 2011 and 2012 at the Dodson East Wetland Mitigation Site.                      | 8  |
|------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Data summary for Transect 1 in 2011 and 2012 at the DodsonEast Wetland Mitigation Site.                       |    |
| Table 3. Data summary for Transect 2 in 2011 and 2012 at the DodsonEast Wetland Mitigation Site.                       |    |
| Table 4. Total wetland and upland acres delineated in 2011 and 2012         at the Dodson East Wetland Mitigation Site |    |
| Table 5. Wildlife species observed within the Dodson East Wetland<br>Mitigation Site in 2011 and 2012                  |    |
| Table 6. Functions and Values at the Dodson East Wetland Mitigation Site in 2011 and 2012.                             |    |
| Table 7. Summary of wetland credits in 2011 and 2012 at the Dodson                                                     |    |
| East Wetland Mitigation Site.                                                                                          | 17 |

# CHARTS

| Chart 1.Transect map showing community types on Transect 1, East       |    |
|------------------------------------------------------------------------|----|
| Cell, in 2011 and 2012 from start (0 feet) to finish (244 feet) at the |    |
| Dodson East Wetland Mitigation Site                                    | 11 |
| Chart 2. Length of habitat types within Transect 1, East Cell, in 2011 |    |
| and 2012 at the Dodson East Wetland Mitigation Site                    | 11 |
| Chart 3. Transect map showing community types on Transect 2, West      |    |
| Cell, in 2011 and 2012 from start (0 feet) to finish (207 feet) at the |    |
| Dodson East Wetland Mitigation Site                                    | 12 |
| Chart 4. Length of habitat types within Transect 2, West Cell, in 2011 |    |
| and 2012 at the Dodson East Wetland Mitigation Site                    | 13 |
|                                                                        |    |

# FIGURES

| Figure 1. Project location of Dodson East Wetland Mitigation Site2 |
|--------------------------------------------------------------------|
| Figure 2. 2012 Monitoring Activity Locations – Appendix A          |
| Figure 3. 2012 Mapped Site Features – Appendix A                   |

# APPENDICES

| Appendix A | Project Area Maps – Figures 2 and 3              |
|------------|--------------------------------------------------|
| Appendix B | 2012 MDT Wetland Mitigation Site Monitoring Form |
|            | 2012 USACE Wetland Determination Data Forms      |
|            | 2012 MDT Montana Wetland Assessment Method Form  |
| Appendix C | Project Area Photographs                         |

Cover: Looking east at Schoenplectus community on edge of east wetland cell.



#### 1. INTRODUCTION

The Dodson East 2012 Wetland Mitigation Monitoring Report presents the results of the second year of post-construction monitoring at the Dodson East Wetland Mitigation Site. The Montana Department of Transportation (MDT) wetland mitigation project is located in Sections 1 and 2, Township 30 North, Range 27 East, Phillips County, Montana, approximately four miles east of Dodson on US Highway 2 (Figure 1).The Dodson East wetland conservation easement area encompasses 14.92 fenced acres, situated north of the Milk River and Highway 2 and south of the railroad.

The wetland mitigation site is located within Watershed 11, the Milk River Basin. Wetlands developed at this location were designed to provide compensatory mitigation for approximately 4.4 acres of wetland impacts associated with the planned reconstruction of 4.4 miles of US Highway 2 east of Dodson.

Two cells were constructed in 2008 to create at least 4.92 acres of shallow water (palustrine), emergent, and aquatic bed wetland types. The bases of the wetland cells were constructed with an undulating bottom below the plan elevation. The final elevation of at least 75% of the cell area was to be at or below the plan elevation after the placement of salvaged wetland materials and topsoil (USACE Permit No. 2004-90-518 dated July 22, 2004).

The performance standards listed in the USACE Permit specified that the mitigation wetlands were to have at least 60 percent cover by desirable wetland species in the herbaceous layer after 3 years, and 75 percent cover after five years. Invasive and noxious species were to comprise no more than 10 percent of the relative cover, and not dominate the vegetation in any extensive area of the mitigation wetland. The wetland was to be inundated or saturated to the surface continuously for at least 12.5 percent of the growing season in most years. Mitigation construction was to be initiated prior to or concurrent with impacts.

Figures 2 and 3 in Appendix A show the 2012 Monitoring Activity Locations and 2012 Mapped Site Features, respectively. The MDT Mitigation Monitoring Form, US Army Corps of Engineers (USACE) Wetland Determination Data Forms – Great Plains Region (USACE 2010), and the 2008 MDT Montana Wetland Assessment Method (MWAM) Form (Berglund and McEldowney 2008) are included in Appendix B. Project area photographs are included in Appendix C.



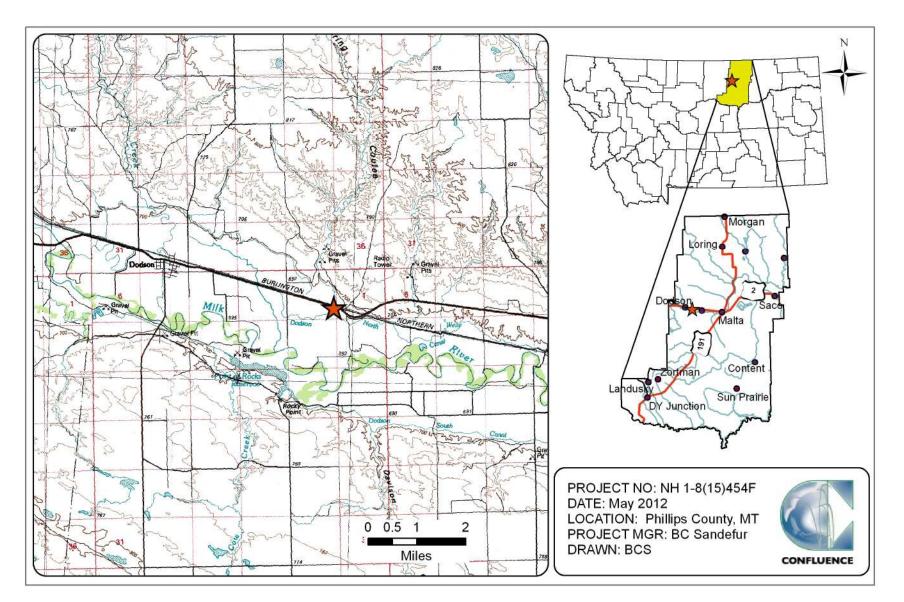



Figure 1. Project location of Dodson East Wetland Mitigation Site.



# 2. METHODS

The second annual monitoring event at Dodson East was completed on August 15, 2012. Information for the Mitigation Monitoring Form and Wetland Determination Data Form was entered electronically in the field on a palmtop computer during the field investigation (Appendix B). Monitoring activity sites were located with a global positioning system (GPS) as shown on Figure 2 (Appendix A). Information collected included a wetland delineation, vegetation community mapping, vegetation transect monitoring, soil and hydrology data collection, bird and wildlife use documentation, photographic documentation, and a non-engineering examination of the infrastructure established within the mitigation project area.

# 2.1. Hydrology

The presence of hydrologic indicators as outlined on the Wetland Determination Data Form was assessed at three data points established within the project area. The hydrologic indicators were evaluated according to features observed during the site visit. The data were recorded on the electronic Wetland Determination Data Form (Appendix B). Hydrologic assessments allow the evaluation of mitigation criteria addressing inundation/saturation requirements.

Technical criteria for wetland hydrology guidelines have been established as "permanent or periodic inundation, or soil saturation within 12 inches of the ground surface for a significant period (12.5 percent of the growing season) during the growing season" (USACE 2010). Systems with continuous inundation or saturation for greater than 12.5 percent of the growing season are classified as exhibiting wetland hydrology. The growing season is defined for purposes of this report as the number of days where there is a 50 percent probability that the minimum daily temperature is greater than or equal to 28 degrees Fahrenheit (USACE 2010). The growing season recorded for the meteorological station at Dodson, Montana (242438), is approximately 121 days. Areas defined as wetlands would require at least 15 days of inundation or saturation within 12 inches of the ground surface to meet the hydrology criteria.

Soil pits excavated during the wetland delineation were used to evaluate groundwater levels within 18 inches of the ground surface. The data were recorded on the Wetland Determination Data Form (Appendix B).

# 2.2. Vegetation

The boundaries of dominant species-based vegetation communities were determined in the field during the active growing season and subsequently delineated on the 2012 aerial photograph (Figure 3, Appendix A). The percent cover of dominant species within a community type was estimated and recorded using the following categories: 0 (less than 1 percent), 1 (1 to 5 percent), 2 (6 to10 percent), 3 (11 to 20 percent), 4 (21 to 50 percent), and 5 (greater than 50 percent) (Appendix B). Community types were named based on the predominant vegetation species that characterized each mapped polygon (Figure 3, Appendix A).



Temporal changes in vegetation were evaluated through annual assessments of static belt transects established in August, 2011 (Figure 2, Appendix A). Vegetation composition was assessed and recorded along two vegetation belt transects (T-1 and T-2) approximately 10 feet wide and 244 and 207 feet long, respectively (Figure 2, Appendix A).

The transect locations were recorded with a resource-grade GPS unit. Spatial changes in the dominant vegetation communities were recorded along the stationed transect. The percent aerial cover of each vegetation species within the belt transect was estimated using the same values and cover ranges used for the polygon data on the aerial photograph (Figure 3, Appendix B). Photographs were taken at the endpoints of each transect during the monitoring event (Appendix C).

The location of noxious weeds was noted in the field and mapped on the aerial photo (Figure 3, Appendix A). The noxious weed species identified are color-coded. The locations are denoted with the symbol "**x**", " $\blacktriangle$ ", or " $\blacksquare$ " representing 0 to 0.1 acre, .1 to 1 acre, or greater than 1 acre in extent, respectively. Cover classes are represented by T, L, M, or H, for less than 1 percent, 1 to 5 percent, 2 to 25 percent, and 25 to 100 percent, respectively.

# 2.3. Soil

Soil information was obtained via the *Soil Survey for Phillips County Area* (USDA 2010) and *in situ* soil descriptions. Soil cores were excavated using a hand auger and evaluated according to procedures outlined in the 1987 Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987) and 2010 Regional Supplement. A description of the soil profile, including hydric soil indicators when present, was recorded on the Wetland Determination Data Form for each profile (Appendix B).

### 2.4. Wetland Delineation

Waters of the U.S. including special aquatic sites and jurisdictional wetlands were delineated throughout the project area in accordance with criteria established in the 2010 Great Plains Regional Supplement. The technical criteria for hydrophytic vegetation, hydric soil, and wetland hydrology must be satisfied to delineate a representative area as jurisdictional. The name and indicator status of plant species was derived from the Draft 2012 National Wetland Plant List (NWPL) (Lichvar and Kartesz. 2009). Previous years' reports used the 1988 National List of Plant Species that Occur in Wetlands: Northwest Region 4 (Reed 1988). The 2012 NWPL scientific plant names were used in this report. Many common names used in the 2012 NWPL appear incomplete or erroneous. When used in this report, 2012 NWPL common names that appear to be incomplete or erroneous are provided with parenthetical clarification. For example, the common given name for the plant Agrostis exarata in the 2012 NWPL is "spiked bent". As this is likely an error, this species' common name would be reported here as "spiked bent (grass)". The Routine Level-2 On-site Determination Method (Environmental Laboratory 1987) was used to delineate jurisdictional



areas within the project boundaries. The information was recorded electronically on the Wetland Determination Data Form (Appendix B).

The wetland boundary was determined in the field based on changes in plant communities and/or hydrology, and changes in soil characteristics. Topographic relief boundaries within the project area were also examined and cross referenced with soil and vegetation communities as supportive information for the delineation. Vegetation composition, soil characteristics, and hydrology were assessed at likely wetland and adjacent upland locations. If all three parameters met the criteria, the area was designated as wetland and mapped by vegetation community type. If any one of the parameters did not exhibit positive wetland indicators, the area was determined to be upland unless the site was classified as an atypical situation, potential problem area for vegetation, soil or hydrology, or special aquatic site, i.e., mudflat, based on the guidance in the 2010 Regional Supplement. The wetland boundary was delineated on the 2012 aerial photo and digitized into Geographic Information System (GIS) format. Wetland areas reported were estimated using GIS methods.

# 2.5. Wildlife

Observations and other positive indicators of mammal, reptile, amphibian, and bird use were recorded on the wetland monitoring form during the site visit. Indirect use indicators including tracks, scat, burrow, eggshells, skins, and bones were also recorded. These signs were recorded while traversing the site for other required activities. Direct sampling methods such as snap traps, live traps, and pitfall traps, were not used. A comprehensive wildlife species list of species observed in 2011 and 2012 was compiled for this report.

### 2.6. Functional Assessment

The 2008 MWAM was used to evaluate functions and values on the site in 2011 and 2012. This method provides an objective means of assigning wetlands an overall rating and provides regulators a means of assessing mitigation success based on wetland functions. Functions are self-sustaining properties of a wetland ecosystem that exist in the absence of society and relate to ecological significance without regard to subjective human values (Berglund and McEldowney 2008). Field data for this assessment were collected during the site visit. The wetland assessment area (AA) encompassed the two wetland cells and the pre-existing wetland located between the cells (Appendix B).

# 2.7. Photo Documentation

Photo documentation at established photo points provided supplemental information on wetland and upland conditions, trends, current land uses surrounding the site, and the vegetation transects. Photographs were taken during the site visit at six established photo points (Appendix C). Photo point locations were recorded with a resource grade GPS unit (Figure 2, Appendix A).

### 2.8. GPS Data

Site features and survey points were collected with a resource grade Thales Pro Mark III GPS unit during the 2012 monitoring season. Points were collected



using WAAS-enabled differential correction satellites, typically improving resolution to sub-meter accuracy. The collected data were then transferred to a personal computer, imported into GIS, and presented in Montana State Plane Single Zone NAD 83 meters. Site features and survey points that were located with GPS included fence boundaries, photograph points, transect endpoints, and wetland data points.

#### 2.9. Maintenance Needs

Channels, engineered structures, fencing, and other features were examined during the site visit for obvious signs of breaching, damage, or other problems. This was a cursory examination and did not constitute an engineering-level structural inspection.

### 3. RESULTS

### 3.1. Hydrology

Climate data from the meteorological station at Dodson Coop, Montana (242438), recorded average annual precipitation rates of 10.48 inches from August 1883 thru December 2011 (WRCC 2011). Annual precipitation in 2010 and 2011 was 15.0 inches and 15.25, respectively. Precipitation totals from January to August were 8.71 inches (long-term average), 9.92 inches (2010), 13.53 inches (2011), and 10.13 inches (2012).

The wetland cells encompassing approximately 50 percent of the site were inundated during the 2012 site visit. The average depth site wide was 2.0 feet and the range of depths was 0.5 to 3.0 feet. The shoreline of the cells adjacent to the open water was saturated to the ground surface. The depth of water at the emergent vegetation and open water boundary was approximately 0.8 feet. The site has the potential to receive inundation from high water events from Spring Coulee, an ephemeral drainage that drains approximately 21 square miles to the north of the site.

Three data points were sampled to determine the wetland and upland boundaries. Data points DE-1 and DE-3 were located in upland community Type 3 – *Puccinellia nuttalliana*. Sample point DE-2 was located within wetland community Type 4 – *Alopecurus pratensis*. There were no hydrologic indicators at DE-1. The groundwater level appeared to be 20 inches below the ground surface for most of the growing season based on the soil profile in the test pit. Data point DE-3 exhibited surface soil cracks, which alone does not provide enough evidence of wetland hydrology. Data point DE-2 exhibited drift deposits, an algal mat, surface soil cracks, drainage patterns, and a positive FAC-neutral test. Aquatic invertebrates, an indicator of wetland hydrology, were found in select areas of the mitigation site affected by intermittent inundation.

### 3.2. Vegetation

Monitoring year 2012 marked the second year of monitoring on the Dodson East wetland mitigation site. Fifty-one plant species were observed site wide in 2011 and 2012 (Table 1). Vegetation plant communities were identified by plant



dominance, which was affected by topography, soil, and hydrology. The communities and individual species identified in each are listed on the Mitigation Monitoring Form (Appendix B). The community boundaries are presented on Figure 3 (Appendix A).

The wetland cells were seeded with a wetland mix consisting of slender wild rye (*Elymus trachycaulus*, called *Agropyron trachycaulum* on the 1988 list), saltmarsh club-rush (*Schoenoplectus maritimus*, called *Scirpus maritimus* on the 1988 list), Western-wheatgrass (*Pascopyrum smithii*, called *Agropyron smithii* on 1988 list), Great Basin lyme grass (*Leymus cinereus*, called *Elymus cinereus* on the 1988 list), and Nuttall's alkaligrass (*Puccinellia nuttaliana*). Salvaged wetland sod and soil were also used as a seed bank to augment species diversity. No woody species were planted. Six vegetation communities, two upland types and four wetland types, were identified in 2012 and are described below.

Upland community Type 1 – *Elymus* spp. characterized the 5.50 acre upland buffer surrounding the constructed wetland cells. Crested wheatgrass (*Agropyron cristatum*), creeping wild rye (*Elymus repens*), Western-wheatgrass, and curly-cup gumweed (*Grindelia squarrosa*) dominated the herbaceous cover.

Wetland community Type 2 – *Schoenoplectus* spp. (called *Scirpus* spp. In the 2011 monitoring report) was found on the 0.84 acre perimeter of the east cell. The dominant species were saltmarsh club-rush (*Schoenoplectus maritimus*), hard-stem club-rush (*Schoenoplectus acutus*), and fox-tail barley (*Hordeum jubatum*). Green algae (a protist) were observed on the water surface at the edge of the open water. Approximately 11 to 20 percent of the ground surface in the community was bare.

