

ARTIFICIAL INTELLIGENCE (AI) DRIVEN TOOL FOR PROJECT DURATION ESTIMATION

Final Presentation

May 23rd, 2023

David Jeong, Ph.D. Hamid Alikhani, GRA

TEXAS A&M

Research Goal

 Develop a <u>Top-Down Project Duration Estimation Tool</u> to estimate project duration during the pre-construction stage when a limited amount of project information is available.

<u>Key idea:</u>

There is a strong correlation between project duration and key project characteristics such as estimated cost, and quantities of major work items.

Top-Down Tool

Data Collection

- Bid tabulation data and daily work report data of 1,090 highway projects from 2008 to 2019
- Data attributes:
 - Project #
 - Project location
 - Project type
 - Project year
 - Work item quantities
 - construction cost
 - Project duration

Project Attributes

 Five most common project types account for 76% of all highway projects in MDT

Construction Cost Distribution

- All project costs are adjusted to the base year of 2018 using the National Highway Construction Cost Index (HCCI)
- Approximately half of the projects cost less than \$2M
- 74% of projects are less than \$4M
- 92% of projects are less than \$10M

Project Schedule Performance

Controlling Work items

• Frequency analysis of controlling work items (from 1,090 projects)

Row	Controlling Work Item	Frequency	Row	Controlling Work Item	Frequency
1	Mobilization	1090	17	Rumble strips	308
2	Traffic control	1086	18	Commercial mix	272
3	Remove existing structures	868	19	Excavation-unclassified	272
4	Pavement marking	839	20	Farm fence	270
5	Emulsified asphalt	718	21	Drainage pipe (<=24 in)	264
6	Cover	700	22	Bridge deck	246
7	Signs	697	23	Riprap	234
8	Temporary activities	596	24	Special borrow	219
9	Crushed aggregate course	500	25	Sidewalk	181
10	Base preparations (soil stabilization)	460	26	Curb and gutter	176
11	Guard rail	460	27	Embankment in place	158
12	Milling and pulverizing	457	28	Drainage pipe (> 24 in)	155
13	Asphaltcement	367	29	Deck grooving (after curing)	125
14	Plant mix surfacing	354	30	Reinforcing steel	113
15	Seeding	340	31	Bridge deck repair	103
16	Topsoil-salvaging and placing	321	32	Piling	93

Selection of Input Variables (Feature Selection)

59 Variables

• Feature selection: Importance score of each variable in terms of project duration estimation

Selection of Input Variables (Feature Selection)

- Using all features does not guarantee the lowest MSE
- Select the best number of features: 26

- 26 features were selected including
 - Estimated construction cost (engineer's estimate in new projects)
 - 25 controlling work items

Selection of Input Variables (Feature Selection)

26 features were selected including

- Estimated construction cost (engineer's estimate)
- 25 controlling work items

Row	Controlling Work Items	Row	Controlling Work Items
1	Traffic control	14	Piling
2	Drainage pipe (<= 24 in)	15	Sidewalk
3	Crushed aggregate course	16	Curb and gutter
4	Excavation-unclassified	17	Guard rail
5	Mobilization	18	Bridge deck
6	Seeding	19	Commercial mix
7	Special borrow	20	Signs
8	Reinforcing steel	21	Embankment in place
9	Plant mix surfacing	22	Emulsified asphalt
10	Asphalt cement	23	Cover
11	Drainage pipe (> 24 in)	24	Rumble strips
12 13	Deck grooving (after curing) Riprap	25	Milling and pulverizing

Benefits of Artificial Intelligence (A.I.)

- Capable of detecting complex patterns
- Especially in problems with many features

 Raw pixels
 Neural network
 Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label
 Image: Class label

 Image: Class label
 Image: Class label

AI capability in pattern recognition

Different types of relationships between variables

Performance of A.I. Models

 The performance of AI is generally expected to perform better as the data size gets larger while traditional statistics-based methods tend to converge to a certain point and never improve.

MDT's data will increate over time

Artificial Neural Networks (ANN)

Model Training

Step 1: starting with random weights

Step 2: based on the difference between the <u>actual output</u> and the <u>model's output</u>, the weights are adjusted

> Model's output: 380 Actual output: 137

Step 3: the process continues until weights are converged and the model's output gets close to the actual output

Model Training

- The goal is to determine final weights
- The ANN model's description:

Number of input features	26
Number of hidden layers	2
Number of output cells	1
Number of weights	68,000
Activation functions	Relu, Sigmoid

The ANN model receives input variables and gives the output

Model Testing

- The whole dataset is divided into 80% training dataset and 20% testing dataset.
- Test dataset is used as unseen data to evaluate the performance of the model.
- Mean Squared Error (MSE) is used as the metric for evaluation.

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (Y_i - {\hat{Y}}_i)^2 \, .$$

- MSE = mean squared error
- = number of data points n

 Y_i = observed values

 \hat{Y}_i = predicted values

Test datapoint i

Input:

. . .

Engineer's estimate: \$44,785 Activity #1 amount: 1,087 Activity #2 amount: 453

output:

Project duration: 37 Y_i Model's output: 39

 \hat{Y}_i

AI vs Regression Models

In addition to AI model, we have developed a regression model

• Regression model:

 $Y = b_0 + b_1^* X_1 + b_2^* X_2 + \dots + b_n^* X_n$

 X_i : ith input variable, b_i : ith coefficient, Y: output

Final model comparison

Model	MSE	R-squared
ANN	0.0022	0.72
Linear Regression	0.0034	0.75

MS Excel Tool: AI-PDET

19

MS Excel Tool: AI-PDET

The output section provides the project duration estimates calculated with two methods

Tool Maintenance and Database Update

- Data-driven prediction models may need to get updated over time and obtain new knowledge from recent projects to enhance prediction performance in the future
- The appendix explains steps and processes that need to be taken to update the model and the Excel tool
 using new data
- Processes to update the tool:

• For detailed explanation of updating the tool, refer to the final report

Thank you !

Questions and Comments