Upland community Type 3 – *Puccinellia nuttalliana* was located on 1.68 acres of the terrace on the north side of the east cell and along the perimeter of the west and east cells. This community may transition from upland to wetland if the groundwater elevation increases enough to saturate the soil for a sufficient duration during the growing season. Although the indicator status of Nuttall's alkaligrass is obligate (OBL), the soil and hydrology in the community did not meet the wetland criteria. Nuttall's alkali grass was the dominant species with less than five percent cover of fox-tail barley (*Hordeum jubatum*), curly dock (*Rumex crispus*), sow thistle (*Sonchus arvensis*), slender wheatgrass, curly-cup gumweed, prickly lettuce (*Lactuca serriola*), and yellow sweet-clover (*Melilotus officinalis*).



| Scientific Names         | Common Names            | GP Indicator        |
|--------------------------|-------------------------|---------------------|
|                          |                         | Status <sup>1</sup> |
| Agropyron cristatum      | Crested Wheatgrass      | UPL                 |
| Algae, green             | Algae, Green            | NL                  |
| Alisma plantago-aquatica | European Water-Plantain | OBL                 |
| Alisma triviale          | Northern Water-Plantain | OBL                 |
| Alopecurus pratensis     | Field Meadow-Foxtail    | FACW                |
| Asclepias sp.            | Milkweed                | NL                  |
| Asclepias speciosa       | Showy Milkweed          | FAC                 |
| Avena fatua              | Wild Oat                | UPL                 |
| Axyris amaranthoides     | Russian Pigweed         | NL                  |
| Bassia scoparia          | Mexican-Fireweed        | FACU                |
| Bouteloua dactyloides    | Buffalo Grass           | FACU                |
| Bouteloua gracilis       | Blue Grama              | NL                  |
| Bromus inermis           | Smooth Brome            | FAC                 |
| Carex praegracilis       | Clustered Field Sedge   | FACW                |
| Carex vulpinoidea        | Common Fox Sedge        | FACW                |
| Chenopodium album        | Lamb's-Quarters         | FACU                |
| Distichlis spicata       | Coastal Salt Grass      | FACW                |
| Elaeagnus angustifolia   | Russian-Olive           | FACU                |
| Eleocharis palustris     | Common Spike-Rush       | OBL                 |
| Elymus canadensis        | Nodding Wild Rye        | FACU                |
| Elymus repens            | Creeping Wild Rye       | FACU                |
| Elymus trachycaulus      | Slender Wild Rye        | FACU                |
| Erigeron annuus          | Eastern Daisy Fleabane  | FACU                |
| Festuca pratensis        | Meadow Fescue           | FACU                |
| Festuca sp.              | Fescue                  | NL                  |
| Glycyrrhiza lepidota     | American Licorice       | FACU                |
| Grindelia squarrosa      | Curly-Cup Gumweed       | FACU                |
| Heliomeris multiflora    | Showy Goldeneye         | UPL                 |
| Hordeum jubatum          | Fox-Tail Barley         | FACW                |
| Lactuca serriola         | Prickly Lettuce         | FAC                 |
| Lemna minor              | Common Duckweed         | OBL                 |
| Lepidium perfoliatum     | Clasping Pepperwort     | FAC                 |
| Leymus cinereus          | Great Basin Lyme Grass  | FAC                 |
| Melilotus officinalis    | Yellow Sweet-Clover     | FACU                |
| Pascopyrum smithii       | Western-Wheat Grass     | FACU                |
| Polygonum aviculare      | Yard Knotweed           | FACU                |
| Populus deltoides        | Eastern Cottonwood      | FAC                 |
| Puccinellia nuttalliana  | Nuttall's Alkali Grass  | OBL                 |
| Rumex crispus            | Curly Dock              | FAC                 |
| Sarcobatus vermiculatus  | Greasewood              | FAC                 |
| Schoenoplectus acutus    | Hard-Stem Club-Rush     | OBL                 |
| Schoenoplectus maritimus | Saltmarsh Club-Rush     | OBL                 |

# Table 1. Vegetation species observed in 2011 and 2012 at the Dodson East Wetland Mitigation Site.

<sup>1</sup>Draft NWPL (Lichvar and Kartesz 2009). New species identified in 2012 are bolded.



| Scientific Names         | Common Names          | GP Indicator        |
|--------------------------|-----------------------|---------------------|
| Scientific Names         | Common Names          | Status <sup>1</sup> |
| Schoenoplectus pungens   | Three-Square          | OBL                 |
| Scutellaria galericulata | Hooded Skullcap       | OBL                 |
| Solidago canadensis      | Canadian Goldenrod    | FACU                |
| Sonchus arvensis         | Field Sow-Thistle     | FAC                 |
| Spartina pectinata       | Freshwater Cord Grass | FACW                |
| Suaeda calceoliformis    | Paiuteweed            | FACW                |
| Symphoricarpos albus     | Common Snowberry      | FACU                |
| Thlaspi arvense          | Field Penny-Cress     | FACU                |
| Typha latifolia          | Broad-Leaf Cat-Tail   | OBL                 |

# Table1. (Continued). Vegetation species observed in 2011 and 2012 at the Dodson East Wetland Mitigation Site.

<sup>1</sup>Draft NWPL (Lichvar and Kartesz 2009). New species identified in 2012 are bolded.

Wetland community Type 4 – *Alopecurus pratensis* characterized the 0.68 acre existing wetland located between the cells. The project plan sheet indicated an ephemeral drainage previously flowed through this area. The creek drainage pattern was evident during the 2012 investigation. Field meadow-foxtail (*Alopecurus pratensis*) dominated while broad-leaf cattail (*Typha latifolia*), and eight other hydrophytic species were present in the plant community.

Wetland community Type 5 – *Alisma trivale/Schoenoplectus spp.* was identified within 3.86 acres of the west cell. The canopy cover of emergent vegetation within the west cell was approximately 70 percent. Northern water plantain (*Alisma trivale*, called *Alisma plantago-aquatic* on the 1988 list), aquatic macrophytes, saltmarsh club-rush, hardstem club rush, broad-leaf cattail, and green algae dominated the community.

Wetland community Type 6 – Aquatic macrophytes characterized 2.36 acres within the east cell. The community was classified as an aquatic bed vegetation class generally defined as being dominated by plants "that grow principally on or below the surface of the water for most of the growing season in almost all years (aquatic macrophytes) (Cowardin et al. 1979)." The Montana Natural Heritage Program (MTNHP) website further defines the Palustrine Aquatic Bed Class as having aquatic plants at greater than 30 percent cover and water depths between 0.5 and 2 meters (MTNHP 2011). The community encompassed saltmarsh clubrush, hard stem club rush, northern water plantain, and aquatic macrophytes. Green algae (protist kingdom) were also observed on the water surface. The water levels in the cell ranged from one to three feet deep in August, 2012.

Data collected on Transect 1 (Mitigation Monitoring Form, Appendix B) are summarized in tabular and graphic formats (Table 2, Charts 1 and 2, respectively). Photographs of the start and finish of Transect 1 are included on Page C-8 of Appendix C. As in 2011, the transect intersected wetland communities Type 2 and Type 6 and upland community Type 3. Hydrophytic vegetation communities comprised 65.2 percent of Transect 1 in 2011 and 67.6 percent in 2012. Some lower-lying areas within community 3 – *Puccinellia* 



*nuttalliana* may develop wetland characteristics if the duration and extent of soil saturation in the community increases.

The data for Transect 2 (Mitigation Monitoring Form, Appendix B) is summarized on Table 3 and Charts 3 and 4. Photographs of the transect are shown on page C-9 of Appendix C. Wetland communities 2, 4, and 5 comprised 99.0 percent of the transect intervals. Little change was observed on either transect between years except for the development of a *Schoenoplectus* community on the shoreline of the east cell.

No Priority 2B noxious weeds were identified at the site in 2011 or 2012. Approximately ten Russian olive (*Elaegnus angustifolia*) trees were observed in the northwest corner of the project area inside the fenced mitigation boundary. Russian olive is considered a Priority 3 weed that has the potential to have significant negative impacts. The state recommends research, education and prevention to minimize the spread of this regulated plant.

| Table 2. Data summary    | for | Transect | 1 | in | 2011 | and | 2012 | at | the | Dodson | East |
|--------------------------|-----|----------|---|----|------|-----|------|----|-----|--------|------|
| Wetland Mitigation Site. |     |          |   |    |      |     |      |    |     |        |      |

| Monitoring Year                                                 | 2011 | 2012 |
|-----------------------------------------------------------------|------|------|
| Transect Length (feet)                                          | 244  | 244  |
| Vegetation Community Transitions along Transect                 | 4    | 4    |
| Vegetation Communities along Transect                           | 4    | 3    |
| Hydrophytic Vegetation Communities along Transect               | 2    | 2    |
| Total Vegetative Species                                        | 19   | 17   |
| Total Hydrophytic Species                                       | 9    | 6    |
| Total Upland Species                                            | 10   | 11   |
| Estimated % Total Vegetative Cover                              | 60   | 60   |
| % Transect Length Comprising Hydrophytic Vegetation Communities | 65.2 | 67.6 |
| % Transect Length Comprising Upland Vegetation Communities      | 34.8 | 32.4 |
| % Transect Length Comprising Unvegetated Open Water             | 0.0  | 0.0  |
| % Transect Length Comprising Bare Substrate                     | 0.0  | 0.0  |



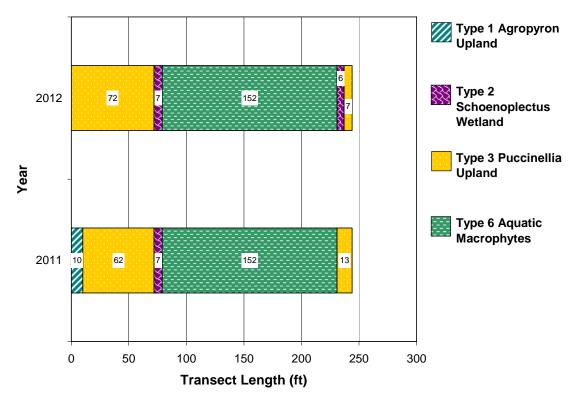



Chart 1.Transect map showing community types on Transect 1, East Cell, in 2011 and 2012 from start (0 feet) to finish (244 feet) at the Dodson East Wetland Mitigation Site.

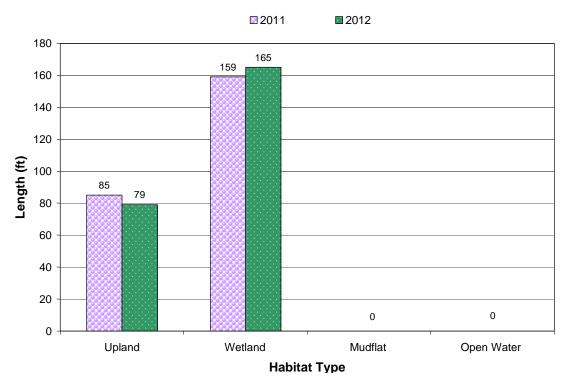



Chart 2. Length of habitat types within Transect 1, East Cell, in 2011 and 2012 at the Dodson East Wetland Mitigation Site.



| Table 3. Data summary    | for | Transect | 2 in | 2011 | and | 2012 | at | the | Dodson | East |
|--------------------------|-----|----------|------|------|-----|------|----|-----|--------|------|
| Wetland Mitigation Site. |     |          |      |      |     |      |    |     |        |      |

| Monitoring Year                                                 | 2011 | 2012 |
|-----------------------------------------------------------------|------|------|
| Transect Length (feet)                                          | 207  | 207  |
| Vegetation Community Transitions along Transect                 | 2    | 4    |
| Vegetation Communities along Transect                           | 2    | 4    |
| Hydrophytic Vegetation Communities along Transect               | 1    | 3    |
| Total Vegetative Species                                        | 8    | 13   |
| Total Hydrophytic Species                                       | 6    | 6    |
| Total Upland Species                                            | 2    | 7    |
| Estimated % Total Vegetative Cover                              | 75   | 75   |
| % Transect Length Comprising Hydrophytic Vegetation Communities | 96.6 | 99.0 |
| % Transect Length Comprising Upland Vegetation Communities      | 3.4  | 1.0  |
| % Transect Length Comprising Unvegetated Open Water             | 0.0  | 0.0  |
| % Transect Length Comprising Bare Substrate                     | 0.0  | 0.0  |

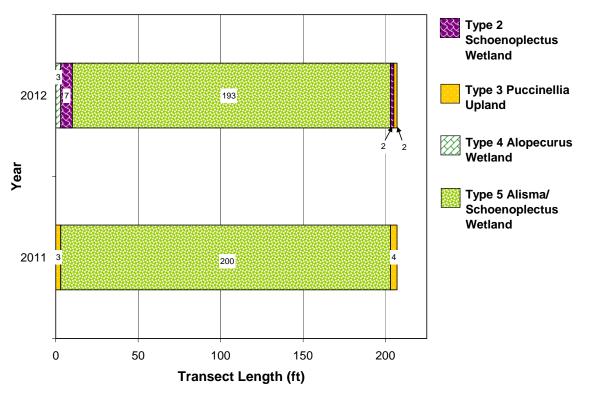



Chart 3. Transect map showing community types on Transect 2, West Cell, in 2011 and 2012 from start (0 feet) to finish (207 feet) at the Dodson East Wetland Mitigation Site.



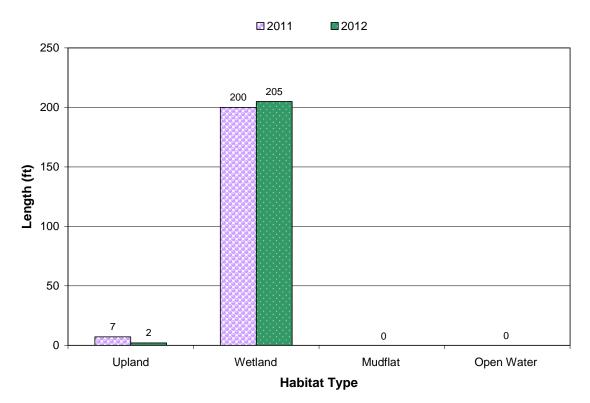



Chart 4. Length of habitat types within Transect 2, West Cell, in 2011 and 2012 at the Dodson East Wetland Mitigation Site.

#### 3.3. Soil

The project site was mapped in the Phillips County Soil Survey (USDA 2011) within the Havre loam and Bigsag clay soil map units, both found on 0 to 2 percent slopes. The parent materials of the Havre loam and Big Sag clay soils are alluvium and glaciolacustrine deposits, respectively. The soil types are found on floodplain landforms. The Bigsag clay is a poorly drained hydric soil, taxonomically classified as a poorly drained frigid Typic Halaquept. The Lallie loam, a hydric component of the Havre loam map unit, is classified as a frigid Vertic Fluvaquent. The test pit soils generally confirmed the map units.

Data point DE-2 was located in wetland community Type 4. The soil profile revealed a dark grayish brown clay loam (10 YR 4/2) with five percent dark yellowish brown (10 YR 4/6) redoximorphic concentrations. The depleted matrix was a positive indicator of hydric soil. Data points DE-1 and DE-3 were located in upland community Type 3. The soil at DH-1 was a clay loam (10 YR 4/2) with gray (10 YR 6/1) depletions. The depletions were likely sodium concentrations. The soil profile in DE-3 revealed a brown (10 YR 5/3) silty clay with redox concentrations (10 YR 4/6) in the matrix. Data points DH-1 and DH-3 did not meet the hydric soil criteria.



#### 3.4. Wetland Delineation

The total acreage of emergent and aquatic bed wetland delineated in 2012 was 7.74 acres (Table 4; Figure 3, Appendix B). This represented an increase of 0.45 wetland acres since 2011. The areal extent of wetland community 4 located between the cells and on the north boundary of the west cell was higher in 2012. The ephemeral creek located north of the site may be increasing groundwater levels in the west half of the mitigation site. An undisturbed upland buffer of 7.18 acres is present within the mitigation site.

| Table 4. Total wetland and upland    | acres | delineated | in | 2011 | and | 2012 | at | the |
|--------------------------------------|-------|------------|----|------|-----|------|----|-----|
| Dodson East Wetland Mitigation Site. |       |            |    |      |     |      |    |     |

| WETLAND AND UPLAND HABITATS | 2011<br>(acres) | 2012<br>(acres) |
|-----------------------------|-----------------|-----------------|
| Project Area                | 14.92           | 14.92           |
| Created Wetland             | 7.29            | 7.74            |
| Upland Buffer               | 7.63            | 7.18            |

#### 3.5. Wildlife

A comprehensive list of bird and other wildlife species observed directly or indirectly during the 2011 and 2012 monitoring visits is presented in Table 5 (Appendix B). Five bird species were observed in 2012 including the American robin (*Turdus migratorius*), bank swallow (*Riparia riparia*), killdeer (*Charadrius vociferous*), mallard (*Anas platyrhynchos*), and red-winged blackbird (*Agelaius phoeniceus*). There are currently no nesting structures installed at the site. One Northern leopard frog (*Rana pipiens*) and tracks of a raccoon (*Procyon lotor*) and deer sp. (*Odocoileus* sp.) were seen onsite.

### 3.6. Functional Assessment

The 2011 functional assessment provided a baseline to gauge functional changes at the mitigation site (Table 6). The 2011 and 2012 assessments used the 2008 MDT MWAM to generate a functional score for one wetland assessment area (AA) (Appendix B). The singular AA encompassed the west and east cells and the pre-existing wetland located between the cells.

The 7.74-acre AA was rated as a Category II wetland with 68.5 percent of the total possible points and 53.0 functional units. This represented an increase in the overall rating from III to II and functional units from 45.2 to 53.0. The increases were the result of a higher vegetation cover on the shoreline of the wetland cells and a higher wetland acreage. The ratings were high for short and sediment/nutrient/toxicant water storage. lona term surface removal. streambank/shoreline stabilization, production export/food chain support, and groundwater discharge/recharge and moderate for MTNHP Species Habitat, general wildlife habitat, and flood attenuation. The great blue heron, an S3 species, was identified by the MTNHP in the township and range of the site. The proximity of the highway and railroad grade limits the value of the wildlife habitat.



Table 5. Wildlife species observed within the Dodson East Wetland Mitigation Site in 2011 and 2012.

| COMMON NAME           | SCIENTIFIC NAME         |  |  |  |
|-----------------------|-------------------------|--|--|--|
| AMPH                  | IIBIANS                 |  |  |  |
| Northern Leopard Frog | Rana pipiens            |  |  |  |
| BI                    | RDS                     |  |  |  |
| American Robin        | Turdus migratorius      |  |  |  |
| Bank Swallow          | Riparia riparia         |  |  |  |
| Killdeer              | Charadrius vociferus    |  |  |  |
| Mallard               | Anas platyrhynchos      |  |  |  |
| Red-winged Blackbird  | Agelaius phoeniceus     |  |  |  |
| Tree Swallow          | Tachycineta bicolor     |  |  |  |
| MAN                   | IMALS                   |  |  |  |
| Deer Sp.              | Odocoileus sp.          |  |  |  |
| Meadow Vole           | Microtus pennsylvanicus |  |  |  |
| Raccoon               | Procyon lotor           |  |  |  |
| Striped Skunk         | Mephitis mephitis       |  |  |  |
| White-tailed Deer     | Odocoileus virginianus  |  |  |  |
| REPTILES              |                         |  |  |  |
| Painted Turtle        | Chrysemys picta         |  |  |  |
| Plains Gartersnake    | Thamnophis radix        |  |  |  |

Table 6. Functions and Values at the Dodson East Wetland Mitigation Site in 2011 and 2012.

| Function and Value Parameters from the 2008 Montana Wetland Assessment Method | 2011       | 2012       |
|-------------------------------------------------------------------------------|------------|------------|
| Listed/Proposed T&E Species Habitat                                           | Low (0.0)  | Low (0.0)  |
| MTNHP Species Habitat                                                         | Mod (0.5)  | Mod (0.5)  |
| General Wildlife Habitat                                                      | Mod (0.7)  | Mod (0.7)  |
| General Fish/Aquatic Habitat                                                  | NA         | NA         |
| Flood Attenuation                                                             | Mod (0.6)  | Mod (0.6)  |
| Short and Long Term Surface Water Storage                                     | High (1.0) | High (1.0) |
| Sediment/Nutrient/Toxicant Removal                                            | Mod (0.7)  | High (1.0) |
| Sediment/Shoreline Stabilization                                              | Mod (0.7)  | High (1.0) |
| Production Export/Food Chain Support                                          | High (0.8) | High (0.8) |
| Groundwater Discharge/Recharge                                                | High (1.0) | High (1.0) |
| Uniqueness                                                                    | Low (0.2)  | Low (0.2)  |
| Recreation/Education Potential (bonus points)                                 | NA         | Low (.05)  |
| Actual Points/Possible Points                                                 | 6.2/ 10    | 6.85/ 10   |
| % of Possible Score Achieved                                                  | 62.0%      | 68.5%      |
| Overall Category                                                              |            | II         |
| Total Acreage of Assessed Wetlands within Site Boundaries                     | 7.29       | 7.74       |
| Functional Units (acreage x actual points)                                    | 45.2       | 53.0       |



#### 3.7. Photo Documentation

Photographs taken at photo points one through seven (PP1 through PP7; Figure 2, Appendix A) are shown on pages C-1 to C-7 of Appendix C. Transect end points are shown on pages C-8 and C-9 and photographs of the data points are included on page C-10.

### 3.8. Maintenance Needs

No Priority 2B noxious weeds were identified at the site in 2012. Approximately ten Russian olive trees were observed in the northwest corner of the project area. Russian olive is considered a Priority 3 weed that has the potential to have significant negative impacts. The state recommends research, education and prevention to minimize the spread of this regulated plant. Measures should be taken to ensure that Russian olive seedlings do not establish within this mitigation site. There are no nesting structures or inlet/outlet structures controlling water levels installed at the site.

# 3.9. Current Credit Summary

The emergent and aquatic bed wetland acreage delineated in 2012 encompassed 7.74 acres, a 0.45 acre increase since 2011 (Table 7). The areal extent of wetland community 4 located between the cells and on the north boundary of the west cell was greater in 2012. An undisturbed upland buffer of 7.18 acres was delineated within the mitigation site boundaries. The credit ratio for wetland creation was assumed to be 1:1 (creation to impact) based on language in the USACE Permit Number 2004-90-518 requiring the creation of 4. 92 acres of wetland habitat. Credit for maintenance of an upland buffer has been calculated at a 5:1 ratio. The estimated credit acreage in 2012 was 7.74 credit acres for created wetland at a 1:1 credit ratio and 1.44 credit acres for the upland buffer at a 5:1 credit ratio.

With respect to the performance standards listed in USACE Permit Number 2004-90-518, the wetlands are to have at least 60 percent cover by desirable wetland species in the herbaceous layer after 3 years, and 75 percent cover after five years. The site was constructed in 2008 and has now been established for over 3 years. The 60% of desirable wetland species has been met. The cover of emergent vegetation and aquatic macrophytes currently exceeds 60 percent in the west cell. The cover of the emergent and aquatic macrophyte vegetation in the open water areas and shoreline of the east cell is approximately 60 percent. Invasive and noxious species were to comprise no more than 10 percent of the relative cover, and not dominate the vegetation in any extensive area of the mitigation wetland. There were no Priority 2 B noxious weeds observed at the site in 2012. Russian olive, an aggressive Priority 3 weed, was present onsite but did not exceed the 10% cover as defined in the performance standard. The wetland was to be inundated or saturated to the surface continuously for at least 12.5 percent of the growing season in most years. Based on current hydrologic indicators, it appears the majority of the footprint of the wetland cells has been inundated for most of the growing seasons since 2008. The acreage



requirement stipulating the creation of at least 4.92 acres of emergent and aquatic bed wetland has thus far been met.

# Table 7. Summary of wetland credits in 2011 and 2012 at the Dodson East WetlandMitigation Site.

| WETLAND            | Credit<br>Ratio | 2011<br>Wetland<br>Acres | 2011<br>Credit<br>Acres | 2012<br>Wetland<br>Acres | 2012<br>Credit<br>Acres |
|--------------------|-----------------|--------------------------|-------------------------|--------------------------|-------------------------|
| Created Wetland    | 1:1             | 7.29                     | 7.29                    | 7.74                     | 7.74                    |
| Upland Buffer      | 5:1             | 7.63                     | 1.53                    | 7.18                     | 1.44                    |
| Total Credit Acres |                 |                          | 8.82                    |                          | 9.18                    |



#### 4. **REFERENCES**

- Berglund, J. and R. McEldowney. 2008. *MDT Montana Wetland Assessment Method.* Prepared for Montana Department of Transportation, Helena, Montana. Post, Buckley, Schuh, & Jernigan, Helena, Montana. 42pp.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31. U.S.D.I Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers. Washington, DC.
- Lichvar, Robert W. and Kartesz, John T. 2009. North American Digital Flora: National Wetland Plant List, version 2.4.0 (https://wetland\_plants.usace.army.mil). U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH, and BONAP, Chapel Hill, NC. Downloaded from National Wetland Plant List website 5/9/12. Effective June 1, 2012.
- Reed, P.B. 1988. National list of plant species that occur in wetlands: North Plains (Region 4). Biological Report 88(26.4), May 1988. U.S. Fish and Wildlife Service, Washington, DC.
- U.S. Army Corps of Engineers. 2004. Department of the Army Permit No. 2004-90-518 dated July 22, 2004.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-1.Vicksburg, MS: U.S. Army Engineer Research and Development Center.

#### Websites:

- Montana Natural Heritage Program website. Accessed in September 2011 at http://mtnhp.org/nwi/PUB\_PAB.asp
- United States Department of Agriculture-Natural Resource Conservation Service. Web Soil Survey for Phillips County, Montana. 2010. Accessed in July 2011 at: http://websoilsurvey.nrcs.usda.gov/app/.
- Western Regional Climate Center. United States Historical Climatology Network. Reno, Nevada. 2011. Accessed in July 2011 at: http://www.wrcc.dri.edu/CLIMATEDATA.html.



# Appendix A

#### **Project Area Maps**

Figure 2 – 2012 Monitoring Activity Locations Figure 3 – 2012 Mapped Site Features

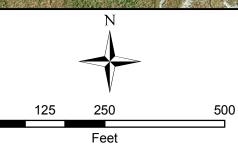
MDT Wetland Mitigation Monitoring Dodson East Phillips County, Montana



# Vegetation Community Types

- 1 Elymus spp.
- 2 Schoenoplectus spp.
- 3 Puccinellia nuttalliana
- Alopecurus pratensis
- 5 Alisma trivale/Schoenoplectus spp.
- 6 Aquatic macrophytes

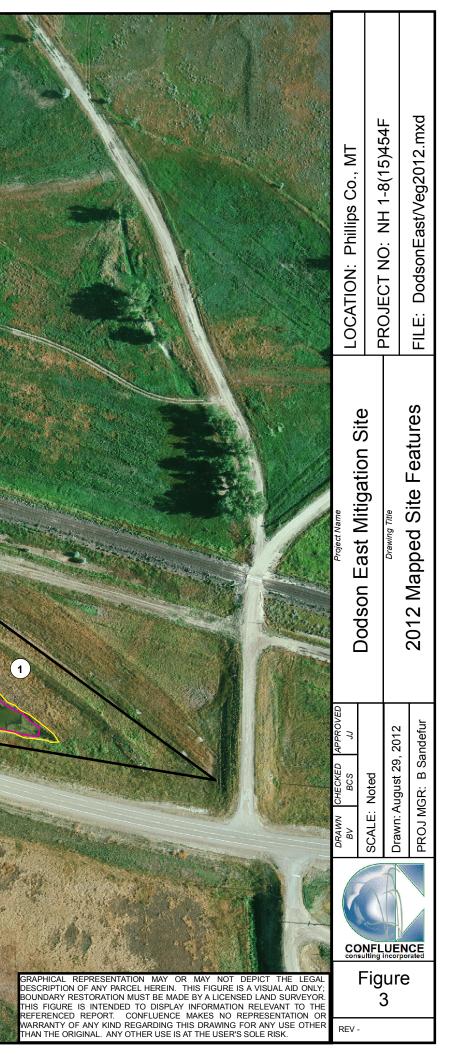
# Figure 3: 2012 Mapped Site Features


5

#### Acreages Project Area

Project Area14.92 acresUpland Buffer7.18 acresCreated Wetlands7.74 acres

# Legend Monitoring Limits Wetland Limits Vegetation Communities Base Photography Date: June 27, 2012






(4)

(3)

6



# **Appendix B**

2012 MDT Wetland Mitigation Site Monitoring Form 2012 USACE Wetland Determination Data Form – Great Plains Region 2012 MDT Montana Wetland Assessment Form

MDT Wetland Mitigation Monitoring Dodson East Phillips County, Montana

#### MDT WETLAND MITIGATION SITE MONITORING FORM

| Project Site: Dodson-East                            | Assessment Date/Time                                   | <u>8/15/2012 8:33:25</u> AM |  |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Person(s) conducting the assessment: BS              | Person(s) conducting the assessment: <u>B Sandefur</u> |                             |  |  |  |  |  |  |
| Weather: Cool & mild, overcast                       | Location: Approx. 4mi E of Dodson                      |                             |  |  |  |  |  |  |
| MDT District: Glendive                               | _Milepost:                                             |                             |  |  |  |  |  |  |
| Legal Description: T <u>30N</u> R <u>27E</u> Section | (s <u>) 1 &amp; 2</u>                                  |                             |  |  |  |  |  |  |
| Initial Evaluation Date: 8/12/2011 Mor               | nitoring Year: <u>2</u> #Visits in Year: <u>1</u>      |                             |  |  |  |  |  |  |
| Size of Evaluation Area: 14.9 (acres)                |                                                        |                             |  |  |  |  |  |  |
| Land use surrounding wetland:                        |                                                        |                             |  |  |  |  |  |  |
| Agriculture (grazing),US Hwy 2                       |                                                        |                             |  |  |  |  |  |  |
|                                                      |                                                        |                             |  |  |  |  |  |  |

#### HYDROLOGY

Surface Water Source: Spring creek flood event, groundwater, surface runoff and precip.

Inundation: \_\_\_\_\_ Average Depth: \_\_\_\_\_ 2 (ft) Range of Depths: \_\_\_\_\_ 0-3.0 (ft)

Percent of assessment area under inundation: <u>50 %</u>

Depth at emergent vegetation-open water boundary: \_\_\_\_\_ 0.8 (ft)

If assessment area is not inundated then are the soils saturated within 12 inches of surface: Yes

Other evidence of hydrology on the site (ex. - drift lines, erosion, stained vegetation, etc:

Surface soil cracks, saturation, drain patterns, algal mats, drift & sediment deposits, FAC-neutral vegetation, aquatic invertebrates

#### **Groundwater Monitoring Wells**

Record depth of water surface below ground surface, in feet.

Well ID Water Surface Depth (ft)

No Wells

Additional Activities Checklist:

Map emergent vegetation-open water boundary on aerial photograph.

Observe extent of surface water during each site visit and look for evidence of past surface water

elevations (drift lines, erosion, vegetation staining, etc.)

Use GPS to survey groundwater monitoring well locations, if present.

#### Hydrology Notes:

Constructed cells inundated. Drain patterns between constructed cells, obvious signs of surface water drainage into cells and through culvert under US Hwy 2.

#### **VEGETATION COMMUNITIES**

# Site \_\_\_\_\_Dodson-East

(Cover Class Codes  $0 = < 1\%, \ 1 = 1\text{-}5\%, \ 2 = 6\text{-}10\%, \ 3 = 11\text{-}20\%, \ 4 = 21\text{-}50\%$  , 5 = >50% ) \* Indicates accepted spp name not on '88 list.

#### Community # <u>1</u> Community Type: <u>Elymus sp. /</u>

| Species                 | Cover class | Species                 | Cover class |
|-------------------------|-------------|-------------------------|-------------|
| Agropyron cristatum     | 3           | Alopecurus pratensis    | 1           |
| Bassia scoparia         | 1           | Bromus inermis          | 1           |
| Elaeagnus angustifolia  | 1           | Elymus canadensis       | 1           |
| Elymus repens           | 3           | Elymus trachycaulus     | 1           |
| Grindelia squarrosa     | 2           | Hordeum jubatum         | 1           |
| Lactuca serriola        | 1           | Lepidium perfoliatum    | 0           |
| Pascopyrum smithii      | 2           | Puccinellia nuttalliana | 1           |
| Sarcobatus vermiculatus | 1           | Thlaspi arvense         | 0           |
| •                       |             |                         |             |

#### Comments:

| Community # <u>2</u> Co  | mmunity Type: <u>S</u> | choenoplectus spp. /     | Acres:      | <u>0.84</u> |
|--------------------------|------------------------|--------------------------|-------------|-------------|
| Species                  | Cover class            | Species                  | Cover class |             |
| Algae, green             | 0                      | Alisma triviale          | 1           |             |
| Avena fatua              | 0                      | Bare Ground              | 3           |             |
| Eleocharis palustris     | 1                      | Elymus cinereus          | 0           |             |
| Festuca pratensis        | 1                      | Glycyrrhiza lepidota     | 0           |             |
| Hordeum jubatum          | 2                      | Populus deltoides        | 0           |             |
| Rumex crispus            | 1                      | Schoenoplectus acutus    | 2           |             |
| Schoenoplectus maritimus | 4                      | Scutellaria galericulata | 0           |             |

Comments:

Acres: <u>5.51</u>

| Community # | <u>3</u> | Community Type: | Puccinellia nuttalliana / |
|-------------|----------|-----------------|---------------------------|
|-------------|----------|-----------------|---------------------------|

#### **Species Cover class Species Cover class** Agropyron cristatum 0 Asclepias speciosa 0 0 0 Avena fatua Bassia scoparia Bromus inermis 0 Chenopodium album 0 Elymus canadensis 0 Elymus cinereus 0 Elymus repens 0 Elymus trachycaulus 1 Festuca pratensis 0 Grindelia squarrosa 1 Hordeum jubatum 1 Lactuca serriola 1 Melilotus officinalis Lepidium perfoliatum 0 1 Pascopyrum smithii 0 Puccinellia nuttalliana 5 Rumex crispus 1 Schoenoplectus maritimus 0 Sonchus arvensis 1 Spartina pectinata 0 Suaeda calceoliformis 0

#### Comments:

Community # <u>4</u> Community Type: <u>Alopecurus pratensis /</u>

Acres: <u>0.68</u>

Acres:

1.68

| Species               | Cover class | Species                  | Cover class |
|-----------------------|-------------|--------------------------|-------------|
| Alopecurus pratensis  | 5           | Asclepias speciosa       | 0           |
| Carex vulpinoidea     | 0           | Elaeagnus angustifolia   | 1           |
| Elymus trachycaulus   | 1           | Glycyrrhiza lepidota     | 0           |
| Lemna minor           | 1           | Puccinellia nuttalliana  | 1           |
| Schoenoplectus acutus | 1           | Schoenoplectus maritimus | 1           |
| Solidago canadensis   | 1           | Sonchus arvensis         | 0           |
| Spartina pectinata    | 1           | Symphoricarpos albus     | 1           |
| Typha latifolia       | 2           |                          |             |

#### Comments:

| Community # | <u>5</u> | Community Type: | Alisma triviale / Schoenoplectus spp. | Acres: | <u>3.86</u> |
|-------------|----------|-----------------|---------------------------------------|--------|-------------|
|-------------|----------|-----------------|---------------------------------------|--------|-------------|

| Species                  | Cover class | Species               | Cover class |
|--------------------------|-------------|-----------------------|-------------|
| Algae, green             | 1           | Alisma triviale       | 4           |
| Aquatic macrophytes      | 4           | Open Water            | 5           |
| Puccinellia nuttalliana  | 0           | Schoenoplectus acutus | 2           |
| Schoenoplectus maritimus | 2           | Spartina pectinata    | 1           |
| Typha latifolia          | 2           |                       |             |

Comments:

| Community # <u>6</u> C | ommunity Type: A | quatic macrophytes /     | Acres:      | <u>2.36</u> |
|------------------------|------------------|--------------------------|-------------|-------------|
| Species                | Cover class      | Species                  | Cover class |             |
| Algae, green           | 2                | Alisma triviale          | 1           |             |
| Aquatic macrophytes    | 4                | Open Water               | 5           |             |
| Schoenoplectus acutus  | 0                | Schoenoplectus maritimus | 1           |             |

#### Comments:

# Total Vegetation Community Acreage

(Note: some area within the project bounds may be open water or other non-vegetative ground cover.)

14.93

# **VEGETATION TRANSECTS**

| Dodson-East             |     | Da              | te: 8/15/2012 8           | :33:25 AM   |
|-------------------------|-----|-----------------|---------------------------|-------------|
| Transect Number:        | 1   | _ Compass Di    | rection from Start: 22    | 25          |
| Interval Data:          |     |                 |                           |             |
| Ending Station          | 72  | Community Type: | Puccinellia nuttalliana / |             |
| Species                 |     | Cover class     | Species                   | Cover class |
| Agropyron cristatum     |     | 1               | Avena fatua               | 1           |
| Chenopodium album       |     | 0               | Elymus cinereus           | 0           |
| Elymus trachycaulus     |     | 1               | Festuca pratensis         | 1           |
| Hordeum jubatum         |     | 2               | Lepidium perfoliatum      | 1           |
| Puccinellia nuttalliana |     | 5               |                           |             |
| Ending Station          | 79  | Community Type: | Schoenoplectus spp. /     |             |
| Species                 |     | Cover class     | Species                   | Cover class |
| Bare Ground             |     | 5               | Hordeum jubatum           | 1           |
| Schoenoplectus maritim  | us  | 1               |                           |             |
| Ending Station          | 231 | Community Type: | Aquatic macrophytes /     |             |
| Species                 |     | Cover class     | Species                   | Cover class |
| Alisma triviale         |     | 0               | Aquatic macrophytes       | 4           |
| Open Water              |     | 5               |                           |             |
| Ending Station          | 237 | Community Type: | Schoenoplectus spp. /     |             |
| Species                 |     | Cover class     | Species                   | Cover class |
| Alisma triviale         |     | 1               | Bare Ground               | 5           |
| Hordeum jubatum         |     | 1               | Schoenoplectus maritimus  | 2           |
| Ending Station          | 244 | Community Type: | Puccinellia nuttalliana / |             |
| Species                 |     | Cover class     | Species                   | Cover class |
| Elymus canadensis       |     | 1               | Elymus repens             | 1           |
|                         |     | 2               | Lactuca serriola          | 1           |
| Hordeum jubatum         |     | 2               | Lactuca serriola          | I           |

Transect Notes:

| Transect Number:       2       Compass Direction from Start:       195 |     |                 |                                |             |
|------------------------------------------------------------------------|-----|-----------------|--------------------------------|-------------|
| Interval Data:                                                         |     |                 |                                |             |
| Ending Station                                                         | 3   | Community Type: | Alopecurus pratensis /         |             |
| Species                                                                |     | Cover class     | Species                        | Cover class |
| Alopecurus pratensis                                                   |     | 5               | Sonchus arvensis               | 1           |
| Spartina pectinata                                                     |     | 1               |                                |             |
| Ending Station                                                         | 10  | Community Type: | Schoenoplectus spp. /          |             |
| Species                                                                |     | Cover class     | Species                        | Cover class |
| Algae, green                                                           |     | 1               | Alisma triviale                | 2           |
| Bare Ground                                                            |     | 4               | Schoenoplectus maritimus       | 2           |
| Ending Station                                                         | 203 | Community Type: | Alisma triviale / Schoenoplect | tus spp.    |
| Species                                                                |     | Cover class     | Species                        | Cover class |
| Algae, green                                                           |     | 2               | Alisma triviale                | 3           |
| Aquatic macrophytes                                                    |     | 4               | Open Water                     | 5           |
| Schoenoplectus maritimus                                               | 6   | 1               |                                |             |
| Ending Station                                                         | 205 | Community Type: | Schoenoplectus spp. /          |             |
| Species                                                                |     | Cover class     | Species                        | Cover class |
| Algae, green                                                           |     | 1               | Alisma triviale                | 2           |
| Bare Ground                                                            |     | 4               | Schoenoplectus maritimus       | 4           |
| Ending Station                                                         | 207 | Community Type: | Puccinellia nuttalliana /      |             |
| Species                                                                |     | Cover class     | Species                        | Cover class |
| Hordeum jubatum                                                        |     | 1               | Lactuca serriola               | 2           |
| Melilotus officinalis                                                  |     | 1               | Puccinellia nuttalliana        | 4           |
| Schoenoplectus maritimus                                               | 6   | 0               |                                |             |

Transect Notes:

#### PLANTED WOODY VEGETATION SURVIVAL

Dodson-East

#### Comments

Site vegetated with seeded and salvaged wetlands communities. No woody species planted.

#### Dodson-East

#### WILDLIFE

#### Birds

| <u>No</u> |        |
|-----------|--------|
|           |        |
|           |        |
| No        |        |
| No        |        |
| ?         | <br>No |

Nesting Structure Comments:

| Species              | #Observed | Behavior | Habitat            |
|----------------------|-----------|----------|--------------------|
| American Robin       | 2         | L        | UP, WM             |
| Bank Swallow         | 15        | F        | OW, UP, WM         |
| Killdeer             | 2         | F        | AB, OW, UP, WM, US |
| Mallard              | 3         | L        | OW                 |
| Red-winged Blackbird | 5         | L        | MA, UP             |
| Bird Comments        |           |          |                    |

#### BEHAVIOR CODES

**BP** = One of a <u>breeding pair</u> **BD** = Breeding display **F** = Foraging **FO** = Flyover **L** = Loafing **N** = Nesting

#### HABITAT CODES

AB = Aquatic bed SS = Scrub/Shrub FO = Forested UP = Upland buffer I = Island

WM = Wet meadow MA = Marsh US = Unconsolidated shore MF = Mud Flat OW = Open Water

# Mammals and Herptiles

| Species               | # Observed | Tracks | Scat | Burrows | Comments |
|-----------------------|------------|--------|------|---------|----------|
| Deer Sp.              |            | Yes    | No   | No      |          |
| Northern Leopard Frog | 2          | No     | No   | No      |          |
| Raccoon               |            | Yes    | No   | No      |          |
| Wildlife Comments:    |            |        |      |         |          |

#### PHOTOGRAPHS

Take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

#### Photograph Checklist:

One photograph for each of the four cardinal directions surrounding the wetland.

At least one photograph showing upland use surrounding the wetland. If more than one upland exists then take additional photographs.

- At least one photograph showing the buffer surrounding the wetland.
- One photograph from each end of the vegetation transect, showing the transect.

| Photo # | Latitude        | Longitude       | Bearing | Description |
|---------|-----------------|-----------------|---------|-------------|
| 9752    | 48.381931       | -108.170845     | 225     | T-1, start  |
| 9757-61 | 48.381149       | -108.169716     | 270     | PP-2        |
| 9762    | 48.381371       | -108.171371     | 24      | T-1, end    |
| 9764-68 | 48.381828       | -108.172684     | 45      | PP-3        |
| 9769-73 | 48.382366       | -108.172195     | 135     | PP-4        |
| 9774-78 | 48.382542       | -108.172729     | 225     | PP-6        |
| 9780-85 | 48.382042       | -108.173195     | 315     | PP-5        |
| 9798    | 48.382973       | -108.174911     | 195     | T-2, start  |
| 9800-05 | 48.383656       | -108.178825     | 90      | PP-7        |
| 9809    | 48.382576       | -108.175026     | 15      | T-2, end    |
| 9810    | 48.381991666667 | -108.17116      |         | DE-1        |
| 9811    | 48.382281666667 | -108.1726066667 | ,       | DE-2        |
| 9812    | 48.381996666667 | -108.1727583333 | 5       | DE-3        |
| 9813-18 | 48.381226       | -108.168152     | 270     | PP-1        |
|         |                 |                 |         |             |

**Comments:** 

Dodson-East

# ADDITIONAL ITEMS CHECKLIST

# Hydrology

Map emergent vegetation/open water boundary on aerial photos.

Observe extent of surface water. Look for evidence of past surface water elevations (e.g. drift lines, vegetation staining, erosion, etc).

### Photos

- One photo from the wetland toward each of the four cardinal directions
- One photo showing upland use surrounding the wetland.
- One photo showing the buffer around the wetland
- One photo from each end of each vegetation transect, toward the transect

# Vegetation

Map vegetation community boundaries

Complete Vegetation Transects

# Soils

✓ Assess soils

# Wetland Delineations

Delineate wetlands according to applicable USACE protocol (1987 form or Supplement)

Delineate wetland – upland boundary onto aerial photograph.

Wetland Delineation Comments

# **Functional Assessments**

Complete and attach full MDT Montana Wetland Assessment Method field forms.

Functional Assessment Comments:

### Maintenance

Were man-made nesting structure installed at this site? No

If yes, do they need to be repaired?

If yes, describe the problems below and indicate if any actions were taken to remedy the problems

Were man-made structures built or installed to impound water or control water flow

into or out of the wetland? No

If yes, are the structures in need of repair?

If yes, describe the problems below.

# WETLAND DETERMINATION DATA FORM – Great Plains Region

| Project/Site: Dodson East                                        |                     | City/County: Phillips                 |                                        | Sampling Date:     | 8/15/2012       |
|------------------------------------------------------------------|---------------------|---------------------------------------|----------------------------------------|--------------------|-----------------|
|                                                                  |                     |                                       | <sub>State:</sub> MT                   | Sampling Point:    |                 |
|                                                                  |                     | Section, Township, Ra                 |                                        | 30N 27E            |                 |
|                                                                  |                     | Local relief (concave,                |                                        |                    | oe (%): 0       |
| Subregion (LRR): LRR F                                           |                     |                                       |                                        |                    |                 |
| Soil Map Unit Name: Havre Loam                                   |                     |                                       | NWI class                              |                    |                 |
| Are climatic / hydrologic conditions on the site typical for thi | s time of v         | ear? Yes 🗹 No                         | (If no, explain ir                     | n Remarks.)        |                 |
| Are Vegetation, Soil, or Hydrology s                             | -                   |                                       | Normal Circumstances                   |                    | Í <sub>No</sub> |
| Are Vegetation, Soil, or Hydrology r                             |                     |                                       | eded, explain any ans                  |                    |                 |
|                                                                  |                     |                                       |                                        |                    |                 |
| SUMMARY OF FINDINGS – Attach site map                            | snowing             | g sampling point i                    | ocations, transec                      | sts, important fea | atures, etc.    |
| Hydrophytic Vegetation Present? Yes 🗾 N                          | lo                  | Is the Sampled                        | Area                                   |                    |                 |
| Hydric Soil Present? Yes N                                       | lo _ 🗹              |                                       | nd? Yes_                               |                    |                 |
| Wetland Hydrology Present? Yes N                                 | lo_🗹                | within a wetai                        | iu: 163_                               | NO                 |                 |
| surface.<br>VEGETATION – Use scientific names of plan            |                     |                                       |                                        |                    |                 |
| Tree Stratum (Plot size:)                                        | Absolute<br>% Cover | Dominant Indicator<br>Species? Status | Dominance Test we                      |                    |                 |
| 1                                                                |                     |                                       | Number of Dominan<br>That Are OBL, FAC |                    |                 |
| 2                                                                |                     |                                       | (excluding FAC-):                      |                    | 1(A)            |
| 3                                                                | ~                   |                                       | Total Number of Dor                    | minant             |                 |
| 4                                                                | ~                   |                                       | Species Across All S                   |                    | 3 (B)           |
|                                                                  |                     | 0 = Total Cover                       | Percent of Dominant                    |                    | 333             |
| Sapling/Shrub Stratum (Plot size:)                               | C                   |                                       | That Are OBL, FAC                      | N, or FAC:         | (A/B)           |
| 1                                                                |                     |                                       | Prevalence Index w                     | vorksheet:         |                 |
| 2                                                                | ~                   |                                       | Total % Cover c                        | of: Multiply       | / by:           |
| 3                                                                |                     |                                       | OBL species                            | 60 x 1 =           | 60              |
| 4<br>5.                                                          | ~                   |                                       | FACW species                           | 0 x 2 =            | 0               |
|                                                                  |                     | <u> </u>                              | FAC species                            | 0 x 3 =            | 0               |
| Herb Stratum (Plot size: 5ft )                                   |                     |                                       | FACU species                           | <u>20</u> x 4 =    | 80              |

|                                              | 0 =   | Total Co     | ver  |                                                                |
|----------------------------------------------|-------|--------------|------|----------------------------------------------------------------|
| <u>Herb Stratum</u> (Plot size: <u>5ft</u> ) |       |              |      | FACU species x 4 = 80                                          |
| 1. Puccinellia nuttalliana                   | 60    |              | OBL  | UPL species 20 x 5 =100                                        |
| 2. Agropyron cristatum                       | 20    | $\checkmark$ | UPL  | Column Totals: 100 (A) 240 (B)                                 |
| 3. Elymus trachycaulus                       | 20    | $\checkmark$ | FACU | 2.4                                                            |
| 4                                            | 0     |              |      | Prevalence Index = B/A =                                       |
| 5                                            | 0     |              |      | Hydrophytic Vegetation Indicators:                             |
| 6                                            | 0     |              |      | 1 - Rapid Test for Hydrophytic Vegetation                      |
|                                              | 0     |              |      | 2 - Dominance Test is >50%                                     |
| 7                                            | 0     |              |      | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                      |
| 8                                            |       |              |      | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting |
| 9                                            |       |              |      | data in Remarks or on a separate sheet)                        |
| 10                                           |       |              |      | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)      |
|                                              | 100 = | Total Co     | ver  |                                                                |
| Woody Vine Stratum (Plot size:)              |       | _            |      | Indicators of hydric soil and wetland hydrology must           |
| 1                                            | 0     |              |      | be present, unless disturbed or problematic.                   |
| 2                                            | 0     |              |      | Hydrophytic                                                    |
|                                              | 0 =   | Total Co     | ver  | Vegetation                                                     |
| % Bare Ground in Herb Stratum0               |       |              |      | Present? Yes 🗹 No                                              |
| Remarks:                                     |       |              |      | ·                                                              |

SOIL

| Depth                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix                                                                                                                                        |                                |                  |                                                                                                                  | x Feature                                                                                                                                                        |                                                                                                 |                    | _                                                                                                           |                                                                                                                                                                                                                                            |                                                                                                       |                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| (inches)                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          | or (moist)                                                                                                                                    | %                              | Colo             | r (moist)                                                                                                        | %                                                                                                                                                                | _Type <sup>1</sup>                                                                              | Loc <sup>2</sup>   |                                                                                                             | R                                                                                                                                                                                                                                          | Remarks                                                                                               |                                                             |
| 0-6                                                                                                                                                                                                           | 10YR                                                                                                                                                                                                                                                                                                                                                                                                     | 4/3                                                                                                                                           | 100                            |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | Clay                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                       |                                                             |
| 6-12                                                                                                                                                                                                          | 10YR                                                                                                                                                                                                                                                                                                                                                                                                     | 4/2                                                                                                                                           | 95                             | D                | М                                                                                                                | 10YR                                                                                                                                                             | 6/1                                                                                             | 5                  | Clay                                                                                                        | Depl likely so                                                                                                                                                                                                                             | dium conc                                                                                             | :                                                           |
| 12-20                                                                                                                                                                                                         | 10YR                                                                                                                                                                                                                                                                                                                                                                                                     | 4/3                                                                                                                                           | 100                            |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | Sandy Clay                                                                                                  | Soil moist aro                                                                                                                                                                                                                             | ound 14in                                                                                             |                                                             |
| Туре: С=(                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | tion, D=Dep                                                                                                                                   |                                |                  | d Matrix, C                                                                                                      | <br><br><br>S=Covered                                                                                                                                            |                                                                                                 |                    | Grains. <sup>2</sup> Loc                                                                                    |                                                                                                                                                                                                                                            | : Lining, M                                                                                           | =Matrix.                                                    |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                          | rs: (Applic                                                                                                                                   |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    |                                                                                                             | for Problemation                                                                                                                                                                                                                           |                                                                                                       |                                                             |
| Black I       Hydrog       Stratifie       1 cm M       Deplet       Thick I       Sandy       2.5 cm                                                                                                         | Epipedon (<br>Histic (A3)<br>gen Sulfide<br>ed Layers<br>Muck (A9)<br>ed Below I<br>Dark Surfa<br>Mucky Mi<br>Mucky Pe                                                                                                                                                                                                                                                                                   | e (A4)<br>(A5) ( <b>LRR F</b><br>( <b>LRR F, G, F</b><br>Dark Surfaco<br>ce (A12)                                                             | H)<br>e (A11)<br>S2) (LRR (    | G, H)            | Sandy  <br>Stripped<br>Loamy<br>Deplete<br>Redox<br>Deplete<br>Redox<br>High Pl                                  | Gleyed Ma<br>Redox (S5<br>d Matrix (S<br>Mucky Mir<br>Gleyed Ma<br>ad Matrix (f<br>Dark Surfa<br>ad Dark Su<br>Depression<br>ains Depre<br><b>.RA 72 &amp; 7</b> | )<br>66)<br>heral (F1)<br>atrix (F2)<br>F3)<br>hece (F6)<br>rface (F7)<br>hs (F8)<br>essions (F | 16)                | Coast<br>Dark S<br>High F<br>(LF<br>Reduce<br>Red P<br>Very S<br>Other<br><sup>3</sup> Indicators<br>wetlan | Muck (A9) (LRR I<br>Prairie Redox (A<br>Surface (S7) (LR<br>Plains Depression<br>R H outside of<br>ed Vertic (F18)<br>arent Material (T<br>shallow Dark Sur<br>(Explain in Rema<br>of hydrophytic v<br>d hydrology mus<br>disturbed or pro | A16) (LRR<br>RR G)<br>ns (F16)<br>MLRA 72<br>F2)<br>rface (TF1:<br>arks)<br>regetation<br>st be prese | & 73)<br>2)<br>and                                          |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | 1                                                                                                           |                                                                                                                                                                                                                                            |                                                                                                       |                                                             |
| Restrictive                                                                                                                                                                                                   | e Layer (if                                                                                                                                                                                                                                                                                                                                                                                              | present):                                                                                                                                     |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    |                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                       |                                                             |
| Restrictive                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | present):                                                                                                                                     |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    |                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                       | _                                                           |
| ⊺ype:<br>Depth (i                                                                                                                                                                                             | nches):                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | Hydric Soil                                                                                                 | Present? Ye                                                                                                                                                                                                                                | s                                                                                                     | No 🗹                                                        |
| Type:<br>Depth (i<br>Remarks: <                                                                                                                                                                               | nches):<br>Soil does                                                                                                                                                                                                                                                                                                                                                                                     | present):<br>not qualify                                                                                                                      | / hydric.                      |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | Hydric Soil                                                                                                 | Present? Ye                                                                                                                                                                                                                                | 's                                                                                                    | No 🗹                                                        |
| Type:<br>Depth (i<br>Remarks: {<br><b>YDROL(</b>                                                                                                                                                              | nches):<br>Soil does<br>DGY                                                                                                                                                                                                                                                                                                                                                                              | not qualify                                                                                                                                   | / hydric.                      |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    | Hydric Soil                                                                                                 | Present? Ye                                                                                                                                                                                                                                | S                                                                                                     | No <u></u>                                                  |
| Type:<br>Depth (i<br>Remarks: {<br>YDROLC                                                                                                                                                                     | nches):<br>Soil does<br>DGY<br>ydrology                                                                                                                                                                                                                                                                                                                                                                  | not qualify                                                                                                                                   |                                |                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                 |                    |                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                       |                                                             |
| Type:<br>Depth (i<br>Remarks: (<br>YDROLO<br>Wetland H<br>Primary Ind                                                                                                                                         | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m                                                                                                                                                                                                                                                                                                                                                   | not qualify<br>Indicators:                                                                                                                    |                                | d; check         |                                                                                                                  | ••                                                                                                                                                               |                                                                                                 |                    | <u>Seconda</u>                                                                                              | ary Indicators (m                                                                                                                                                                                                                          | inimum of                                                                                             |                                                             |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>                                                                                                                                     | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A                                                                                                                                                                                                                                                                                                                                     | not qualify<br>Indicators:<br>inimum of o                                                                                                     |                                | d; check         | Salt Crust                                                                                                       | (B11)                                                                                                                                                            |                                                                                                 |                    | <u>Seconda</u>                                                                                              | ary Indicators (m<br>face Soil Cracks                                                                                                                                                                                                      | uinimum of<br>(B6)                                                                                    | two required                                                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>High W                                                                                                                    | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table                                                                                                                                                                                                                                                                                                                      | not qualify<br>Indicators:<br>inimum of o                                                                                                     |                                |                  | Salt Crust<br>Aquatic In                                                                                         | (B11)<br>vertebrate                                                                                                                                              |                                                                                                 |                    | Seconda                                                                                                     | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated                                                                                                                                                                                   | inimum of<br>(B6)<br>Concave                                                                          | two required                                                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surfact<br>High W<br>Satura                                                                                                          | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)                                                                                                                                                                                                                                                                                                         | not qualify<br>Indicators:<br>ninimum of o                                                                                                    |                                | d; check         | Salt Crust<br>Aquatic In<br>Hydrogen                                                                             | (B11)<br>vertebrate<br>Sulfide Od                                                                                                                                | dor (C1)                                                                                        |                    | Seconda<br>Suri<br>Spa<br>Dra                                                                               | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (F                                                                                                                                                              | inimum of<br>(B6)<br>Concave 5<br>B10)                                                                | two required<br>Surface (B8)                                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surfact<br>High W<br>Satura<br>Water                                                                                                 | nches):<br>Soil does<br>OGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)<br>Marks (B1                                                                                                                                                                                                                                                                                            | not qualify<br>Indicators:<br>ininimum of o<br>(A1)<br>e (A2)                                                                                 |                                | d <u>; check</u> | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso                                                                | (B11)<br>vertebrate<br>Sulfide Oo<br>on Water T                                                                                                                  | dor (C1)<br>able (C2)                                                                           |                    | Seconda<br>Sur<br>Sur<br>Dra<br>Oxic                                                                        | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (f<br>dized Rhizosphe                                                                                                                                           | inimum of<br>(B6)<br>Concave 5<br>B10)                                                                | two required<br>Surface (B8)                                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>U Surface<br>Satura<br>Satura<br>Water<br>Sedime                                                                          | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos                                                                                                                                                                                                                                                                               | not qualify<br>Indicators:<br>ininimum of o<br>(A1)<br>e (A2)<br>)<br>its (B2)                                                                |                                | d <u>: check</u> | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized I                                                  | (B11)<br>vertebrate<br>Sulfide Oo<br>on Water T<br>Rhizosphe                                                                                                     | dor (C1)<br>able (C2)                                                                           |                    | Seconda<br>Sur<br>Spa<br>Dra<br>Oxio<br>s (C3) (W                                                           | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (f<br>dized Rhizosphe<br>r <b>here tilled</b> )                                                                                                                 | inimum of<br>(B6)<br>Concave 3<br>B10)<br>ares on Livi                                                | two required<br>Surface (B8)                                |
| Type:<br>Depth (i<br>Remarks: (<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>J Surface<br>J High W<br>Satura<br>Satura<br>Sedime<br>Drift De                                                           | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>Vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B3                                                                                                                                                                                                                                                                | Indicators:<br>inimum of o<br>v1)<br>e (A2)<br>)<br>its (B2)<br>3)                                                                            |                                | d; check         | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where                                        | (B11)<br>vertebrate<br>Sulfide Oc<br>on Water T<br>Rhizosphe<br>not tilled)                                                                                      | dor (C1)<br>able (C2)<br>res on Liv                                                             | ing Root           | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (w<br>Cra                                                   | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (f<br>dized Rhizosphe<br>r <b>here tilled</b> )<br>yfish Burrows (C                                                                                             | inimum of<br>(B6)<br>Concave :<br>B10)<br>tres on Livi                                                | two required<br>Surface (B8)<br>ing Roots (C                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>J Surface<br>J Satura<br>Satura<br>Sedime<br>J Sedime<br>Algal M                                                          | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>Vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B3<br>Aat or Crus                                                                                                                                                                                                                                                 | Indicators:<br>inimum of o<br>(1)<br>(A2)<br>)<br>its (B2)<br>3)<br>st (B4)                                                                   |                                | d; check         | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence                            | (B11)<br>vertebrate<br>Sulfide Oo<br>on Water T<br>Rhizosphe<br>not tilled)<br>of Reduce                                                                         | dor (C1)<br>Table (C2)<br>res on Liv                                                            | ing Root           | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (w<br>Cra<br>Satu                                           | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or                                                                        | inimum of<br>(B6)<br>Concave :<br>B10)<br>res on Livi<br>:8)<br>n Aerial Im                           | two required<br>Surface (B8)<br>ing Roots (C3               |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>High W<br>Saturat<br>Sedime<br>Sedime<br>Algal M<br>Iron De                                                               | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B2<br>vat or Crus<br>eposits (B2                                                                                                                                                                                                                                  | Indicators:<br>inimum of o<br>(A1)<br>(A2)<br>its (B2)<br>3)<br>st (B4)<br>5)                                                                 | ne require                     |                  | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Sease<br>Oxidized F<br>(where<br>Presence<br>Thin Muck               | (B11)<br>vertebrate<br>Sulfide Oc<br>on Water T<br>Rhizosphe<br>not tilled)<br>of Reduce<br>& Surface (                                                          | dor (C1)<br>Table (C2)<br>res on Liv<br>d Iron (C4<br>C7)                                       | ing Root           | <u>Seconda</u><br>Spa<br>Dra<br>Oxio<br>s (C3) (W<br>Cra<br>Satu<br>Satu<br>Geo                             | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or<br>omorphic Positior                                                   | inimum of<br>(B6)<br>Concave :<br>B10)<br>ares on Livi<br>(R)<br>n Aerial Im<br>n (D2)                | two required<br>Surface (B8)<br>ing Roots (C                |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>High W<br>Satura<br>Water<br>Satura<br>Usedime<br>Algal M<br>Iron De<br>Inunda                                            | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B3<br>dat or Crus<br>eposits (B3<br>tion Visible                                                                                                                                                                                                                  | not qualify<br>Indicators:<br>ininimum of o<br>(A1)<br>e (A2)<br>)<br>its (B2)<br>(B4)<br>(B4)<br>(B4)<br>(B4)<br>(B4)<br>(B4)<br>(B4)<br>(B4 | ne require                     |                  | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Sease<br>Oxidized F<br>(where<br>Presence<br>Thin Muck               | (B11)<br>vertebrate<br>Sulfide Oo<br>on Water T<br>Rhizosphe<br>not tilled)<br>of Reduce                                                                         | dor (C1)<br>Table (C2)<br>res on Liv<br>d Iron (C4<br>C7)                                       | ing Root           | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (W<br>Cra<br>Satu<br>Satu<br>Satu<br>FAC                    | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or<br>omorphic Positior<br>C-Neutral Test (D                              | inimum of<br>(B6)<br>Concave 3<br>B10)<br>ares on Livi<br>28)<br>n Aerial Im<br>n (D2)<br>D5)         | two required<br>Surface (B8)<br>ing Roots (C<br>nagery (C9) |
| Type:<br>Depth (i<br>Remarks: {<br>YDROLO<br>Wetland H<br>Primary Ind<br>Surface<br>Satura<br>Water<br>Satura<br>Water<br>Drift De<br>Algal M<br>Iron De<br>Inunda<br>Water-                                  | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>Vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B2<br>Mat or Crus<br>eposits (B2<br>tion Visible<br>Stained Le                                                                                                                                                                                                    | not qualify<br>Indicators:<br>ininimum of o<br>(A1)<br>e (A2)<br>)<br>its (B2)<br>3)<br>st (B4)<br>5)<br>e on Aerial In<br>eaves (B9)         | ne require                     |                  | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Sease<br>Oxidized F<br>(where<br>Presence<br>Thin Muck               | (B11)<br>vertebrate<br>Sulfide Oc<br>on Water T<br>Rhizosphe<br>not tilled)<br>of Reduce<br>& Surface (                                                          | dor (C1)<br>Table (C2)<br>res on Liv<br>d Iron (C4<br>C7)                                       | ing Root           | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (W<br>Cra<br>Satu<br>Satu<br>Satu<br>Cra<br>FAC             | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or<br>omorphic Positior                                                   | inimum of<br>(B6)<br>Concave 3<br>B10)<br>ares on Livi<br>28)<br>n Aerial Im<br>n (D2)<br>D5)         | two required<br>Surface (B8)<br>ing Roots (C<br>nagery (C9) |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>J Surface<br>Satura<br>Satura<br>Sedime<br>J Sedime<br>J Drift De<br>Algal M<br>Iron De<br>Inunda<br>Water-<br>Field Obse | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B3<br>vat or Crus<br>eposits (B3<br>vat or Crus | not qualify<br>Indicators:<br>ininimum of o<br>(A1)<br>e (A2)<br>)<br>its (B2)<br>3)<br>st (B4)<br>5)<br>e on Aerial In<br>eaves (B9)         | ne require<br>magery (B        |                  | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seasc<br>Oxidized F<br>(where<br>Presence<br>Thin Muck<br>Other (Exp | (B11)<br>vertebrate<br>Sulfide Oc<br>on Water T<br>Rhizosphe<br><b>not tilled</b> )<br>of Reduce<br>c Surface (<br>plain in Re                                   | dor (C1)<br>rable (C2)<br>res on Liv<br>d Iron (C4<br>C7)<br>marks)                             | ing Root           | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (W<br>Cra<br>Satu<br>Satu<br>Satu<br>Cra<br>FAC             | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or<br>omorphic Positior<br>C-Neutral Test (D                              | inimum of<br>(B6)<br>Concave 3<br>B10)<br>ares on Livi<br>28)<br>n Aerial Im<br>n (D2)<br>D5)         | two required<br>Surface (B8)<br>ing Roots (C<br>nagery (C9) |
| Type:<br>Depth (i<br>Remarks: {<br>YDROL(<br>Wetland H<br>Primary Ind<br>Surface<br>High W<br>Satura<br>Water<br>Sedime<br>Drift De<br>Algal M<br>Iron De<br>Inunda                                           | nches):<br>Soil does<br>DGY<br>ydrology<br>licators (m<br>e Water (A<br>Vater Table<br>tion (A3)<br>Marks (B1<br>ent Depos<br>eposits (B3<br>Mat or Crus<br>eposits (B3<br>dat or Crus<br>eposits (B3<br>dat or Crus<br>eposits (B4<br>tion Visible<br>Stained Le<br>ervations:<br>ater Prese                                                                                                            | not qualify<br>Indicators:<br>inimum of o<br>(1)<br>e (A2)<br>)<br>its (B2)<br>3)<br>st (B4)<br>5)<br>e on Aerial I<br>eaves (B9)<br>nt? Y    | ne required<br>magery (B<br>es | 7)<br>No         | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Sease<br>Oxidized F<br>(where<br>Presence<br>Thin Muck               | (B11)<br>vertebrate<br>Sulfide Oc<br>on Water T<br>Rhizosphe<br><b>not tilled</b> )<br>of Reduce<br>c Surface (<br>plain in Re<br>ches):                         | dor (C1)<br>rable (C2)<br>res on Liv<br>d Iron (C4<br>C7)<br>marks)                             | ing Root<br> )<br> | Seconda<br>Suri<br>Spa<br>Dra<br>Oxio<br>s (C3) (W<br>Cra<br>Satu<br>Satu<br>Satu<br>Cra<br>FAC             | ary Indicators (m<br>face Soil Cracks<br>rsely Vegetated<br>inage Patterns (E<br>dized Rhizosphe<br><b>/here tilled</b> )<br>yfish Burrows (C<br>uration Visible or<br>omorphic Positior<br>C-Neutral Test (D                              | inimum of<br>(B6)<br>Concave 3<br>B10)<br>ares on Livi<br>28)<br>n Aerial Im<br>n (D2)<br>D5)         | two required<br>Surface (B8)<br>ing Roots (C<br>nagery (C9) |

Remarks: Suspect water table is within 2 ft. of ground surface during spring flows.

### WETLAND DETERMINATION DATA FORM – Great Plains Region

| Project/Site: Dodson East                                                                                                                                      | C                         | ity/County: Phillips                           |                                          | Sampling Date                    | 8/15/2012      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------|----------------------------------|----------------|
| Applicant/Owner: MDT                                                                                                                                           |                           |                                                | State: MT                                | Sampling Point                   | DE-2           |
| Investigator(s): B Sandefur                                                                                                                                    | s                         | ection, Township, Range:                       | 2                                        | N 27                             |                |
| Landform (hillslope, terrace, etc.): Swale                                                                                                                     | L                         | ocal relief (concave, convex                   | , none): <u>concave</u>                  | S                                | lope (%):0     |
| Subregion (LRR): LRR F                                                                                                                                         | .at:                      | 48.3822816666667 Long                          | -108.17260                               | 06666667 <sub>Da</sub>           | tum: WGS84     |
| Soil Map Unit Name: Havre Loam                                                                                                                                 |                           |                                                | NWI classific                            | ation:                           |                |
| Are climatic / hydrologic conditions on the site typical for this tim<br>Are Vegetation, Soil, or Hydrology signif<br>Are Vegetation, Soil, or Hydrology natur | ficantly di<br>rally prob | isturbed? Are "Norma<br>lematic? (If needed, o | l Circumstances" p<br>explain any answei | resent? Yes _<br>rs in Remarks.) |                |
| SUMMARY OF FINDINGS – Attach site map sho                                                                                                                      | Jwing s                   | sampling point locatio                         | ons, transects                           | , important                      | leatures, etc. |
| Hydrophytic Vegetation Present?       Yes No         Hydric Soil Present?       Yes No         Wetland Hydrology Present?       Yes No                         |                           | Is the Sampled Area within a Wetland?          | Yes 🗹                                    | No                               | _              |

Remarks: DP in alo pra com. Area characterized by shallow swale between excavated cells, drains area to north. Typha dominates at slightly lower elev.

# VEGETATION - Use scientific names of plants.

|                                    | Absolute Dominant Indicator    | Dominance Test worksheet:                                                                                                                                                                                                                                                                                  |
|------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size:)          | <u>% Cover Species? Status</u> | Number of Dominant Species                                                                                                                                                                                                                                                                                 |
| 1                                  |                                | That Are OBL, FACW, or FAC 1 (A)                                                                                                                                                                                                                                                                           |
| 2                                  |                                |                                                                                                                                                                                                                                                                                                            |
| 3                                  |                                | Total Number of Dominant                                                                                                                                                                                                                                                                                   |
| 4                                  | 0                              | Species Across All Strata: (B)                                                                                                                                                                                                                                                                             |
| Carling/Charle Conturn / Distaire  | 0 = Total Cover                | Percent of Dominant Species 1                                                                                                                                                                                                                                                                              |
| Sapling/Shrub Stratum (Plot size:) | 0                              | That Are OBL, FACW, or FAC: (A/B)                                                                                                                                                                                                                                                                          |
| 1                                  |                                | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                |
| 2                                  |                                | Total % Cover of:Multiply by:                                                                                                                                                                                                                                                                              |
| 3                                  |                                | OBL species $0 \times 1 = 0$                                                                                                                                                                                                                                                                               |
| 4                                  |                                | FACW species 90 x 2 = 180                                                                                                                                                                                                                                                                                  |
| 5                                  | ·                              | FAC species $0 \times 3 = 0$                                                                                                                                                                                                                                                                               |
| Herb Stratum (Plot size: 5ft)      | 0 = Total Cover                | FACU species $10 \times 4 = 40$                                                                                                                                                                                                                                                                            |
| 1. Elymus trachycaulus             | 10 🗌 FACU                      | $\begin{array}{c} \hline \\ UPL \text{ species} \\ \hline \\ \end{array} \begin{array}{c} 0 \\ x \\ 5 \\ \end{array} \begin{array}{c} \hline \\ x \\ 5 \\ \end{array} \begin{array}{c} 0 \\ x \\ 5 \\ \end{array} \begin{array}{c} 0 \\ x \\ 5 \\ \end{array} \begin{array}{c} 0 \\ x \\ 0 \\ \end{array}$ |
| 2 Alopecurus pratensis             | 90 <b>F</b> ACW                | Column Totals: 100 (A) 220 (B)                                                                                                                                                                                                                                                                             |
| •··                                | 0                              |                                                                                                                                                                                                                                                                                                            |
| 3                                  |                                | Prevalence Index = B/A =                                                                                                                                                                                                                                                                                   |
| 45                                 |                                | Hydrophytic Vegetation Indicators:                                                                                                                                                                                                                                                                         |
| 5                                  |                                | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                  |
| 67                                 |                                | 2 - Dominance Test is >50%                                                                                                                                                                                                                                                                                 |
| 7                                  |                                | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                                                                                                                                                                                                                  |
| 8                                  |                                | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                                                                                                                                             |
| 9                                  |                                | data in Remarks or on a separate sheet)                                                                                                                                                                                                                                                                    |
| 10                                 | 100 = Total Cover              | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                  |
| Woody Vine Stratum (Plot size: )   | = 18tal Cover                  | Indicators of hydric soil and wetland hydrology must                                                                                                                                                                                                                                                       |
| 1                                  | 0                              | be present, unless disturbed or problematic.                                                                                                                                                                                                                                                               |
| 2                                  | 0                              | Hydrophytic                                                                                                                                                                                                                                                                                                |
|                                    | 0 = Total Cover                | Vegetation                                                                                                                                                                                                                                                                                                 |
| % Bare Ground in Herb Stratum      |                                | Present? Yes Z No                                                                                                                                                                                                                                                                                          |

SOIL

| Profile Description: (Describe to the dep                               | th needed to docu                | ment the ind                   | licator o  | r confirm        | n the absence | of indicators.)                                  |
|-------------------------------------------------------------------------|----------------------------------|--------------------------------|------------|------------------|---------------|--------------------------------------------------|
| Depth Matrix                                                            |                                  | x Features                     |            |                  |               |                                                  |
| (inches) Color (moist) %                                                | Color (moist)                    |                                | Туре       | Loc <sup>2</sup> | Texture       | Remarks                                          |
| 0-12 10YR 4/2 95                                                        | C M                              | 10YR                           | 4/6        | 5 0              | Clay Loam     |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
| <sup>1</sup> Type: C=Concentration, D=Depletion, RM:                    |                                  |                                |            | Sand Gr          |               | cation: PL=Pore Lining, M=Matrix.                |
| Hydric Soil Indicators: (Applicable to all                              | LRRs, unless othe                | rwise noted.                   | .)         |                  | Indicators    | for Problematic Hydric Soils <sup>3</sup> :      |
| Histosol (A1)                                                           |                                  | Gleyed Matrix                  | x (S4)     |                  |               | Muck (A9) ( <b>LRR I, J</b> )                    |
| Histic Epipedon (A2)                                                    |                                  | Redox (S5)                     |            |                  |               | Prairie Redox (A16) (LRR F, G, H)                |
| Black Histic (A3)                                                       |                                  | d Matrix (S6)                  |            |                  | _             | Surface (S7) (LRR G)                             |
| Hydrogen Sulfide (A4)                                                   |                                  | Mucky Miner                    |            |                  |               | Plains Depressions (F16)                         |
| Stratified Layers (A5) (LRR F)                                          |                                  | Gleyed Matri<br>ed Matrix (F3) |            |                  |               | RR H outside of MLRA 72 & 73)<br>ed Vertic (F18) |
| Depleted Below Dark Surface (A11)                                       |                                  | Dark Surface                   | -          |                  | _             | arent Material (TF2)                             |
| Thick Dark Surface (A12)                                                |                                  | ed Dark Surfa                  | . ,        |                  |               | Shallow Dark Surface (TF12)                      |
| Sandy Mucky Mineral (S1)                                                |                                  | Depressions                    |            |                  |               | (Explain in Remarks)                             |
| 2.5 cm Mucky Peat or Peat (S2) (LRR (                                   | G, H) 🗌 High Pl                  | ains Depress                   | sions (F1  | 6)               |               | of hydrophytic vegetation and                    |
| 5 cm Mucky Peat or Peat (S3) (LRR F)                                    | (ML                              | RA 72 & 73                     | of LRR     | H)               | wetlan        | d hydrology must be present,                     |
|                                                                         |                                  |                                |            |                  | unless        | disturbed or problematic.                        |
| Restrictive Layer (if present):                                         |                                  |                                |            |                  |               |                                                  |
| Туре:                                                                   |                                  |                                |            |                  |               | _                                                |
| Depth (inches):                                                         |                                  |                                |            |                  | Hydric Soil   | Present? Yes 🗹 No                                |
| Remarks:                                                                |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
|                                                                         |                                  |                                |            |                  |               |                                                  |
| HYDROLOGY                                                               |                                  |                                |            |                  |               |                                                  |
| Wetland Hydrology Indicators:                                           |                                  |                                |            |                  | - · ·         |                                                  |
| Primary Indicators (minimum of one required                             | <u>d; check all that app</u><br> | ly)                            |            |                  |               | ary Indicators (minimum of two required)         |
| Surface Water (A1)                                                      | Salt Crust                       | (B11)                          |            |                  |               | face Soil Cracks (B6)                            |
| High Water Table (A2)                                                   |                                  | vertebrates (                  |            |                  |               | rsely Vegetated Concave Surface (B8)             |
| Saturation (A3)                                                         |                                  | Sulfide Odor                   |            |                  |               | inage Patterns (B10)                             |
| Water Marks (B1)                                                        | ·                                | on Water Tab                   | . ,        |                  |               | dized Rhizospheres on Living Roots (C3)          |
| Sediment Deposits (B2)                                                  | Oxidized                         | Rhizospheres                   | s on Livir | ng Roots (       | · · _ ·       | vhere tilled)                                    |
| ✓ Drift Deposits (B3)                                                   | _                                | not tilled)                    |            |                  |               | yfish Burrows (C8)                               |
| Algal Mat or Crust (B4)                                                 |                                  | of Reduced I                   |            | )                |               | uration Visible on Aerial Imagery (C9)           |
| Iron Deposits (B5)                                                      | _                                | CSurface (C7                   |            |                  |               | omorphic Position (D2)                           |
| Inundation Visible on Aerial Imagery (B                                 | 7) 🔟 Other (Ex                   | plain in Rema                  | arks)      |                  | _             | C-Neutral Test (D5)                              |
| Water-Stained Leaves (B9)                                               |                                  |                                |            |                  | Fros          | st-Heave Hummocks (D7) (LRR F)                   |
| Field Observations:                                                     |                                  |                                |            |                  |               |                                                  |
| Surface Water Present? Yes                                              | No 🔣 Depth (in                   | ches):                         |            | -                |               |                                                  |
| Water Table Present? Yes                                                | No 🗹 Depth (in                   | ches):                         |            |                  |               | _                                                |
|                                                                         | No 🔤 🗹 _ Depth (in               | ches):                         |            | Wetla            | and Hydrolog  | y Present? Yes 🗹 No                              |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, mo | nitoring well parial             | nhotos provi                   | ioue inan  | (actiona)        | if available: |                                                  |
| Bescher Recorded Data (stream gauge, me                                 | antoning weil, deltai            | photos, previ                  | ious map   | ,                |               |                                                  |

Remarks:

# WETLAND DETERMINATION DATA FORM – Great Plains Region

| Project/Site: Dodson East                                        |                     | City/Coun | <sub>tv:</sub> Phillips |                                             | Sampling Date:                   | 8/15/2012        |
|------------------------------------------------------------------|---------------------|-----------|-------------------------|---------------------------------------------|----------------------------------|------------------|
| Applicant/Owner: MDT                                             |                     |           | ,                       | State: <u>MT</u>                            | Sampling Point                   | DE-3             |
|                                                                  |                     |           |                         | nge:2 ;                                     | 30N 27                           |                  |
|                                                                  |                     |           |                         | convex, none): flat                         | SI                               | ope (%): 0       |
| Subregion (LRR): LRR F                                           |                     |           |                         |                                             |                                  |                  |
| Soil Map Unit Name: <u>Havre Loam</u>                            |                     |           |                         | NWI class                                   |                                  |                  |
| Are climatic / hydrologic conditions on the site typical for thi | ia timo af va       |           | -                       |                                             |                                  |                  |
|                                                                  |                     |           |                         |                                             |                                  | <b>T</b>         |
| Are Vegetation, Soil, or Hydrology s                             |                     |           |                         |                                             |                                  | <u> </u>         |
| Are Vegetation, Soil, or Hydrology ı                             | naturally pro       | blematic? | ' (If ne                | eded, explain any ans                       | wers in Remarks.)                |                  |
| SUMMARY OF FINDINGS – Attach site map                            | showing             | sampli    | ng point l              | ocations, transec                           | ts, important f                  | eatures, etc.    |
| Hydrophytic Vegetation Present? Yes N                            | lo _ <b>V</b>       | le        | the Sampled             | Area                                        |                                  |                  |
| Hydric Soil Present? Yes N                                       | lo_☑                |           | -                       | nd? Yes_                                    | No 🗹                             |                  |
| Wetland Hydrology Present?   Yes N                               |                     |           |                         |                                             |                                  | _                |
| Remarks: DP located between excavated cells in Pu                | icc. nutt. co       | omm.      |                         |                                             |                                  |                  |
|                                                                  |                     |           |                         |                                             |                                  |                  |
|                                                                  |                     |           |                         |                                             |                                  |                  |
| VEGETATION – Use scientific names of plar                        | nts.                |           |                         |                                             |                                  |                  |
|                                                                  | Absolute            |           | nt Indicator            | Dominance Test wo                           | orksheet:                        |                  |
| Tree Stratum (Plot size:)                                        | <u>% Cover</u><br>0 | Species   | ? Status                | Number of Dominant                          |                                  |                  |
| 1                                                                |                     |           |                         | That Are OBL, FACV<br>(excluding FAC-):     | V, or FAC                        | 1 <sub>(A)</sub> |
| 2                                                                |                     |           |                         |                                             |                                  | (*)              |
| 3                                                                | 0                   |           |                         | Total Number of Don<br>Species Across All S |                                  | 2 (B)            |
| T                                                                |                     | = Total C | over                    | Derest of Demissret                         | Cassies                          |                  |
| Sapling/Shrub Stratum (Plot size:)                               |                     |           | 0,01                    | Percent of Dominant<br>That Are OBL, FACV   |                                  | 0.5 (A/B)        |
| 1                                                                |                     |           |                         | Prevalence Index w                          | orkeboot                         |                  |
| 2                                                                | <u>^</u>            |           |                         | Total % Cover o                             |                                  | ply by:          |
| 3                                                                | 0                   |           |                         | OBL species                                 |                                  | 20               |
| 4                                                                | 0                   |           |                         | FACW species                                |                                  | 0                |
| 5                                                                |                     | = Total C |                         | FAC species                                 |                                  | 30               |
| Herb Stratum (Plot size: _5ft)                                   |                     |           | over                    | FACU species                                |                                  | 240              |
| 1. Bromus inermis                                                | 10                  |           | UPL                     | UPL species                                 | 10 x 5 =                         | 50               |
| 2. Pascopyrum smithii                                            | 50                  |           | FACU                    | Column Totals:                              | 100 (A)                          | 340 (B)          |
| 3. Elymus trachycaulus                                           | 10                  |           | FACU                    | Prevalence Ind                              | lev = R/A =                      | 3.4              |
| 4. Lactuca serriola                                              |                     |           | _ FAC                   | Hydrophytic Vegeta                          |                                  |                  |
| 5. Puccinellia nuttalliana                                       | 20                  |           | OBL                     |                                             | or Hydrophytic Vege              | etation          |
| 6                                                                | 0                   |           |                         | 2 - Dominance T                             |                                  |                  |
| 7                                                                | 0                   |           |                         | 3 - Prevalence Ir                           | ndex is ≤3.0 <sup>1</sup>        |                  |
| 8                                                                | 0                   |           |                         |                                             | al Adaptations <sup>1</sup> (Pro |                  |
| 9                                                                |                     |           |                         |                                             | arks or on a separat             | ,                |
| 10                                                               |                     | = Total C | over                    | Problematic Hyd                             | Irophytic Vegetatior             | ı≐ (Explain)     |
| Woody Vine Stratum (Plot size:)                                  |                     |           |                         | Indicators of hydric                        |                                  |                  |
| 1                                                                |                     |           |                         | be present, unless di                       | sturbed or problem               | .auc.            |
| 2                                                                |                     |           |                         | Hydrophytic                                 |                                  |                  |
| % Bare Ground in Herb Stratum                                    | 0                   | = Total C | over                    | Vegetation<br>Present?                      | Yes No _                         | $\checkmark$     |
|                                                                  |                     |           |                         | 1                                           |                                  |                  |

Remarks:

SOIL

|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  | n the absence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                             |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Depth<br>(inches)                                                                                                                                                                                               | Mat<br>Color (mois                                                                                                                                                                                                                                |                                                                   | Col            | Redo<br>or (moist)                                                                                                                                                                                               | x Features<br>%                                                                                                                                       | Type <sup>1</sup>                                                  | Loc <sup>2</sup> | Texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                                                                                                                                                                                                                                                     |                      |
| 0-12                                                                                                                                                                                                            | 10YR 5/3                                                                                                                                                                                                                                          | <u>,,,                                  </u>                      | <u> </u>       | M                                                                                                                                                                                                                | 10YR                                                                                                                                                  | 4/6                                                                |                  | Silty Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                      |
| 12-20                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  | Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                      |
| 12-20                                                                                                                                                                                                           | 10YR 4/2                                                                                                                                                                                                                                          | 95                                                                | C              | PL                                                                                                                                                                                                               | 10YR                                                                                                                                                  | 4/6                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  | ·                                                                                                                                                     |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 | Concentration, D                                                                                                                                                                                                                                  | · · ·                                                             |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    | d Sand G         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cation: PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                 | Indicators: (A                                                                                                                                                                                                                                    | pplicable to al                                                   | I LRRs,        |                                                                                                                                                                                                                  |                                                                                                                                                       | -                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                                                 |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  | Gleyed Ma                                                                                                                                             |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Muck (A9) (LRR I, J)                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                 | pipedon (A2)                                                                                                                                                                                                                                      |                                                                   |                |                                                                                                                                                                                                                  | Redox (S5)                                                                                                                                            |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prairie Redox (A16) (LRR F, G, H)                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                 | listic (A3)<br>en Sulfide (A4)                                                                                                                                                                                                                    |                                                                   |                |                                                                                                                                                                                                                  | d Matrix (S<br>Mucky Min                                                                                                                              | ,                                                                  |                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surface (S7) (LRR G)<br>Plains Depressions (F16)                                                                                                                                                                                                                                            |                      |
|                                                                                                                                                                                                                 | ed Layers (A5) (L                                                                                                                                                                                                                                 | RR F)                                                             |                |                                                                                                                                                                                                                  | Gleyed Ma                                                                                                                                             |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RR H outside of MLRA 72 & 73)                                                                                                                                                                                                                                                               |                      |
|                                                                                                                                                                                                                 | luck (A9) (LRR F                                                                                                                                                                                                                                  | ,                                                                 |                |                                                                                                                                                                                                                  | d Matrix (F                                                                                                                                           | . ,                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ced Vertic (F18)                                                                                                                                                                                                                                                                            |                      |
| _                                                                                                                                                                                                               | ed Below Dark S                                                                                                                                                                                                                                   |                                                                   |                | _                                                                                                                                                                                                                | Dark Surfa                                                                                                                                            | -                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arent Material (TF2)                                                                                                                                                                                                                                                                        |                      |
| 🗌 Thick 🛛                                                                                                                                                                                                       | ark Surface (A1                                                                                                                                                                                                                                   | 2)                                                                |                | Deplete                                                                                                                                                                                                          | d Dark Su                                                                                                                                             | face (F7)                                                          |                  | 🔲 Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shallow Dark Surface (TF12)                                                                                                                                                                                                                                                                 |                      |
|                                                                                                                                                                                                                 | Mucky Mineral (\$                                                                                                                                                                                                                                 |                                                                   |                |                                                                                                                                                                                                                  | Depressior                                                                                                                                            |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Explain in Remarks)                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                 | Mucky Peat or F                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  | ains Depre                                                                                                                                            | -                                                                  | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of hydrophytic vegetation and                                                                                                                                                                                                                                                               |                      |
| 5 cm M                                                                                                                                                                                                          | lucky Peat or Pe                                                                                                                                                                                                                                  | at (S3) ( <b>LRR</b> F                                            | )              | (ML                                                                                                                                                                                                              | RA 72 & 7                                                                                                                                             | 3 of LRR                                                           | .H)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d hydrology must be present,                                                                                                                                                                                                                                                                |                      |
| Postrictivo                                                                                                                                                                                                     | Layer (if prese                                                                                                                                                                                                                                   | nt):                                                              |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  | unies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s disturbed or problematic.                                                                                                                                                                                                                                                                 |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
| Type:<br>Depth (ii                                                                                                                                                                                              | nches):                                                                                                                                                                                                                                           |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  | Hydric Soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I Present? Yes No 💆                                                                                                                                                                                                                                                                         | Í                    |
|                                                                                                                                                                                                                 | Soils with redox                                                                                                                                                                                                                                  | (holow 10in                                                       | daaa n         |                                                                                                                                                                                                                  | budria                                                                                                                                                |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   | 0065 10        | Ji quality as                                                                                                                                                                                                    | inyunc.                                                                                                                                               |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 | )CV                                                                                                                                                                                                                                               |                                                                   |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   | tare                                                              |                |                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                      |
| Wetland Hy                                                                                                                                                                                                      | /drology Indica                                                                                                                                                                                                                                   |                                                                   | d chec         | call that and                                                                                                                                                                                                    |                                                                                                                                                       |                                                                    |                  | Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | any indicators (minimum of two requ                                                                                                                                                                                                                                                         | uired)               |
| Wetland Hy<br>Primary Ind                                                                                                                                                                                       | ydrology Indica<br>icators (minimun                                                                                                                                                                                                               |                                                                   | ed; chec       |                                                                                                                                                                                                                  | •••                                                                                                                                                   |                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ary Indicators (minimum of two requ                                                                                                                                                                                                                                                         | uired)               |
| Wetland Hy Primary Ind                                                                                                                                                                                          | <b>/drology Indica</b><br>icators (minimun<br>e Water (A1)                                                                                                                                                                                        |                                                                   | ed; chec       | ] Salt Crust                                                                                                                                                                                                     | (B11)                                                                                                                                                 | (B13)                                                              |                  | ✓_ Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | face Soil Cracks (B6)                                                                                                                                                                                                                                                                       |                      |
| Wetland Hy Primary Ind Surface High W                                                                                                                                                                           | <b>/drology Indica</b><br>icators (minimun<br>e Water (A1)<br>∕ater Table (A2)                                                                                                                                                                    |                                                                   | ed; chec       | ] Salt Crust<br>] Aquatic In                                                                                                                                                                                     | (B11)<br>vertebrate:                                                                                                                                  |                                                                    |                  | ✓_ Sur<br>□_ Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (                                                                                                                                                                                                                                 |                      |
| Wetland Hy         Primary Ind         Surface         High W         Saturat                                                                                                                                   | vdrology Indica<br>icators (minimun<br>Water (A1)<br>'ater Table (A2)<br>ion (A3)                                                                                                                                                                 |                                                                   | ed; chec       | ] Salt Crust<br>] Aquatic In<br>] Hydrogen                                                                                                                                                                       | (B11)<br>vertebrate:<br>Sulfide Oc                                                                                                                    | lor (C1)                                                           |                  | ✓_ Sur<br>□_ Spa<br>□_ Dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)                                                                                                                                                                                                         | (B8)                 |
| Wetland Hy Primary Ind Surface High W Saturat Water I                                                                                                                                                           | ydrology Indica<br>icators (minimun<br>w Water (A1)<br>ater Table (A2)<br>ion (A3)<br>Marks (B1)                                                                                                                                                  | n of one require                                                  | ed; chec       | ] Salt Crust<br>] Aquatic In<br>] Hydrogen<br>] Dry-Seaso                                                                                                                                                        | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T                                                                                                      | lor (C1)<br>able (C2)                                              | ing Roots        | ✓_ Sur<br>□_ Spa<br>□_ Dra<br>□_ Oxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots                                                                                                                                                                   | (B8)                 |
| Wetland Hy       Primary Ind       Surface       High W       Saturat       Water I       Sedime                                                                                                                | ydrology Indica<br>icators (minimun<br>e Water (A1)<br>later Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)                                                                                                                            | n of one require                                                  | 2d; checl      | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seasc<br>Oxidized F                                                                                                                                                  | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher                                                                                        | lor (C1)<br>able (C2)                                              | ing Roots        | CC3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br><b>vhere tilled</b> )                                                                                                                                          | (B8)                 |
| Wetland Hy         Primary Ind         Surface         High W         Saturat         Water I         Sedime         Drift Dec                                                                                  | vdrology Indica<br>icators (minimun<br>water (A1)<br>ater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)                                                                                                               | n of one require                                                  | 2d; checl      | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where                                                                                                                                        | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)                                                                         | lor (C1)<br>able (C2)<br>res on Liv                                | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br><b>vhere tilled</b> )<br>yfish Burrows (C8)                                                                                                                    | (B8)<br>s (C3)       |
| Wetland Hy         Primary Ind         Surface         High W         Saturat         Water I         Sedimee         Drift De         Algal M                                                                  | vdrology Indica<br>icators (minimun<br>Water (A1)<br>(ater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)                                                                                         | n of one require                                                  | 2d; chec       | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence                                                                                                                            | (B11)<br>vertebrates<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce                                                            | lor (C1)<br>able (C2)<br>res on Liv<br>d Iron (C4                  | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br><b>vhere tilled</b> )<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C                                                                            | (B8)<br>s (C3)       |
| Wetland Hy         Primary Ind         Surface         High W         Saturat         Water I         Sedime         Drift De         Algal M         Iron De                                                   | vdrology Indica<br>icators (minimun<br>Water (A1)<br>/ater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)<br>posits (B5)                                                                          | n of one require                                                  |                | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence<br>Thin Muck                                                                                                               | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce<br>Surface (f                                              | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4                   | -                | C3) (v<br>C3) Cra<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br><b>vhere tilled</b> )<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)                                                  | (B8)<br>s (C3)       |
| Wetland Hy Primary Ind Surface High W Saturat Vater I Sedime Algal M Iron De Inunda                                                                                                                             | vdrology Indica<br>icators (minimun<br>Water (A1)<br>(ater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)                                                                                         | n of one require                                                  |                | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence<br>Thin Muck                                                                                                               | (B11)<br>vertebrates<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce                                                            | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4                   | -                | ✓         Sur           ○         Spa           □         Dra           □         Oxi           □         Oxi           □         Cra           □         Sat           □         Gee           □         FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br><b>vhere tilled</b> )<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C                                                                            | (B8)<br>s (C3)<br>9) |
| Wetland Hy         Primary Ind         Surface         High W         Saturat         Water I         Sedime         Drift De         Algal M         Iron De         Inunda                                    | vdrology Indica<br>icators (minimun<br>water (A1)<br>later Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)<br>posits (B5)<br>tion Visible on Ad<br>Stained Leaves (                                | n of one require                                                  |                | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence<br>Thin Muck                                                                                                               | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce<br>Surface (f                                              | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4                   | -                | ✓         Sur           ○         Spa           □         Dra           □         Oxi           □         Oxi           □         Cra           □         Sat           □         Gee           □         FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br>where tilled)<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)<br>C-Neutral Test (D5)                                   | (B8)<br>s (C3)<br>9) |
| Primary Ind<br>Surface<br>High W<br>Saturat<br>Vater I<br>Sedime<br>Drift De<br>Algal M<br>Iron De<br>Inunda<br>Water-3                                                                                         | vdrology Indica<br>icators (minimun<br>water (A1)<br>later Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)<br>posits (B5)<br>tion Visible on Ad<br>Stained Leaves (                                | n of one require<br>erial Imagery (E<br>(B9)                      | 37)            | Salt Crust<br>Aquatic In<br>Hydrogen<br>Dry-Seaso<br>Oxidized F<br>(where<br>Presence<br>Thin Muck                                                                                                               | (B11)<br>vertebrates<br>Sulfide Oc<br>on Water T<br>Rhizospher<br><b>not tilled</b> )<br>of Reduce<br>Surface (f<br>blain in Re                       | lor (C1)<br>able (C2)<br>res on Liv<br>d Iron (C4<br>C7)<br>marks) | -<br>            | ✓         Sur           ○         Spa           □         Dra           □         Oxi           □         Oxi           □         Cra           □         Sat           □         Gee           □         FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br>where tilled)<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)<br>C-Neutral Test (D5)                                   | (B8)<br>s (C3)<br>9) |
| Wetland Hy         Primary Ind         Surface         High W         Saturat         Water I         Sedime         Drift De         Algal M         Iron De         Inunda         Water-1         Field Obse | vdrology Indica<br>icators (minimun<br>water (A1)<br>ater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>lat or Crust (B4)<br>posits (B5)<br>tion Visible on Ad<br>Stained Leaves (<br>rvations:<br>ter Present?    | n of one require<br>erial Imagery (E<br>B9)<br>Yes                | 37)            | <ul> <li>Salt Crust</li> <li>Aquatic In</li> <li>Hydrogen</li> <li>Dry-Seaso</li> <li>Oxidized F</li> <li>(where</li> <li>Presence</li> <li>Thin Muck</li> <li>Other (Expl</li> </ul>                            | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce<br>Surface (<br>blain in Re<br>ches):                      | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4<br>C7)<br>marks)  | .)               | ✓         Sur           ○         Spa           □         Dra           □         Oxi           □         Oxi           □         Cra           □         Sat           □         Gee           □         FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br>where tilled)<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)<br>C-Neutral Test (D5)                                   | (B8)<br>s (C3)<br>9) |
| Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Algal M Iron De Inunda Vater-4 Field Obse                                                                                                          | vdrology Indica<br>icators (minimun<br>e Water (A1)<br>fater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>fat or Crust (B4)<br>posits (B5)<br>tion Visible on Ad<br>Stained Leaves (<br>rvations:<br>ter Present? | n of one require<br>erial Imagery (E<br>(B9)<br>Yes<br>Yes        | No <b>[</b>    | Salt Crust         Aquatic In         Hydrogen         Dry-Sease         Oxidized F         (where F         Presence         Thin Muck         Other (Exp         Depth (in         Depth (in                   | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce<br>Surface (<br>blain in Re<br>ches):<br>ches):            | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4<br>C7)<br>marks)  | +)<br>           | C3) (v<br>C3) (v<br>C3) (v<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br>where tilled)<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)<br>C-Neutral Test (D5)                                   | (B8)<br>s (C3)<br>9) |
| Wetland Hy Primary Ind Surface High W Saturat Vater I Sedime Algal M Iron De Inunda Vater -3 Field Obse Surface Wa Water Table Saturation F (includes ca                                                        | vdrology Indica<br>icators (minimun<br>e Water (A1)<br>fater Table (A2)<br>ion (A3)<br>Marks (B1)<br>ent Deposits (B2)<br>eposits (B3)<br>fat or Crust (B4)<br>posits (B5)<br>tion Visible on Ad<br>Stained Leaves (<br>rvations:<br>ter Present? | n of one require<br>erial Imagery (E<br>(B9)<br>Yes<br>Yes<br>Yes | No<br>No<br>No | Salt Crust         Aquatic In         Hydrogen         Dry-Sease         Oxidized F         (where F         Presence         Thin Muck         Other (Exp         Depth (in         Depth (in         Depth (in | (B11)<br>vertebrate:<br>Sulfide Oc<br>on Water T<br>Rhizospher<br>not tilled)<br>of Reduce<br>Surface (f<br>blain in Re<br>ches):<br>ches):<br>ches): | lor (C1)<br>able (C2)<br>es on Liv<br>d Iron (C4<br>C7)<br>marks)  | .)<br>           | Image: Control of the second secon | face Soil Cracks (B6)<br>arsely Vegetated Concave Surface (<br>inage Patterns (B10)<br>dized Rhizospheres on Living Roots<br>where tilled)<br>yfish Burrows (C8)<br>uration Visible on Aerial Imagery (C<br>omorphic Position (D2)<br>C-Neutral Test (D5)<br>st-Heave Hummocks (D7) (LRR F) | (B8)<br>s (C3)<br>9) |

Remarks: Water table fluctuates witin 1 ft of ground surface. Duration of groundwater likely not sufficient to meet wetland hydrology criteria.

# MDT Montana Wetland Assessment Form (revised March 2008)

| 1. Project name | me Dodson-East |         |             |        | 2. MDT project# |           |         | NH 1-8(15)454F |                          | Cor                    | ntrol#    | 1516    |        |
|-----------------|----------------|---------|-------------|--------|-----------------|-----------|---------|----------------|--------------------------|------------------------|-----------|---------|--------|
| 3. Evaluation [ | Date 8/15/2    | 2012    | 4. Evalua   | ators  | B Sar           | ndefur    | 5.      | . Wetl         | land/Site# (             | s) Wetland             | Cell Cre  | ation   |        |
| 6. Wetland Loca | ation(s): T    |         | 30 N        | R      | 27E             | Sec1      | 1 & 2   | Т              |                          | R                      | Sec2      |         |        |
| Approx Station  | ing or Milep   | osts    |             |        |                 |           |         |                |                          |                        |           |         |        |
| Watershed       | 10050004       |         |             | W      | aters           | ned/Count | y Lower | r Misso        | ouri River W             | atershed/Phi           | llips Cou | nty     |        |
| 7. Evaluating A | gency          | Conflu  | uence for N | 1DT    |                 |           |         |                | 8. Wetlan                | d size acres           | ;         |         | 7.74   |
| Purpose of Ev   | aluation       |         |             |        |                 |           |         |                | How asse                 | ssed:                  | Measur    | ed e.g. | by GPS |
|                 | otentially af  |         |             | roject |                 |           |         |                | 9. Assess<br>(AA) size ( | ssment area<br>(acres) |           |         | 7.74   |
|                 | Wetlands: p    |         |             |        |                 |           |         |                | How asse                 | ssed:                  | Measur    | ed e.g. | by GPS |
| Mitigation      | Wetlands: p    | ost cor | struction   |        |                 |           |         |                |                          |                        |           |         |        |
|                 |                |         |             |        |                 |           |         |                |                          |                        |           |         |        |

#### 10. Classification of Wetland and Aquatic Habitats in AA

| Class (Cowardin) | Modifier (Cowardin) | Water Regime               | % of AA                                        |
|------------------|---------------------|----------------------------|------------------------------------------------|
| Emergent Wetland | Excavated           | Permanent/Perennial        | 65                                             |
| Aquatic Bed      | Excavated           | Permanent/Perennial        | 35                                             |
|                  |                     |                            |                                                |
|                  |                     |                            |                                                |
|                  |                     |                            |                                                |
|                  |                     |                            |                                                |
|                  | Emergent Wetland    | Emergent Wetland Excavated | Emergent Wetland Excavated Permanent/Perennial |

#### 11. Estimated Relative Abundance

#### 12. General Condition of AA

i. Disturbance: (use matrix below to determine [circle] appropriate response – see instructions for Montana-listed noxious weed and aquatic nuisance vegetation species (ANVS) lists)

Abundant

|                                                                                                                                                                                                                                                              | Predo                                                                                                                                                                                      | minant conditions adjacent to (within 500                                                                                                                                                                     | feet of) AA                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Conditions within AA                                                                                                                                                                                                                                         | Managed in predominantly<br>natural state; is not grazed,<br>hayed, logged, or otherwise<br>converted; does not contain<br>roads or buildings; and noxious<br>weed or ANVS cover is <=15%. | Land not cultivated, but may be<br>moderately grazed or hayed or<br>selectively logged; or has been<br>subject to minor clearing; contains<br>few roads or buildings; noxious<br>weed or ANVS cover is <=30%. | Land cultivated or heavily grazed<br>or logged; subject to substantial fill<br>placement, grading, clearing, or<br>hydrological alteration; high road or<br>building density; or noxious weed<br>or ANVS cover is >=30%. |  |
| AA occurs and is managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings; and noxious weed or ANVS cover is <=15%.                                                        | low disturbance                                                                                                                                                                            | low disturbance                                                                                                                                                                                               | moderate disturbance                                                                                                                                                                                                     |  |
| AA not cultivated, but may be moderately grazed or hayed or<br>selectively logged; or has been subject to relatively minor clearing, fill<br>placement, or hydrological alteration; contains few roads or buildings;<br>noxious weed or ANVS cover is <=30%. | moderate                                                                                                                                                                                   | moderate disturbance                                                                                                                                                                                          | high disturbance                                                                                                                                                                                                         |  |
| AA cultivated or heavily grazed or logged; subject to relatively<br>substantial fill placement, grading, clearing, or hydrological alteration;<br>high road or building density; or noxious weed or ANVS cover is<br>>=30%.                                  | high disturbance                                                                                                                                                                           | high disturbance                                                                                                                                                                                              | high disturbance                                                                                                                                                                                                         |  |

#### Comments: (types of disturbance, intensity, season, etc)

Mitigation site is located between Hwy 2 and railroad. Surrounding land is agricultural/grazing. Wetland cells were constructed in 2008.

#### ii. Prominent noxious, aquatic nuisance, other exotic species:

Russian olive

#### iii. Provide brief descriptive summary of AA and surrounding land use/habitat

AA encompasses two wetland cells constructed between highway and railroad. A spring creek (signs of surface water flow apparent during site visit) historically bisected the two cells. A small remnant of an existing wetland that lies between the two cells was included in the AA.

# 13. Structural Diversity: (based on number of "Cowardin" vegetated classes present [do not include unvegetated classes], see #10 above)

| Existing # of "Cowardin" Vegetated Classes in AA               | Initial<br>Rating | Is current management<br>existence of additional |      | Modif ied<br>R ating |
|----------------------------------------------------------------|-------------------|--------------------------------------------------|------|----------------------|
| >=3 (or 2 if 1 is forested) classes                            | Н                 | NA                                               | NA   | NA                   |
| 2 (or 1 if forested) classes                                   | М                 | NA                                               | NA   | NA                   |
| 1 dass, but not a monoculture                                  | М                 | <no< td=""><td>YES&gt;</td><td>L</td></no<>      | YES> | L                    |
| 1 class, monoculture (1 species comprises>=90% of total cover) | L                 | NA                                               | NA   | NA                   |

**Comments:** Emergent and aquatic bed classes

### SECTION PERTAINING to FUNCTIONS VALUES ASSESSMENT

14A. Habitat for Federally Listed or Proposed Threatened or Endangered Plants or Animals:

i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions):

| Primary or critical habitat   | t (list species) | 🔘 D 🔘          | S                     |                      |                    |                |      |
|-------------------------------|------------------|----------------|-----------------------|----------------------|--------------------|----------------|------|
| Secondary habitat (list S     | pecies)          | 🔘 D 🔘          | S                     |                      |                    |                |      |
| Incidental habitat (list sp   | ecies)           | 🔘 D 🔘          | S                     |                      |                    |                |      |
| No usable habitat             |                  | ✓ S            |                       |                      |                    |                |      |
| ii. Rating (use the cond      | usions from i a  | bove and the m | atrix below to arrive | e at [check] the fun | ctional points and | rating)        |      |
| Highest Habitat Level         | doc/primary      | sus/primary    | doc/secondary         | sus/secondary        | doc/incidental     | sus/incidental | None |
| Functional Points and Rating  | 1H               | .9H            | .8H                   | .7M                  | .3L                | .1L            | OL   |
| Sources for US documented use | SFWS database    | 9              |                       |                      |                    |                |      |

14B. Habitat for plant or animals rated S1, S2, or S3 by the Montana Natural Heritage Program: (not including species listed in14A above)

i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions):

| Primary or critical habitat (list species) | 🔘 D 🔘 S |                       |
|--------------------------------------------|---------|-----------------------|
| Secondary habitat (list Species)           | 🔾 D 💿 S | Great blue heron (S3) |
| Incidental habitat (list species)          | 🔘 D 🔘 S |                       |
| No usable habitat                          | S       |                       |

ii. Rating (use the conclusions from i above and the matrix below to arrive at [check] the functional points and rating)

| Highest Habitat Level                                        | doc/primary | sus/primary | doc/secondary | sus/secondary | doc/incidental | sus/incidental | None |
|--------------------------------------------------------------|-------------|-------------|---------------|---------------|----------------|----------------|------|
| <b>S1 Species:</b><br>Functional Points and<br>Rating        | 1H          | .8H         | .7M           | .6M           | .2L            | 1L             | OL   |
| <b>S2 and S3 Species:</b><br>Functional Points and<br>Rating | .9H         | .7M         | .6M           | .5M           | .2L            | 1L             | OL   |

Sources for documented use

MTNHP database

#### 14C. General Wildlife Habitat Rating:

i. Evidence of overall wildlife use in the AA (check substantial, moderate, or low based on supporting evidence):

Substantial (based on any of the following [check]):

- observations of abundant wildlife #s or high species diversity (during any period)
- abundant wildlife sign such as scat, tracks, nest structures, game trails, etc.
- presence of extremely limiting habitat features not available in the surrounding area
- interviews with local biologists with knowledge of the AA

Minimal (based on any of the following [check]):

Moderate

- few or no wildlife observations during peak use periods
- little to no wildlife sign
- sparse adjacent upland food sources
- interviews with local biologists with knowledge of the AA

Moderate (based on any of the following [check]):

observations of scattered wildlife groups or individuals or relatively few species during peak periods

common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.

adequate adjacent upland food sources

i.

interviews with local biologists with knowledge of the AA

**ii. Wildlife** habitat features (Working from top to bottom, check appropriate AA attributes in matrix to arrive at rating. Structural diversity is from #13. For class cover to be considered evenly distributed, the most and least prevalent **vegetated** classes must be within 20% of each other in terms of their percent composition of the AA (see #10). Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; and A = absent [see instructions for further definitions of these terms])

| Structural<br>diversity (see<br>#13)                      |     | High |     |   |     |     |     |   |     |     |     | Mode | erate |     |     |   |     | Lo  | w   |   |
|-----------------------------------------------------------|-----|------|-----|---|-----|-----|-----|---|-----|-----|-----|------|-------|-----|-----|---|-----|-----|-----|---|
| Class cover<br>distribution (all<br>vegetated<br>classes) |     | Eve  | en  |   |     | Une | ven |   |     | Eve | en  |      |       | Une | ven |   |     | Ev  | en  |   |
| Duration of<br>surface water in ≥<br>10% of AA            | P/P | S/I  | T/E | A | P/P | S/I | T/E | А | P/P | S/I | T/E | A    | P/P   | S/I | T/E | А | P/P | S/I | T/E | А |
| Low disturbance<br>at AA (see #12i)                       | ш   | E    | E   | н | E   | Е   | н   | н | E   | н   | н   | М    | Е     | Н   | м   | м | Е   | н   | М   | М |
| Moderate<br>disturbance at AA<br>(see #12i)               | н   | н    | н   | н | Н   | н   | н   | м | Н   | н   | м   | м    | н     | М   | М   | L | н   | М   | L   | L |
| High disturbance<br>at AA (see #12i)                      | М   | М    | м   | L | М   | М   | L   | L | М   | М   | L   | L    | М     | L   | L   | L | L   | L   | L   | L |

#### iii. Rating (use the conclusions from i and ii above and the matrix below to arrive at [check] the functional points and rating)

| Evidence of wildlife use (i) |             | Wildlife habitat features rating (ii) |               |     |  |  |  |  |  |  |  |  |
|------------------------------|-------------|---------------------------------------|---------------|-----|--|--|--|--|--|--|--|--|
|                              | Exceptional | High                                  | High Moderate |     |  |  |  |  |  |  |  |  |
| Substantial                  | 1E          | .9H                                   | .8H           | .7M |  |  |  |  |  |  |  |  |
| Moderate                     | .9H         | .7M                                   | .5M           | .3L |  |  |  |  |  |  |  |  |
| Minimal                      | .6M         | .4M                                   | .2L           | .1L |  |  |  |  |  |  |  |  |

**Comments** High-traffic area likely restricts wildlife usage, although box culverts under US Hwy 2 appears to be used as periodically as corridor under road. Birds are predominant wildlife group using site.

**14D. General Fish Habitat Rating:** (Assess this function if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [i.e., fish use is precluded by perched culvert or other barrier, etc.]. If the AA is not used by fish, fish use is not restorable due to habitat constraints, or is not desired from a management perspective [such as fish entrapped in a canal], then check **NA** here and proceed to 14E.)

Habitat Quality and Known / Suspected Fish Species in AA (use matrix to arrive at [check the functional points and rating)

| Duration of surface water<br>in AA         |     | Permanent / Perennial |      |      |     |     |      | Seasonal / Intermittent |     |       |     | Temporary / Ephemeral |      |     |      |       |     |     |
|--------------------------------------------|-----|-----------------------|------|------|-----|-----|------|-------------------------|-----|-------|-----|-----------------------|------|-----|------|-------|-----|-----|
| Aquatic hiding / resting /<br>escape cover | Opt | imal                  | Adeq | uate | Po  | oor | Opti | mal                     | Ade | quate | Po  | or                    | Opti | mal | Adeo | quate | Po  | oor |
| Thermal cover optimal/<br>suboptimal       | 0   | S                     | 0    | S    | 0   | S   | ο    | s                       | 0   | S     | 0   | S                     | 0    | S   | 0    | S     | 0   | S   |
| FWP Tier I fish species                    | 1E  | .9H                   | .8H  | .7M  | .6M | .5M | .9H  | .8H                     | .7M | .6M   | .5M | .4M                   | .7M  | .6M | .5M  | .4M   | .3L | .3L |
| FWP Tier II or Native<br>Game fish species | .9H | .8H                   | .7M  | .6M  | .5M | .5M | .8H  | .7M                     | .6M | .5M   | .4M | .4M                   | .6M  | .5M | .4M  | .3L   | .2L | .2L |
| FWP Tier III or<br>Introduced Game fish    | .8H | .7M                   | .6M  | .5M  | .5M | .4M | .7M  | .6M                     | .5M | .4M   | .4M | .3L                   | .5M  | .4M | .3L  | .2L   | .2L | .1L |
| FWP Non-Game Tier IV<br>or No fish species | .5M | .5M                   | .5M  | .4M  | .4M | .3L | .4M  | .4M                     | .4M | .3L   | .3L | .2L                   | .2L  | .2L | .2L  | .1L   | .1L | .1L |

Sources used for identifying fish sp. potentially found in AA:

| ii. | Modified Rating | (NOTE: | Modified score cannot exceed 1 or be less than 0.1) | į |
|-----|-----------------|--------|-----------------------------------------------------|---|
|-----|-----------------|--------|-----------------------------------------------------|---|

| <b>ii. Modified Rating</b> (NOTE: Modified score ca<br>a) Is fish use of the AA significantly reduced by a<br>current final MDEQ list of waterbodies in need of<br>fishery or aquatic life support, or do aquatic nuisa<br>yes, reduce score in i above by 0.1: Modified | culvert, c<br>TMDL de<br>nce plan | like, or other m<br>velopment witl | nan-made s<br>h listed "Pr | obable Im  | baired Úses                              | " including             | cold or w                | arm water    | he<br>If    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|----------------------------|------------|------------------------------------------|-------------------------|--------------------------|--------------|-------------|--------|
| b) Does the AA contain a documented spawning<br>comments) for native fish or introduced game fish                                                                                                                                                                        | ? ()                              | Y • N                              |                            | add 0.1 to | ctuary pool,<br>the adjusted<br>d Rating |                         |                          |              |             |        |
| iii. Final Score and Rating:                                                                                                                                                                                                                                             | Comme                             | ents:                              |                            |            |                                          |                         |                          |              |             |        |
|                                                                                                                                                                                                                                                                          | and proc                          | eed to 14F.)                       |                            |            |                                          |                         | s in AA are              | e not floode | ed from in- |        |
| i. Rating (working from top to bottom, use the r<br>Estimated or Calculated Entrenchment (Rosgen                                                                                                                                                                         |                                   | ow to arrive at                    |                            |            | tely entrencl                            | - 0/                    | Entrenct                 | hed-A, F, G  | stream      |        |
| 1994, 1996)<br>% of flooded wetland classified as forested                                                                                                                                                                                                               |                                   | stream type:                       | s                          |            | stream type                              |                         |                          | types        |             |        |
| and/or scrub/shrub                                                                                                                                                                                                                                                       | 75%                               | 25-75%                             | <25%                       | 75%        | 25-75%                                   | <25%                    | 75%                      | 25-75%       | <25%        |        |
| AA contains no outlet or restricted outlet                                                                                                                                                                                                                               | 1H                                | .9H                                | .6M                        | .8H        | .7M                                      | .5M                     | .4M                      | .3L          | .2L         |        |
| AA contains unrestricted outlet                                                                                                                                                                                                                                          | .9H                               | .8H                                | .5M                        | .7M        | .6M                                      | .4M                     | .3L                      | .2L          | .1L         |        |
|                                                                                                                                                                                                                                                                          |                                   |                                    |                            |            |                                          |                         |                          |              |             |        |
| Slightly Entrenched<br>ER = >2.2                                                                                                                                                                                                                                         |                                   | Moderately<br>ER = 1.4             |                            |            |                                          |                         | ntrenched<br>= 1.0 – 1.4 |              |             |        |
| C stream type D stream type E stream                                                                                                                                                                                                                                     | ype                               | B stream                           | m type                     | A          | stream type                              | F                       | stream type              | e G          | stream type | $\neg$ |
|                                                                                                                                                                                                                                                                          | Ŀ                                 | ·                                  |                            |            |                                          | Ę                       |                          |              |             |        |
| 2 x Bankfull De                                                                                                                                                                                                                                                          | pth 🙀                             | Bankfull D                         | epth                       |            | Aller to a                               | flood-pror<br>dull Widt |                          |              |             |        |
| Floodrpone width                                                                                                                                                                                                                                                         | / Ban<br>wid                      | kfull<br>th                        |                            |            | =                                        | Entreno<br>ratio        | hment                    |              |             |        |
| ii. Are ≥10 acres of wetland in the AA subject to within 0.5 mile downstream of the AA (check)? Comments: Area subject to inundation f                                                                                                                                   | Y O<br>rom Sp                     | N   ring Coulee                    | e channe                   | l overflo  | w during f                               | flood ev                |                          | ·            |             | ıd     |
| bankfull width not recorded                                                                                                                                                                                                                                              | tor sdri                          | na creek ch                        | iannel. a                  | ssumed     | E-tvbe st                                | ream.                   |                          |              |             |        |

**14F.** Short and Long Term Surface Water Storage: (Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, dick **NA** here and proceed to 14G.)

i. Rating (Working from top to bottom, use the matrix below to arrive at [check] the functional points and rating. Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; and T/E = temporary/ephemeral [see instructions for further definitions of these terms1.)

| Estimated maximum acre feet of water contained in<br>wetlands within the AA that are subject to periodic<br>flooding or ponding | >5 acre feet |     |     | 1.1 | 1 to 5 acre feet |     |     | ≤1 acre foot |     |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|-----|------------------|-----|-----|--------------|-----|
| Duration of surface water at wetlands within the AA                                                                             | P/P          | S/I | T/E | P/P | S/I              | T/E | P/P | S/I          | T/E |
| Wetlands in AA flood or pond <b>≥ 5 out of 10 years</b>                                                                         | 1H           | .9H | .8H | .8H | .6M              | .5M | .4M | .3L          | .2L |
| Wetlands in AA flood or pond < 5 out of 10 years                                                                                | .9H          | .8H | .7M | .7M | .5M              | .4M | .3L | .2L          | .1L |

Wetland cells inundated by groundwater and precipitation during August site visit. Assumes approximately 7 acres of wetland Comments: flooded to a depth of 2 feet.

14G. Sediment/Nutrient/Toxicant Retention and Removal: (Applies to wetlands with potential to receive sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, click NA here and proceed to 14H.)

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating [H = high, M = moderate, or L = low])

| Sediment, nutrient, and toxicant input<br>levels within AA | tod<br>compou<br>notsul | eliver levels<br>inds at levels<br>ostantially im<br>ces of nutrier | of sediments, r     | er functions are<br>sedimentation,<br>, or signs of | Waterbody on MDEQ list of waterbodies in need of TMDL<br>development for "probable causes" related to sediment,<br>nutrients, or toxicants or AA receives or surrounding land use<br>with potential to deliver high levels of sediments, nutrients, or<br>compounds such that other functions are substantially impaired.<br>Major sedimentation, sources of nutrients or toxicants, or signs<br>of eutrophication present. |     |     |     |  |  |  |
|------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--|--|--|
| % cover of wetland vegetation in AA                        | ≥                       | 70%                                                                 | <                   | 70%                                                 | ≥ 7                                                                                                                                                                                                                                                                                                                                                                                                                         | 0%  | <   |     |  |  |  |
| Evidence of flooding / ponding in AA                       |                         |                                                                     |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |     |  |  |  |
|                                                            | Yes                     | No                                                                  | Yes                 | No                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                         | No  | Yes | No  |  |  |  |
| AA contains no or restricted outlet                        | 1H                      | .8H                                                                 | .7M .5M .5M .4M .3L |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     | .2L |  |  |  |
| AA contains unrestricted outlet                            | .9H                     | .7M                                                                 | .6M                 | .4M                                                 | .4M                                                                                                                                                                                                                                                                                                                                                                                                                         | .3L | .2L | .1L |  |  |  |

Comments: Cover of wetland veg (emergent and aquatic macrophytes) exceeds 70%. Depression w/o outlet.

14H Sediment/Shoreline Stabilization: (Applies only if AA occurs on or within the banks or a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body which is subject to wave action. If 14H does not apply, click **NA** here and proceed to 14I.)

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating)

| % Cover of <u>wetland</u> streambank or                                   | Duration of surface water adjacent to rooted vegetation |                         |                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|-----------------------|--|--|--|--|--|--|
| shoreline by species with stability ratings of $\geq 6$ (see Appendix F). | Permanent / Perennial                                   | Seasonal / Intermittent | Temporary / Ephemeral |  |  |  |  |  |  |
| ≥ 65%                                                                     | 1H                                                      | .9H                     | .7M                   |  |  |  |  |  |  |
| 35-64%                                                                    | .7M                                                     | .6M                     | .5M                   |  |  |  |  |  |  |
| < 35%                                                                     | .3L                                                     | .2L                     | .1L                   |  |  |  |  |  |  |

Increased vegetation development along shore subject to wave action.

Comments:

#### 14I. Production Export/Food Chain Support:

i. Level of Biological Activity (synthesis of wildlife and fish habitat ratings [check])

| General Fish Habitat | Genera | I Wildlife Habitat Rati | ng (14C.iii.) |
|----------------------|--------|-------------------------|---------------|
| Rating (14D.iii.)    | E/H    | М                       | L             |
| E/H                  | н      | н                       | м             |
| М                    | н      | м                       | м             |
| L                    | м      | м                       | L             |
| N/A                  | н      | М                       | L             |

**ii. Rating** (Working from top to bottom, use the matrix below to arrive at [check] the functional points and rating. Factor A = acreage of vegetated wetland component in the AA; Factor B = level of biological activity rating from above (14l.i.); Factor C = whether or not the AA contains a surface or subsurface outlet; the final three rows pertain to duration of surface water in the AA, where P/P, S/I, and T/E are as previously defined, and A = "absent" [see instructions for further definitions of these terms].)

|       | Struction     | 0.00.100                     | anon aon |     | 1 110000 | tornio[i) |     |                               |     |     |     |      |                             |          |     |     |     |     |
|-------|---------------|------------------------------|----------|-----|----------|-----------|-----|-------------------------------|-----|-----|-----|------|-----------------------------|----------|-----|-----|-----|-----|
| Α     |               | Vegetated component >5 acres |          |     |          |           |     | Vegetated component 1-5 acres |     |     |     |      | Vegetated component <1 acre |          |     |     |     |     |
| В     | High Moderate |                              | erate    | Low |          | High      |     | Moderate                      |     | Low |     | High |                             | Moderate |     | Low |     |     |
| С     | Yes           | No                           | Yes      | No  | Yes      | No        | Yes | No                            | Yes | No  | Yes | No   | Yes                         | No       | Yes | No  | Yes | No  |
| P/P   | 1E            | .7H                          | .8H      | .5M | .6M      | .4M       | .9H | .6M                           | .7H | .4M | .5M | .3L  | .8H                         | .6M      | .6M | .4M | .3L | .2L |
| S/I   | .9            | .6M                          | .7H      | .4  | .5M      | .3L       | .8H | .5M                           | .6M | .3L | .4M | .2L  | .7H                         | .5M      | .5M | .3L | .3L | .2L |
| T/E/A | .8            | .5M                          | .6M      | .3  | .4M      | .2L       | .7H | .4M                           | .5M | .2L | .3L | .1L  | .6M                         | .4M      | .4M | .2L | .2L | .1L |

iii. Modified Rating (NOTE: Modified score cannot exceed 1 or be less than 0.1.) Vegetated Upland Buffer (VUB): Area with ≥ 30% plant cover, ≤ 15% noxious weed or ANVS cover, and that is not subjected to periodic mechanical mowing or clearing (unless for weed control).

a) Is there an average  $\geq$  50 foot-wide vegetated upland buffer around  $\geq$  75% of the AA circumference? Y  $\bigcirc$  N  $\odot$  If yes, add 0.1 to the score in **ii** above and adjust rating accordingly: **Modified Rating** .8H

**Comments:** Surface outlet via culvert under highway. Bordered by highway and railroad. Buffer <50 ft.

#### 14J. Groundwater Discharge/Recharge: (check the appropriate indicators in i & ii below)

|              | i. Discharge Indicators                                      | <br>ii. Recharge Indicators                                   |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------|
|              | The AA is a slope wetland                                    | Permeable substrate present without underlying impeding layer |
|              | Springs or seeps are known or observed                       | Wetland contains inlet but no outlet                          |
|              | Vegetation growing during dormant season/drought             | Stream is a known 'losing' stream; discharge volume decreases |
|              | Wetland occurs at the toe of a natural slope                 | Other:                                                        |
|              | Seeps are present at the wetland edge                        |                                                               |
|              | AA permanently flooded during drought periods                |                                                               |
|              | Wetland contains an outlet, but no inlet                     |                                                               |
| $\checkmark$ | Shallow water table and the site is saturated to the surface |                                                               |
|              | Other:                                                       |                                                               |
|              |                                                              |                                                               |

iii. Rating (use the information from i and ii above and the table below to arrive at [check] the functional points and rating)

|                                   | Duration of saturation at AA Wetlands <u>FROM GROUNDWATER DISCHARGE OR WITH WATER</u><br>THAT IS RECHARGING THE GROUNDWATER SYSTEM |     |    |     |      |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|------|--|--|--|--|
| Criteria                          | P/P                                                                                                                                | S/I |    | т   | None |  |  |  |  |
| Groundwater Discharge or Recharge | 1H                                                                                                                                 | .7M |    | .4M | .1L  |  |  |  |  |
| Insufficient Data/Information     |                                                                                                                                    |     | NA |     |      |  |  |  |  |

**Comments:** Wetland cells inundated during August investigation.

#### 14K. Uniqueness:

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating)

| Replacement potential                 | or mature<br>wetland <b>or</b> | e (>80 yr-old | iation listed | cited rar<br>diversity (i | not contain p<br>e types <b>and</b><br>#13) is high o<br>ciation listed<br>the MTNHP | structural<br>or contains<br>as "S2" by | AA does not contain previously<br>cited rare types or associations<br><b>and</b> structural diversity (#13) is<br>low-moderate |        |          |  |
|---------------------------------------|--------------------------------|---------------|---------------|---------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|----------|--|
| Estimated relative<br>abundance (#11) | rare                           | commo<br>n    | abundant      | rare                      | common                                                                               | abundant                                | rare                                                                                                                           | common | abundant |  |
| Low disturbance at AA (#12i)          | 1H                             | .9H           | .8H           | .8H                       | .6M                                                                                  | .5M                                     | .5M                                                                                                                            | .4M    | .3L      |  |
| Moderate disturbance at AA (#12i)     | <mark>.9H</mark>               | .8H           | .7M           | .7M                       | .5M                                                                                  | .4M                                     | .4M                                                                                                                            | .3L    | .2L      |  |
| <b>High</b> disturbance at AA (#12i)  | .8H                            | .7H           | .6M           | .6M                       | .4M                                                                                  | .3L                                     | .3L                                                                                                                            | .2L    | .1L      |  |
| Comments:                             |                                |               |               |                           |                                                                                      |                                         |                                                                                                                                |        |          |  |

14L. Recreation/Education Potential: (affords "bonus" points if AA provides recreation or education opportunity)

i. Is the AA a known or potential rec./ed. site: (check) Y 
N
(if 'Yes' continue with the evaluation; if 'No' then click NA here and proceed to the overall summary and rating page)

ii. Check categories that apply to the AA: Educational/scientific study; Consumptive rec.; Non-consumptive rec.;

iii. Rating (use the matrix below to arrive at [check] the functional points and rating)

| Known or Potential Recreation or Education Area                                                      | Known | Potential |
|------------------------------------------------------------------------------------------------------|-------|-----------|
| Public ownership or public easement with general public access (no permission required)              | .2H   | .15H      |
| Private ownership with general public access (no permission required)                                | .15H  | .1M       |
| Private or public ownership without general public access, or requiring permission for public access | .1M   | .05L      |

#### Comments:

Limited access from highway and limited upland within fence. Remainder of mitigation site is flooded.

#### **General Site Notes**

| Function & Value Variables                       | Rating | Actual<br>Functional<br>Points | Possible<br>Functional<br>Points | Functional<br>Units:<br>(Actual Points x<br>Estimated AA<br>Acreage) | Indicate the<br>four most<br>prominent<br>functions with<br>an asterisk (*) |
|--------------------------------------------------|--------|--------------------------------|----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| A. Listed/Proposed T&E Species Habitat           | L      | 0                              | 1                                | 0                                                                    |                                                                             |
| B. MT Natural Heritage Program Species Habitat   | М      | .5                             | 1                                | 3.87                                                                 |                                                                             |
| C. General Wildlife Habitat                      | М      | .7                             | 1                                | 5.418                                                                |                                                                             |
| D. General Fish Habitat                          | NA     | 0                              | 0                                | 0                                                                    |                                                                             |
| E. Flood Attenuation                             | М      | .6                             | 1                                | 4.644                                                                |                                                                             |
| F. Short and Long Term Surface Water Storage     | н      | 1                              | 1                                | 7.74                                                                 | $\checkmark$                                                                |
| G. Sediment/Nutrient/Toxicant Removal            | Н      | 1                              | 1                                | 7.74                                                                 |                                                                             |
| H. Sediment/Shoreline Stabilization              | н      | 1                              | 1                                | 7.74                                                                 |                                                                             |
| I. Production Export/Food Chain Support          | н      | .8                             | 1                                | 6.192                                                                |                                                                             |
| J. Groundwater Discharge/Recharge                | н      | 1                              | 1                                | 7.74                                                                 |                                                                             |
| K. Uniqueness                                    | L      | .2                             | 1                                | 1.548                                                                |                                                                             |
| L. Recreation/Education Potential (bonus points) | L      | .05                            | NA                               | 0.387                                                                |                                                                             |
| Totals:                                          |        | 6.85                           | 10                               | 53.019                                                               |                                                                             |
| Percent of Possible Score                        |        |                                | <b>68.5</b> %                    |                                                                      |                                                                             |

# FUNCTION & VALUE SUMMARY & OVERALL RATING FOR WETLAND/SITE #(S): Wetland Cell Creation

Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

- Score of 1 functional point for Uniqueness; or
- Score of 1 functional point for Flood Attenuation **and** answer to Question 14E ii is "yes"; **or**
- Percent of possible score > 80% (round to nearest whole #).

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or

- Score of .9 or 1 functional point for General Wildlife Habitat; or
- Score of .9 or 1 functional point for General Fish Habitat; or
- "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or
- Score of .9 functional point for Uniqueness; or

Percent of possible score > 65% (round to nearest whole #).

Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; otherwise go to Category III)

Low" rating for Uniqueness; and

- Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and
- Percent of possible score < 35% (round to nearest whole #).

# OVERALL ANALYSIS AREA RATING: (check appropriate category based on the criteria outlined



# Appendix C

Project Area Photographs

MDT Wetland Mitigation Monitoring Dodson East Phillips County, Montana



Photo Point 1 – Photo 1 Bearing: 270 Degrees Location: Looking west at mitigation site. Taken in 2011



Photo Point 1 – Photo 1 Bearing: 270 Degrees Location: Looking west at mitigation site. Taken in 2012



Photo Point 2 – Photo 1 Bearing: 270 degrees

Location: Looking west from east edge of east cell. Taken in 2011



Photo Point 2 – Photo 1 Bearing: 270 degrees Location: Looking west from east edge of east cell. Taken in 2012



Photo Point 3 – Photo 1 Bearing: 45 degrees

Location: Looking northeast at east cell. Taken in 2011



Photo Point 3 – Photo 1 Bearing: 45 degrees Location: Looking northeast at east cell. Taken in 2012



Photo Point 4 – Photo 1 Bearing: 135 Degrees

Location: Looking southeast at east cell and Highway 2. Taken in 2011



Photo Point 4 – Photo 1 Bearing: 135 Degrees Location: Looking southeast at east cell and Highway 2. Taken in 2012



Photo Point 5 – Photo 1 Bearing: 315 Degrees Location: Looking northwest at west cell. Taken in 2011



Photo Point 5 – Photo 1 Bearing: 315 Degrees Location: Looking northwest at west cell. Taken in 2012



Photo Point 6 – Photo 1 Bearing: 225 Degrees Location: Looking southwest at west cell. Taken in 2011



Photo Point 6 – Photo 1 Bearing: 225 Degrees Location: Looking southwest at west cell. Taken in 2012



Photo Point 7 – Photo 1 Bearing: 90 Degrees Location: Looking east at west edge of west cell. Taken in 2011



Photo Point 7 – Photo 1 Bearing: 90 Degrees Location: Looking east at west edge of west cell. Taken in 2012





Transect 1 – Beginning Bearing: 225 Degrees

Location: East cell (north). Taken in 2011

Transect 1 – Beginning Bearing: 225 Degrees

Location: East cell (north). Taken in 2012



Transect 1 – End Bearing: 0 Degrees Location: East cell (south). Taken in 2011



Transect 1 – End Bearing: 0 Degrees

Location: East cell (south). Taken in 2012





- Transect 2 Beginning Bearing: 195 Degrees
- Location: West cell (north) Taken in 2011

Transect 2 – Beginning Bearing: 195 Degrees

Location: West cell (north) Taken in 2012



Transect 2 – *End* Bearing: Degrees

Location: West cell (south) Taken in 2011



Transect 2 – End Bearing: Degrees Location: West cell (south) Taken in 2012





Data Point – DE-1 Bearing: Location: Community 5 Taken in 2012

Data Point 2 – DE-2 Bearing: Location: Community 4 Taken in 2012



Data Point 3 – DE-3 Bearing: Location: Community 5 Taken in 2012